Галогены — Гипермаркет знаний. Галогены: физические свойства, химические свойства

11.10.2019

Ядерных исследований Дубны. Фтор представляет собой ядовитый и реакционноспособный бледно-желтый газ. Хлор – тяжелый ядовитый с неприятным запахом хлорки светло-зеленый газ. Бром – ядовитая красно-бурая жидкость, способная поражать обонятельный нерв, содержится в ампулах, т.к. имеет свойство летучести. Йод – легко возгоняющиеся ядовитые фиолетово-черные кристаллы. Астат – радиоактивные сине-черные кристаллы, период самого долгого изотопа равен 8,1 часа.Все галогены реагируют практически со всеми простыми веществами, за исключением нескольких . Являются энергичными окислителями, поэтому их можно встретить только в виде соединений. Химическая активность галогенов с увеличением порядкового номера уменьшается.Галогены имеют высокую активность окисления, уменьшающуюся при переходе от фтора к иоду. Самый активный – фтор, реагирующий со всеми металлами. Многие из металлов в атмосфере этого элемента самовоспламеняются и выделяют большое количество теплоты. Без нагревания фтор может реагировать и со многими неметаллами, при этом все реакции – . Фтор реагирует с благородными () газами при облучении.Свободный хлор, несмотря на то, что его активность меньше, чем у фтора, тоже очень реакционноспособен. Хлор может реагировать со всеми простыми веществами, кроме кислорода, азота и инертных газов. Этот элемент вступает в реакцию и со многими сложными веществами, замещения и присоединения с углеводородами. При нагревании хлор вытесняет бром, а также йод, из их соединений с металлами или водородом.Химическая активность также достаточно велика, хотя и меньше, чем у фтора или хлора, поэтому бром в основном используется в жидком состоянии и его исходные концентрации при остальных равных условиях больше, чем у хлора. Этот элемент, аналогично , растворяется в воде и, частично реагируя с ней, создает «бромную воду».Йод отличается по химической активности от остальных галогенов. Он не может реагировать с большинством неметаллов, а с металлами реагирует только при нагревании и очень медленно. Реакция является сильно обратимой и эндотермической. Йод же в воде нерастворим и даже при нагревании не сможет ее окислить, поэтому «йодной воды» не существует. Йод может растворяться в растворах йодидов с образованием комплексных анионов.Астат реагирует с водородом и металлами.Химическая активность галогенов от фтора к йоду последовательно уменьшается. Каждый галоген вытесняет последующий из его соединений с металлами или водородом, т.е. каждый галоген в виде простого вещества может окислить галоген-ион любого из следующих галогенов.

Химия Элементов

Неметаллы VIIА-подгруппы

Элементы VIIА-подгруппы являются типичными неметаллами с высокой

электротрицательностью, они имеют групповое название – «галогены».

Основные вопросы, рассматриваемые в лекции

Общая характеристика неметаллов VIIА-подгруппы. Электронное строение, важнейшие характеристики атомов. Наиболее характерные сте-

пени окисления. Особенности химии галогенов.

Простые вещества.

Природные соединения.

Соединения галогенов

Галогенводородные кислоты и их соли. Соляная и плавиковая ки-

слота, получение и применение.

Галогенидные комплексы.

Бинарные кислородные соединения галогенов. Неустойчивость ок-

Окислительно-восстановительные свойства простых веществ и со-

единений. Реакции диспропорционирования. Диаграммы Латимера.

Исполнитель:

Мероприятие №

Химия элементов VIIA-подгруппы

Общая характеристика

Марганец

Технеций

VIIА-группу образуют р-элементы: фтор F, хлор

Cl, бром Br, иод I и астат At.

Общая формула валентных электронов – ns 2 np 5 .

Все элементы VIIА-группы – типичные неметаллы.

Как видно из распреде-

ления валентных электронов

по орбиталям атомам

не хватает всего одного электрона

для формирования устойчивой восьмиэлектронной обо-

лочки, поэтому у них сильно выражена тенденция к

присоединению электрона.

