Углеводы. Общая биология: Углеводы и липиды

24.06.2019

Углеводы – это органические соединения, которые состоят из одного либо нескольких простых молекул сахара. Их можно классифицировать на три группы - это моносахариды, олигосахариды и полисахариды. Все они отличаются по составу молекул сахара и по-разному действуют на организм. Для чего нужны нерастворимые углеводы? Условно эти органические соединения можно разделить на углеводы нерастворимые в воде и растворимые. К растворимым углеводам относятся моносахариды. Но только в том случае, если они имеют альфа-конфигурацию. Эти элементы легко перевариваются в пищеварительном тракте.Нерастворимые углеводы обозначают как клетчатку, которая включает в себя целлюлозу, гемицеллюлозу, пектин, камеди, растительный клей и лигнин. Все эти добавки имеют различные химические свойства и применяются для профилактики заболеваний у животных.

К нерастворимым углеводам относятся моносахариды, имеющие бета-конфигурацию, так как они намного устойчивее к пищеварительным ферментам. Летучие жирные кислоты (ЛКЖ) являются одним из самых важных источников энергии для организма. Но следует отметить, что только для травоядных, так как у мясоедов пищеварительные процессы ограничены, и эти кислоты не представляют для них энергетической ценности. Корма с такими добавками в основном дают тем животным, которым необходимо снизить избыточный вес. Если в рационе животного не преобладают углеводы, это существенно не влияет на его организм, поскольку он может использовать белки тела для создания глюкозы.

Какие углеводы нерастворимы в воде? К ним можно отнести крахмал, целлюлозу, хитин и гликоген. Все они выполняют функцию структурирующую, защитную и запасающую энергию в организме. Для чего нам нужны углеводы? Углеводы – это неотъемлемая часть человеческого организма, которая позволяет ему функционировать. Благодаря им живой организм наполняется энергией для дальнейшей жизнедеятельности. Именно благодаря этим органическим соединениям уровень глюкозы не влияет на выбросы инсулина в кровь, а это в свою очередь не приводит к более серьезным последствиям.

В основном все потребляемые углеводы растворяются в воде и так с пищей попадают в организм человека. Однако необходимо помнить о том, что нужно регулировать потребляемые углеводы, так как их недостаток либо избыток могут привести к нежелательным последствиям. Избыток этих веществ может привести к разнообразным заболеваниям, начиная от сердечно-сосудистых и заканчивая сахарным диабетом. Недостаток же, наоборот, провоцирует нарушения в обмене жиров, понижение уровня сахара и многие другие заболевания. фраза 1: углеводы нерастворимые в воде фраза 2: какие углеводы нерастворимы в воде фраза 3: углеводы растворяются в воде

служат основным источником энергии. Примерно 60% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров. Углеводы содержатся преимущественно в продуктах растительного происхождения.

В зависимости от сложности строения, растворимости, быстроты усвоения углеводы пищевых продуктов делятся на:

простые углеводы - моносахариды (глюкоза, фруктоза, галактоза), дисахариды (сахароза, лактоза);

сложные углеводы - полисахариды (крахмал, гликоген, пектиновые вещества, клетчатка).

Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

Простые углеводы. Моносахариды.
Моносахариды - самый быстрый и качественный источник энергии для процессов, происходящих в клетке.

Глюкоза - наиболее распространенный моносахарид. Она содержится во многих плодах и ягодах, а также образуется в организме в результате расщепления дисахаридов и крахмала пищи. Глюкоза наиболее быстро и легко используется в организме для образования гликогена, для питания тканей мозга, работающих мышц (в том числе и сердечной мышцы), для поддержания необходимого уровня сахара в крови и создания запасов гликогена печени. Во всех случаях при большом физическом напряжении глюкоза может использоваться как источник энергии.