Все элементы легко образуют простые однозаряд-

ные анионы Г – .

В форме простых анионов элементы VIIА-группы находятся в природной воде и в кристаллах природных солей, например, галита NaCl, сильвина KCl, флюорита

CaF2 .

Общее групповое название элементов VIIА-

группы «галогены» , т. е. «рождающие соли», связано с тем, что большинство их соединений с металлами пред-

ставляет собой типичные соли (CaF2 , NaCl, MgBr2 , KI), ко-

торые могут быть получены при непосредственном взаи-

модействии металла с галогеном. Свободные галогены получают из природных солей, поэтому название «галогены» также переводят, как «рожденные из солей».

Исполнитель:

Мероприятие №

Минимальная степень окисления (–1) является наиболее устойчивой

у всех галогенов.

Некоторые характеристики атомов элементов VIIА-группы приведены в

Важнейшие характеристики атомов элементов VIIА-группы

Относитель-

Сродство

ная электро-

отрицатель-

ионизации,

ность (по

Поллингу)

увеличение числа

электронных слоев;

увеличение размера

уменьшение элек-

троотрицательности

Галогены отличаются высоким сродством к электрону (максимальным у

Cl) и очень большой энергией ионизации (максимальной у F) и максимально

возможной в каждом из периодов электроотрицательностью. Фтор – самый

электроотрицательный из всех химических элементов.

Наличие одного неспаренного электрона в атомах галогенов обуславли-

вает объединение атомов в простых веществах в двухатомные молекулы Г2 .

Для простых веществ галогенов наиболее характерны окислитель-

ные свойства , наиболее сильные у F2 и ослабевающие при переходе к I2 .

Галогены характеризуются наибольшей реакционной способностью из всех неметаллических элементов. Фтор даже среди галогенов выделя-

ется чрезвычайно высокой активностью.

Элемент второго периода – фтор наиболее сильно отличается от дру-

гих элементов подгруппы . Это общая закономерность для всех неметаллов.

Исполнитель:

Мероприятие №

Фтор , как самый электроотрицательный элемент,не проявляет поло-

жительных степеней окисления . В любых соединениях, в том числе с ки-

слородом, фтор находится в степени окисления (-1).

Все остальные галогены проявляют положительные степени окис-

ления вплоть до максимальной +7.

Наиболее характерные степени окисления галогенов:

F : -1, 0;

Cl, Br, I: -1, 0, +1, +3, +5, +7.

У Cl известны оксиды, в которых он находится в степенях окисления: +4 и +6.

Наиболее важными соединениями галогенов, в положительных сте-

пенях окисления, являются кислородсодержащие кислоты и их соли.

Все соединения галогенов в положительных степенях окисления яв-

ляются сильными окислителями.

жуточную степень окисления. Диспропорционированию способствует щелочная среда.

Практическое применение простых веществ и кислородных соедине-

ний галогенов связано главным образом с их окислительным действием.

Самое широкое практическое применение находят простые вещества Cl2

и F2 . Наибольшее количество хлора и фтора расходуется в промышленном ор-

ганическом синтезе: в производстве пластмасс, хладоагентов, растворителей,

ядохимикатов, лекарств. Значительное количество хлора и йода используется для получения металлов и для их рафинирования. Хлор используется также

для отбеливания целлюлозы, для обеззараживания питьевой воды и в произ-

водстве хлорной извести и соляной кислоты. Соли оксокислот используются в производстве взрывчатых веществ.

Исполнитель:

Мероприятие №

Широкое практическое применение находят кислоты – соляная и плави-

Фтор и хлор принадлежат к двадцати самым распространенным элемен-

там, значительно меньше в природе брома и иода. Все галогены находятся в природе в степени окисления (–1). Лишь йод встречается в виде соли KIO3 ,

которая как примесь входит в чилийскую селитру (KNO3 ).

Астат – искусственно полученный радиоактивный элемент (его нет в природе). Неустойчивость At отражается в названии, которое происходит от греч. «астатос» – «неустойчивый». Астат является удобным –излучателем для радиотерапии раковых опухолей.

Простые вещества

Простые вещества галогенов образованы двухатомными молекулами Г2 .

В простых веществах при переходе от F2 к I2 с увеличением числа элек-

тронных слоев и возрастанием поляризуемости атомов происходит усиление

межмолекулярного взаимодействия, приводящее к изменению агрегатного со-

стояния при стандартных условиях.

Фтор (при обычных условиях) – желтый газ, при –181о С переходит в

жидкое состояние.

Хлор – желто-зеленый газ, переходит в жидкость при –34о С. С цветом га-

за связано название Cl, оно происходит от греческого «хлорос» – «желто–

зеленый». Резкое повышение температуры кипения у Cl2 по сравнению с F2 ,

указывает на усиление межмолекулярного взаимодействия.

Бром – темно-красная, очень летучая жидкость, кипит при 58,8о С. На-

звание элемента связано с резким неприятным запахом газа и образовано от

«бромос» – «зловонный».

Йод – темно-фиолетовые кристаллы, со слабым «металлическим» бле-

ском, которые при нагревании легко возгоняется, образуя фиолетовые пары;

при быстром охлаждении

паров до 114о С

образуется жидкость. Температура

Исполнитель:

Мероприятие №

кипения йода равна 183о С. От цвета паров йода происходит его название –

«иодос» – «фиолетовый».

Все простые вещества имеют резкий запах и являются ядовитыми.

Вдыхание их паров вызывает раздражение слизистых оболочек и дыхательных органов, а при больших концентрациях – удушье. Во время первой мировой войны хлор применяли в качестве отравляющего вещества.

Газообразный фтор и жидкий бром вызывают ожоги кожи. Работая с га-

логенами, следует соблюдать меры предосторожности.

Поскольку простые вещества галогенов образованы неполярными моле-

кулами, они хорошо растворяются в неполярных органических растворителях:

спирте, бензоле, четыреххлористом углероде и т. п. В воде хлор, бром и иод ограниченно растворимы, их водные растворы называют хлорной, бромной и иодной водой. Лучше других растворяется Br2 , концентрация брома в насы-

щенном растворе достигает 0,2 моль/л, а хлора – 0,1 моль/л.

Фтор разлагает воду:

2F2 + 2H2 O = O2 + 4HF

Галогены проявляют высокую окислительную активность и перехо-

дят в галогенидные анионы.

Г2 + 2e–  2Г–

Особенно высокой окислительной активностью обладает фтор. Фтор окисляет благородные металлы (Au, Pt).

Pt + 3F2 = PtF6

Взаимодействует даже с некоторыми инертными газами (криптоном,

ксеноном и радоном), например,

Xe + 2F2 = XeF4

В атмосфере F2 горят многие очень устойчивые соединения, например,

вода, кварц (SiO2 ).

SiO2 + 2F2 = SiF4 + O2

Исполнитель:

Мероприятие №

В реакциях с фтором даже такие сильные окислители, как азотная и сер-

ная кислота, выступают в роли восстановителей, при этом фтор окисляет вхо-

дящий в их состав О(–2).

2HNO3 + 4F2 = 2NF3 + 2HF + 3O2 H2 SO4 + 4F2 = SF6 + 2HF + 2O2

Высокая реакционная способность F2 создает трудности с выбором кон-

струкционных материалов для работы с ним. Обычно для этих целей использу-

ют никель и медь, которые, окисляясь, образуют на своей поверхности плотные защитные пленки фторидов. Название F связано с его агрессивным действи-

ем, оно происходит от греч. «фторос» – «разрушающий».