Фруктоза обладает теми же свойствами, что и глюкоза, и может рассматриваться как ценный, легкоусвояемый сахар. Однако она медленнее усваивается в кишечнике и, поступая в кровь, быстро покидает кровяное русло. Фруктоза в значительном количестве (до 70 - 80%) задерживается в печени и не вызывает перенасыщение крови сахаром. В печени фруктоза более легко превращается в гликоген по сравнению с глюкозой. Фруктоза усваивается лучше сахарозы и отличается большей сладостью. Высокая сладость фруктозы позволяет использовать меньшие ее количества для достижения необходимого уровня сладости продуктов и таким образом снизить общее потребление сахаров, что имеет значение при построении пищевых рационов ограниченной калорийности. Основными источниками фруктозы являются фрукты, ягоды, сладкие овощи.

Основными пищевыми источниками глюкозы и фруктозы служит мед: содержание глюкозы достигает 36.2%, фруктозы - 37.1%. В арбузах весь сахар представлен фруктозой, количество которой составляет 8%. В семечковых преобладает фруктоза, а в косточковых (абрикосы, персики, сливы) - глюкоза.

Галактоза является продуктом расщепления основного углевода молока - лактозы. Галактоза в свободном виде в пищевых продуктах не встречается.

Простые углеводы. Дисахариды.
Из дисахаридов в питании человека основное значение имеет сахароза, которая при гидролизе распадается на глюкозу и фруктозу.

Сахароза. Важнейший пищевой источник ее тростниковый и свекловичный сахар. Содержание сахарозы в сахаре-песке составляет 99.75%. Натуральными источниками сахарозы являются бахчевые, некоторые овощи и фрукты. Попадая в организм, она легко разлагается на моносахариды. Но это возможно, если мы потребляем сырой свекольный или тростниковый сок. Обыкновенный сахар имеет на много более сложный процесс усвоения.

Это важно! Избыток сахарозы оказывает влияние на жировой обмен, усиливая жирообразование. Установлено, что при избыточном поступлении сахара усиливается превращение в жир всех пищевых веществ (крахмала, жира, пищи, частично и белка). Таким образом, количество поступающего сахара может служить в известной степени фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры. При этом повышается удельный вес гнилостных микроорганизмов, усиливается интенсивность гнилостных процессов в кишечнике, развивается метеоризм. Установлено, что в наименьшей степени эти недостатки проявляются при потреблении фруктозы.

Лактоза (молочный сахар) - основной углевод молока и молочных продуктов. Ее роль весьма значительна в раннем детском возрасте, когда молоко служит основным продуктом питания. При отсутствии или уменьшении фермента лактозы, расщепляющей лактозу до глюкозы и галактозы, в желудочно-кишечном тракте наступает непереносимость молока.

Сложные углеводы. Полисахариды.
Сложные углеводы, или полисахариды, характеризуются усложненным строением молекулы и плохой растворимостью в воде. К сложным углеводам относятся крахмал, гликоген, пектиновые вещества и клетчатка.

Мальтоза (солодовый сахар) - промежуточный продукт расщепления крахмала и гликогена в желудочно-кишечном тракте. В свободном виде в пищевых продуктах она встречается в меде, солоде, пиве, патоке и проросшем зерне.

Крахмал - важнейший поставщик углеводов. Он образуется и накапливается в хлоропластах зеленых частей растения в форме маленьких зернышек, откуда путем гидролизных процессов переходит в водорастворимые сахара, которые легко переносятся через клеточные мембраны и таким образом попадают в другие части растения, в семена, корни, клубни и другие. В организме человека крахмал сырых растений постепенно распадается в пищеварительном тракте, при этом распад начинается еще во рту. Слюна во рту частично превращает его в мальтозу. Вот почему хорошее пережевывание пищи и смачивание ее слюной имеет исключительно важное значение. Старайтесь в своем питании чаще использовать продукты, содержащие естественную глюкозу, фруктозу и сахарозу. Наибольшее количество сахара содержится в овощах, фруктах и сухофруктах, а также проросшем зерне.

Крахмал имеет основное пищевое значение. Высоким его содержанием в значительной степени обуславливается пищевая ценность зерновых продуктов. В пищевых рационах человека на долю крахмала приходится около 80% общего количества потребляемых углеводов. Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре.

Гликоген в организме используется в качестве энергетического материала для питания работающих мышц, органов и систем. Восстановление гликогена происходит путем его его ресинтеза за счет глюкозы.