В ряду F2 , Cl2 , Br2 , I2 окислительная способность ослабевает из-за уве-

личения размера атомов и уменьшения электроотрицательности.

В водных растворах окислительные и восстановительные свойства ве-

ществ обычно характеризуют с помощью электродных потенциалов. В таблице приведены стандартные электродные потенциалы (Ео , В) для полуреакций вос-

становления галогенов. Для сравнения также приведено значение Ео для ки-

слорода – самого распространенного окислителя.

Стандартные электродные потенциалы для простых веществ галогенов

Ео , В, для реакции

O2 + 4e– + 4H+  2H2 O

Ео , В

для электродной

2Г– +2е– = Г2

Уменьшение окислительной активности

Как видно из таблицы, F2 – окислитель значительно более сильный,

чем О2 , поэтому F2 в водных растворах не существует, он окисляет воду,

восстанавливаясь до F– . Судя по значению Eо окислительная способность Cl2

Исполнитель:

Мероприятие №

также выше, чем у О2 . Действительно при длительном хранении хлорной воды происходит ее разложение с выделением кислорода и с образованием HCl. Но реакция идет медленно (молекула Cl2 заметно прочнее, чем молекула F2 и

энергия активации для реакций с хлором выше), быстрее происходит диспро-

порционирование:

Cl2 + H2 O HCl + HOCl

В воде оно не доходит до конца (К = 3,9 . 10–4 ), поэтому Cl2 существует в водных растворах. Еще большей устойчивостью в воде характеризуются Br2 и I2 .

Диспропорционирование это очень характерная окислительно-

восстановительная реакция для галогенов. Диспропорционирование уси-

ливается в щелочной среде.

Диспропорционирование Cl2 в щелочи приводит к образованию анионов

Cl– и ClO– . Константа диспропорционирования равна 7,5. 1015 .

Cl2 + 2NaOH = NaCl + NaClO + H2 O

При диспропорционировании йода в щелочи образуются I– и IO3 – . Ана-

логично йоду диспропорционирует Br2 . Изменение продукта диспропорцио-

нирования обусловлено тем, что анионы ГО– и ГО2 – у Br и I неустойчивы.

Реакция диспропорционирования хлора используется в промышленно-

сти для получения сильного и быстро действующего окислителя гипохлорита,

белильной извести, бертолетовой соли.

3Cl2 + 6 KOH = 5KCl + KClO3 + 3H2 O

Исполнитель:

Мероприятие №

Взаимодействие галогенов с металлами

Галогены энергично взаимодействуют со многими металлами, например:

Mg + Cl2 = MgCl2 Ti + 2I2  TiI4

ГалогенидыNa + , в которых металл имеет низкую степень окисления (+1, +2),

– это солеобразные соединения с преимущественно ионной связью. Как прави-

ло, ионные галогениды – это твердые вещества с высокой температурой плав-

Галогениды металлов, в которых металл имеет высокую степень окисле-

ния, – это соединения с преимущественно ковалентной связью.

Многие из них при обычных условиях являются газами, жидкостями или легкоплавкими твердыми веществами. Например, WF6 – газ, MoF6 – жидкость,

TiCl4 – жидкость.

Взаимодействие галогенов с неметаллами

Галогены непосредственно взаимодействуют со многими неметаллами:

водородом, фосфором, серой и др. Например:

H2 + Cl2 = 2HCl 2P + 3Br2 = 2PBr3 S + 3F2 = SF6

Связь в галогенидах неметаллов преимущественно ковалентная.

Обычно эти соединения имеют невысокие температуры плавления и кипения.

При переходе от фтора к йоду ковалентный характер галогенидов усиливается.

Ковалентные галогениды типичных неметаллов являются кислотными соединениями; при взаимодействии с водой они гидролизуются с образованием кислот. Например:

PBr3 + 3H2 O = 3HBr + H3 PO3

PI3 + 3H2 O = 3HI + H3 PO3

PCl5 + 4H2 O = 5HCl + H3 POинтерга-

лиды . В этих соединениях более легкий и более электроотрицательный галоген находится в степени окисления (–1), а более тяжелый – в положительной сте-

пени окисления.

За счет непосредственного взаимодействия галогенов при нагревании получаются: ClF, BrF, BrCl, ICl. Существуют и более сложные интергалиды:

ClF3 , BrF3 , BrF5 , IF5 , IF7 , ICl3 .

Все интергалиды при обычных условиях – жидкие вещества с низкими температурами кипения. Интергалиды имеют высокую окислительную ак-

тивность . Например, в парах ClF3 горят такие химически устойчивые вещества, как SiO2 , Al2 O3 , MgO и др.

2Al2 O3 + 4ClF3 = 4 AlF3 + 3O2 + 2Cl2

Фторид ClF 3 – агрессивный фторирующий реагент, действующий быст-

рее F2 . Его применяют в органических синтезах и для получения защитных пленок на поверхности никелевой аппаратуры для работы с фтором.

В воде интергалиды гидролизуются с образованием кислот. Например,

ClF5 + 3H2 O = HClO3 + 5HF

Галогены в природе. Получение простых веществ

В промышленности галогены получают из их природных соединений. Все

процессы получения свободных галогенов основаны на окислении галоге-

нид-ионов.

2Г –  Г2 + 2e–

Значительное количество галогенов находится в природных водах в виде анионов: Cl– , F– , Br – , I– . В морской воде может содержаться до 2,5 % NaCl.

Бром и иод получают из воды нефтяных скважин и морской воды.

Исполнитель:

Мероприятие №

ОБЩАЯ ХАРАКТЕРИСТИКА

Галогены (от греч. halos - соль и genes - образующий) - элементы главной подгруппы VII группы периодической системы: фтор, хлор, бром, йод, астат.

Таблица. Электронное строение и некоторые свойства атомов и молекул галогенов

Символ элемента
Порядковый номер
Строение внешнего электронного слоя

2s 2 2p 5

3s 2 3p 5

4s 2 4p 5

5s 2 5p 5

6s 2 6p 5

Энергия ионизации, эв

17,42

12,97

11,84

10,45

~9,2

Сродство атома к электрону, эв

3,45

3,61

3,37

3,08

~2,8

Относительная электроотрицательность (ЭО)

~2,2

Радиус атома, нм

0,064

0,099

0,114

0,133

Межъядерное расстояние в молекуле Э 2 , нм

0,142

0,199

0,228

0,267

Энергия связи в молекуле Э 2 (25°С), кДж/моль
Степени окисления

1, +1, +3,
+4, +5, +7

1, +1, +4,
+5, +7

1, +1, +3,
+5, +7

Агрегатное состояние

Бледно-зел.
газ

Зел-желт.
газ

Бурая
жидкость

Темн-фиол.
кристаллы

Черные
кристаллы

t°пл.(°С)
t°кип.(°С)
r (г * см -3 )

1,51

1,57

3,14

4,93

Растворимость в воде (г / 100 г воды)

реагирует
с водой

2,5: 1
по объему

0,02

1) Общая электронная конфигурация внешнего энергетического уровня - nS2nP5.
2) С возрастанием порядкового номера элементов увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства (увеличиваются металлические свойства); галогены - сильные окислители, окислительная способность элементов уменьшается с увеличением атомной массы.
3) Молекулы галогенов состоят из двух атомов.
4) С увеличением атомной массы окраска становится более темной, возрастают температуры плавления и кипения, а также плотность.
5) Сила галогеноводородных кислот возрастает с увеличением атомной массы.
6) Галогены могут образовывать соединения друг с другом (например, BrCl)

ФТОР И ЕГО СОЕДИНЕНИЯ

Фтор F2 - открыл А. Муассан в 1886 г.

Физические свойства

Газ светло-желтого цвета; t°пл.= -219°C, t°кип.= -183°C.