Пектины относятся к растворимым веществам, усваивающимися в организме. Современными исследованиями показано несомненное значение пектиновых веществ в питании здорового человека, а также возможность использовать их с терапевтической целью при некоторых заболеваниях преимущественно желудочно-кишечного тракта.

Клетчатка по химической структуре весьма близка к полисахаридам. Высоким содержанием клетчатки характеризуются зерновые продукты. Однако помимо общего количества клетчатки, важное значение имеет ее качество. Менее грубая, нежная клетчатка хорошо расщепляется в кишечнике и лучше усваивается. Такими свойствами обладает клетчатка картофеля и овощей. Клетчатка способствует выведению из организма холестерина.

Потребность в углеводах определяется величиной энергетических затрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки. У спортсменов по мере увеличения интенсивности и тяжести физических нагрузок потребность в углеводах увеличивается и может возрастать до 800 г в сутки.

Это важно! Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60г., чтобы избежать кетоза, кислого состояния крови, которое может развиться, если для образования энергии используются преимущественно запасы жира. Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов.

Если употреблять слишком много углеводов, больше, чем организм может преобразоваться в глюкозу или гликоген, то в результате, это ведет к ожирению. Когда телу нужно больше энергии, то жир преобразуется обратно в глюкозу, и вес тела снижается. При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).

При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.

В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляемых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

Будет здорово, если вы напишете комментарий:

Углеводы классифицируют по величине молекул на 3 группы:

    Моносахариды – содержат 1 молекулу углевода (альдозы или кетозы).

    Триозы (глицериновый альдегид, диоксиацетон).

    Тетрозы (эритроза).

    Пентозы (рибоза и дезоксирибоза).

    Гексозы (глюкоза, фруктоза, галактоза).

    Олигосахариды - содержат 2-10 моносахаридов.

    Дисахариды (сахароза, мальтоза, лактоза).

    Трисахариды и т.д.

    Полисахариды - содержат более 10 моносахаридов.

    Гомополисахариды – содержат одинаковые моносахариды (крахмал, клетчатка, целлюлоза состоят только из глюкозы).

    Гетерополисахариды- содержат моносахариды разного вида, их пароизводные и неуглеводные компоненты (гепарин, гиалуроновая кислота, хондроитинсульфаты).

Схема № 1. Классификация углеводов.

Углеводы Моносахариды Олигосахариды Полисахариды

1. Триозы 1. Дисахариды 1. Гомополисахариды

2. Тетрозы 2. Трисахариды 2. Гетерополисахариды

3. Пентозы 3. Тетрасахариды

4. Гексозы

3. 4. Свойства углеводов.

    Углеводы – твердые кристаллические белые вещества, практические все сладкие на вкус.

    Почти все углеводы хорошо растворимы в воде, при этом образуются истинные растворы. Растворимость углеводов зависит от массы (чем больше масса, тем менее растворимо вещество, например, сахароза и крахмал) и строения (чем разветвленнее структура углевода, тем хуже растворимость в воде, например крахмал и клетчатка).

    Моносахариды могут находится в двух стереоизомерных формах : L–форма (leavus – левый) и D- форма (dexter – правый). Эти формы обладают одинаковыми химическими свойствами, но отличаются, расположением гидроксидных групп относительно оси молекулы и оптической активностью, т.е. вращают на определенный угол плоскость поляризованного света, который проходит через их раствор. Причем плоскость поляризованного света вращается на одну величину, но в противоположных направлении. Рассмотрим образование стереоизомеров на примере глицеринового альдегида:

Сно сно

НО -С-Н Н-С-ОН

СН2ОН СН2ОН

L – форма D – форма

При получении моносахаридов в лабораторных условиях, стереоизомеры образуются в соотношении 1:1, в организме синтез происходит под действием ферментов, которые строго отличают L– форму иD– форму. Поскольку синтезу и распаду в организме подвергаются исключительноD-сахара, в эволюции постепенно исчезлиL-стереоизомеры (на этом основано определение сахаров в биологических жидкостях с помощью поляриметра).

    Моносахариды в водных растворах могут взаимопревращаться, такое свойство называют муторатацией.

НО-СН2 О=С-Н

С О НО-С-Н

Н Н Н Н-С-ОН

С С НО-С-Н

НО ОН Н ОН НО-С-Н

С С СН2-ОН

Альфа-форма Открытая форма гексозы

Н Н ОН

НО ОН Н Н

Бетта-форма.

В водных растворах мономеры, состоящие из 5 и более атомов, могут находится в циклической (кольцевой) альфа- или бетта-формах и незамкнутой (открытой) формах, причем их соотношение 1:1. Олиго- и полисахариды состоят из мономеров в циклической форме. В циклической форме углеводы устойчивы и молоактивны, а в открытой обладают высокой реакционной способностью.

    Моносахариды могут восстанавливаться до спиртов.

    В открытой форме могут взаимодействовать с белками, липидами, нуклеотидами без участия ферментов. Эти реакции получили название - гликирования. В клинике применяют исследование уровня гликозилированного гемоглобина или фруктозамина для постановки диагноза сахарный диабет.

    Моносахариды могут образовывать эфиры. Наибольшее значение имеет свойство углеводов образовывать эфиры с фосфорной кислотой, т.к. чтобы включиться в обмен углевод должен стать фосфорным эфиром, например, глюкоза перед окислением превращается в глюкозо-1-фосфат или глюкозо-6-фосфат.

    Альдолазы обладают способностью восстанавливать в щелочной среде металлы из их окислов в закиси или в свободное состояние. Это свойство используют в лабораторной практике для обнаружения альдолоз (глюкозы) в биологических жидкостях. Чаще всего используют реакцию Троммера при которой альдолоза восстанавливает окись меди в закись, а сама окисляется в глюконовую кислоту (окисляется 1 атом углерода).

CuSO4 + NaOH Cu(OH)2 + Na2SO4

Голубой цвет

C5H11COH + 2Cu(OH)2 C5H11COOH + H2O + 2CuOH

Кирпично-красный цвет

    Моносахариды могут окисляться до кислот не только в реакции Троммера. Например, при окислении 6 углеродного атома глюкозы в организме образуется глюкуроновая кислота, которая соединяется с ядовитыми и плохо растворимыми веществами, обезвреживает их и переводит в растворимые, в таком виде эти вещества выводятся из организма с мочой.

    Моносахариды могут соединяться между собой и образовывать полимеры. Связь, которая при этом возникает называется гликозидной , она образуется за счет ОН-группы первого углеродного атома одного моносахарида и ОН-группой четвертого (1,4-гликозидная связь) или шестого углеродного атома (1,6-гликозидная связь) другого моносахарида. Кроме этого могут образовываться альфа-гликозидная связь (между двумя альфа-формами углевода) или бетта-гликозидная связь (между альфа- и бетта- формами углевода).

    Олиго- и полисахариды могут подвергаться гидролизу с образованием мономеров. Реакция идет по месту гликозидной связи, причем этот процесс ускоряется в кислой среде. Ферменты в организме человека могут различать альфа- и беттагликозидные связи, поэтому крахмал (имеет альфагликозидные связи) переваривается в кишечнике, а клетчатка (имеет беттагликозидные связи) нет.

    Моно- и олигосахариды могут подвергаться брожению: спиртовому, молочнокислому, лимоннокислому, маслянокислому.

Среди углеводов различают целлюлозу, гемицеллюлозу, палисахара (крахмал, инулин), дисахара (тростниковый сахар), монссахара (глюкоза, фруктоза, лактоза). К другим соединениям, входящим в состав корма, содержащим, так же как и углеводы, углерод, зодород и кислород, относятся пентозы, инкрустирующие вещества (лигнин, кутин.), органические кислоты, пигменты, пектиновые вещества, глюкозиды и ряд других, которые находятся в растительных и животных продуктах в небольшом количестве.

Обычно среди этих многообразных по своему составу и физиологическому значению веществ выделяют следующие группы: сырая клетчатка -в нее входят целлюлоза, гемнцеллюлоза, лигнин и другие инкрустирующие вещества; растворимые углеводы - крахмал, инулин, сахара; безазотистые эктрактивные в е щ е с т в а, куда входит все остальное; обычно растворимые углеводы не определяются, а их объединяют с группой безазотистых экстрактивных веществ, сокращенно обозначая их начальными буквами БЭВ.

Сырая клетчатка - соединение, которое в значительной степени определяет энергетическую питательность корма, содержание в нем полезных для животных органических веществ, способных к окислению.

На питательность сырой клетчатки влияет степень одревеснения, грубости, что вызывается содержанием в ней лигнина, в особенности его нерастворимых форм, и степенью волокнистости целлюлозы. Сырая клетчатка в зависимости от ее наличия в растениях и фазы развития растений совершенно поразному переваривается и усваивается. В начальные периоды развития растения, в фазе прикорневых листьев, сырая клетчатка переваривается на 70-85% и усваивается не хуже растворимых углеводов. В это время она состоит главным образом из гемицеллюлозы, аморфной целлюлозы; лигнин присутствует главным образом в виде его растворимых форм. С возрастом растения происходят следующие изменения: больше накапливается целлюлозы, она становится волокнистой, соединяется в плотные пучки (недоступные пищеварительным сокам), комплексируется с нерастворимыми формами лигнина. В результате резко снижается переваримость корма и значительно ухудшается использование животными переваренных органических веществ корма. Так, например, в одном из зарубежных опытов переваримость органического вещества тимофеевки в мае составляла 85%, а в конце июня она была равна 45%. В среднем при этом за каждый день развития растения переваримость снижалась на 0,5%.

Процесс понижения переваримости клетчатки сопровождается одновременным увеличением ее содержания в сухом веществе. Если в начальных фазах развития в растениях содержится сырой клетчатки 8-14%, то в конечных (осыпание семян, засыхание растений) до 45%. В процессе развития растений повышается удельный вес в сухом веществе лигнина. Однако большее значение в понижении энергетической питательности растения имеет то, что лигнин превращается в нерастворимые формы, входит в соединение с целлюлозой, резко снижая тем самым переваримость сырой клетчатки и других входящих в состав растения органических веществ.

При содержании в сухом веществе кормов 45% клетчатки переваримость ее оказывается низкой, равной 40%, резко снижается питательность сухого вещества. Такие корма, как озимая солома, малопроизводительны, так как резко снижают продуктивность животных. При увеличении содержания сырой клетчатки до 45-55% и выше (как в ветках, опилках и других древесных отходах, в торфе) продукты и материалы оказываются уже малопригодными для кормления животных.

Клетчатка играет рать балластного вещества, создающего объемистость пищевой массы. Дело в том, что при поедании животными меньше 2 кг сухих веществ на центнер живого веса нарушаются пищеварительные процессы, что отрицательно сказывается на усвоении питательных веществ и здоровье животных. Поэтому дача малопитательных или даже почти непитательных продуктов положительно сказывается на состоянии животных. Недостаточная объемистость рациона сказывается и на образовании у животных взращенных привычек - свиньи грызут полы на ферме , деревянные части кормушек, лошади заглатывают воздух (прикуска).

Другое положительное свойство сырой клетчатки способность хорошо обогревать животных зимой, образовывать в теле дополнительные количества тепловой энергии. Происходит это за счет того, что микроорганизмы пищеварительного тракта, в первую очередь у жвачных животных, разлагая и используя клетчатку, выделяют много тепла - примерно на 1 кг переваренной клетчатки 2500 ккал. Это обстоятельство и приводит к тому, что зимой, при низкой температуре, скот с большей охотой поедает гуменные и другие грубые корма, а весной и летом отказывается от соломы.

Возможно ли искусственно, путем обработки, изменить питательность кормов, а также некормовых продуктов? Оказывается, возможно. Дело в том, что по валовой калорийности грубые корма одинаковы с концентратами содержат в 1 кг 4400 ккал. Низкая питательность их обусловлена плохой переваримостью, а также неудовлетворительной ассимиляцией переваренных веществ. Если обработать грубый корм щелочным раствором достаточно активных щелочей - каустической соды, извести (кипелки) с наличием достаточного каличества гидроксильных групп (ОН) и числом рН не ниже 11-12, то происходит отделение целлюлозы от лигнина, волокнистое строение целлюлозы переходит в аморфное, в известной мере растворяется лигнин, а также попутно и кремниевые соли. При этом питательность сухого вещества грубых кормов резко увеличивается.

Оказывается, что аналогичная обработка щелочным раствором позволяет превратить некормовые продукты в корма. Так, обработка щелочным раствором древесных хлопьев, осиновых и березовых опилок позволила превратить их в продукт, поедаемый не талько крупным рогатым скотом, но и свиньями.

Растворимые углеводы - крахмал, инулин (в клубнях земляной груши), тростниковый сахар, глюкоза, фруктоза, лактоза -легко перевариваются и хорошо усваиваются. Они служат в теле животного материалом для образования механической и тепловой энергии и для синтеза жира. В клетках тела животного имеются моносахара, в крови глюкоза, в молоке-молочный сахар (лактоза). Животный крахмал (гликоген) имеется в весьма ограниченном количестве в печени, где он играет роль промежуточного соединения. Растворимые углеводы присутствуют главным образом в зернах, семенах, корнях и клубнях, составляя в них до 80% сухого вещества. Растворимые углеводы-лучшие источники образования жира в теле животных, так как процесс синтеза жира из них происходит более эффективно, чем из белков и жиров корма, а качество жира получается характерным для данного вида животных.

У жвачных животных избыток растворимых углеводов при недостатке протеина в корме приводит к пищеварительной дистрофии, к худшему использованию питательных веществ вследствие пониженной деятельности микроорганизмов желудочно-кишечного тракта.

Корма, богатые легкорастворнмыми углеводами, в значительном количестве используются в заключительный период откорма животных, в частности свиней, когда идет усиленное жироотложение. Растворимые углеводы более совершенно используются животными с однокамерным желудком, нежели жвачными, где они частично елужат питанием для микроорганизмов рубца.

Пентозы и пектиновые вещества по своим качествам близки к растворимым углеводам, хорошо перевариваются и используются животными. Встречаются в растительных кормах.

Органические кислоты в кормах встречаются в виде молочной, уксусной, пропионовой, маеляной. Содержание органических киелот в сухом веществе для успешного его использования не должно превышать 6%. При более высоком его содержании и числе рН ниже 3.6 - 3,8 поедаемость такого корма, например силоса, снижается. Дело в том, что животные, как правило, отказываются поедать силос, если количество свободных органических киелот превышает 100 г на центнер живого веса жвачных и 50-80 г на центнер веса свиней.

Обычно органические кислоты в кормах в большем количестве образуются благодаря брожению. Поэтому их много в силосе, барде, пивной дробине.

Наиболее желательной в кормах является молочная кислота. Она побуждает к более энергичному выделению пищеварительных соков, способствует возникновению хорошего аппетита. Силос с достаточным наличием молочной кислоты не обладает резко выраженным кислым запахом, так как молочная кислота не летуча. Уксусная кислота, как летучая, придает кормам соответствующий кислый запах. Пропионовая кислота встречается в кормах в меньшем количестве, чем уксусная и молочная. Она полезна для животных. Нежелательна в силосе масляная кислота. Ее наличие- признак маслянокислого брожения, приводящего к разложению силоса. В хорошем силосе масляная кислота отсутствует. В обшем же количестве органических кислот в силосе доля масляной не должна превышать 20%.

В рубце жвачных животных в результате жизнедеятельности микроорганизмов (бактерии, инфузорий) образуются органические кислоты - уксусная, пропионовая, масляная, валериановая и в небольшом количестве другие. Эти кислоты всасываются в кровь и служат источником синтеза различных органических веществ тела. В частности, уксусная кислота идет на образование маточного жира. Обычно среди летучих жирных кислот, образующихся в рубце, 62-73% составляет уксусная, 18-28% пропионовая, 7-16% масляная.

Назовите растворимые в воде углеводы. Какие особенности строения их молекул обеспечивают свойство растворимости?

  1. Углево#769;ды (синонимы: глициды, глюциды, сахариды, сахара)
    обширный, наиболее распространенный на Земле класс органических соединений, входящих в состав клеток всех организмов и абсолютно необходимых для их жизнедеятельности. Углеводы являются первичными продуктами фотосинтеза. Во всех живых клетках У. и их производные играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов жизненно важных биохимических процессов. Качественное или количественное изменение содержания различных У. в крови, моче и других биологических жидкостях человека является информативным диагностическим признаком нарушений углеводного обмена, носящих наследственный характер или развившихся вторично вследствие различных патологических состояний. В питании человека У. являются одной из основных групп пищевых веществ наряду с белками и жирами (см. Питание) . Термин углеводы (углерод + вода) был предложен в 1844 г. Шмидтом (С. Schmidt), т. к. формулы известных в то время представителей этого класса веществ соответствовали общей формуле Cn (Н2О) m, однако позже оказалось, что подобную формулу могут иметь не только У. , но и, например, молочная кислота. Кроме того, к У. стали относить различные, сходные по свойствам их производные с иной общей формулой.
    Класс У. включает самые разнообразные соединения от низкомолекулярных веществ до высокомолекулярных полимеров. Условно У. делят на три большие группы: моносахариды, олигосахариды и полисахариды. Отдельно рассматривают группу смешанных биополимеров, молекулы которых содержат наряду с олигосахаридной или полисахаридной цепью белковые, липидные и другие компоненты (см. Гликоконъюгаты) . К моносахаридам (монозам, или простым сахарам) относят полиоксиальдегиды (альдозы, или альдосахара) и полиоксикетоны (кетозы, или кетосахара) . По числу углеродных атомов моносахариды делят на триозы, тетрозы, пентозы, гексозы, гептозы, октозы, нонозы. Наиболее распространены в природе и важны для человека гексозы и пентозы. По взаимному пространственному расположению водорода и гидроксильной группы у последнего асимметричного углеродного атома в молекуле все моносахариды относят к D- или L-ряду (вращают плоскость поляризованного луча света соответственно вправо или влево) . Моносахариды, распространенные в природе как в свободном виде, так и входящие в состав многочисленных соединений, относятся главным образом к D-ряду; моносахариды в твердом состоянии находятся в виде циклических полуацеталей пятичленных (фураноз) или шестичленных (пираноз) . Моносахариды существуют в виде #945;- и #946;-изомеров, различающихся по конфигурации асимметричного центра у карбонильного углерода. В растворе между этими формами устанавливается подвижное равновесие, кроме того, в нем присутствует наиболее реакционно-способная ациклическая форма моносахарида. Циклы моносахаридов могут приобретать различные геометрические формы, называемые конформациями. К моносахаридам относятся также дезоксисахара (гидроксильная группа замещена водородом) , аминосахара (содержат аминогруппу) , уроновые, альдоновые и сахарные кислоты (содержат карбоксильные группы) , многоатомные спирты, эфиры моносахаридов, гликозиды, сиаловые кислоты и др.
    К олигосахаридам относят соединения, молекулы которых построены из остатков циклических форм моносахаридов, соединенных О-гликозидными связями. Число остатков моносахаридов в молекулах олигосахаридов не превышает 10. Олигосахариды делятся на ди-, три-, тетрасахариды и т. д. по числу входящих в них остатков моносахаридов. Если молекула олигосахарида построена из остатков одного и того же моносахарида, то его называют гомоолигосахаридом; если же такая молекула построена из остатков разных моносахаридов гетероолигосахаридом. Олигосахариды бывают линейными, разветвленными, циклическими, редуцирующими (обладающими способностью к химической реакции восстановления) и нередуцирующими; они различаются также по типу связи между остатками моносахаридов.
  2. простые углеводы: фруктоза, глюкоза...
  3. за счет полярных связей. вода (диполь) образует сальватную оболочку и разрывает связь.
  4. Хорошо растворимы в воде практически все (!) углеводы. В жизни хорошо известен один, по крайней мере, - сахароза (дисахарид) , или обычный сахар.
    Растворимость в воде обусловлена схожестью строения - наличия гидроксильных групп, способных образовывать водородные связи между молекулами по типу:
    R-O-H....O-R
    Атом водорода гидроксильной группы способен образовывать НЕКОВАЛЕНТНУЮ (электростатическую) связь с атомами кислорода, фтора или азота


Похожие статьи