Получение

Электролиз расплава гидрофторида калия KHF2:

Химические свойства

F2 - самый сильный окислитель из всех веществ:

1. 2F2 + 2H2O ® 4HF + O2
2. H2 + F2 ® 2HF (со взрывом)
3. Cl2 + F2 ® 2ClF

Фтористый водород

Физические свойства

Бесцветный газ, хорошо растворим в воде t°пл. = - 83,5°C; t°кип. = 19,5°C;

Получение

CaF2 + H2SO4(конц.) ® CaSO4 + 2HF­

Химические свойства

1) Раствор HF в воде - слабая кислота (плавиковая):

HF « H+ + F-

Соли плавиковой кислоты - фториды

2) Плавиковая кислота растворяет стекло:

SiO2 + 4HF ® SiF4­+ 2H2O

SiF4 + 2HF ® H2 гексафторкремниевая кислота

ХЛОР И ЕГО СОЕДИНЕНИЯ

Хлор Cl2 - открыт К. Шееле в 1774 г.

Физические свойства

Газ желто-зеленого цвета, t°пл. = -101°C, t°кип. = -34°С.

Получение

Окисление ионов Cl- сильными окислителями или электрическим током:

MnO2 + 4HCl ® MnCl2 + Cl2­ + 2H2O
2KMnO4 + 16HCl ® 2MnCl2 + 5Cl2­ + 2KCl + 8H2O
K2Cr2O7 + 14HCl ® 2CrCl3 + 2KCl + 3Cl2­ + 7H2O

электролиз раствора NaCl (промышленный способ):

2NaCl + 2H2O ® H2­ + Cl2­ + 2NaOH

Химические свойства

Хлор - сильный окислитель.

1) Реакции с металлами:

2Na + Cl2 ® 2NaCl
Ni + Cl2 ® NiCl2
2Fe + 3Cl2 ® 2FeCl3

2) Реакции с неметаллами:

H2 + Cl2 –hn® 2HCl
2P + 3Cl2 ® 2PClЗ

3) Реакция с водой:

Cl2 + H2O « HCl + HClO

4) Реакции со щелочами:

Cl2 + 2KOH –5°C® KCl + KClO + H2O
3Cl2 + 6KOH –40°C® 5KCl + KClOЗ + 3H2O
Cl2 + Ca(OH)2 ® CaOCl2(хлорная известь) + H2O

5) Вытесняет бром и йод из галогеноводородных кислот и их солей.

Cl2 + 2KI ® 2KCl + I2
Cl2 + 2HBr ® 2HCl + Br2

Соединения хлора
Хлористый водород

Физические свойства

Бесцветный газ с резким запахом, ядовитый, тяжелее воздуха, хорошо растворим в воде (1: 400).
t°пл. = -114°C, t°кип. = -85°С.

Получение

1) Синтетический способ (промышленный):

H2 + Cl2 ® 2HCl

2) Гидросульфатный способ (лабораторный):

NaCl(тв.) + H2SO4(конц.) ® NaHSO4 + HCl­

Химические свойства

1) Раствор HCl в воде - соляная кислота - сильная кислота:

HCl « H+ + Cl-

2) Реагирует с металлами, стоящими в ряду напряжений до водорода:

2Al + 6HCl ® 2AlCl3 + 3H2­

3) с оксидами металлов:

MgO + 2HCl ® MgCl2 + H2O

4) с основаниями и аммиаком:

HCl + KOH ® KCl + H2O
3HCl + Al(OH)3 ® AlCl3 + 3H2O
HCl + NH3 ® NH4Cl

5) с солями:

CaCO3 + 2HCl ® CaCl2 + H2O + CO2­
HCl + AgNO3 ® AgCl¯ + HNO3

Образование белого осадка хлорида серебра, нерастворимого в минеральных кислотах используется в качестве качественной реакции для обнаружения анионов Cl- в растворе.
Хлориды металлов - соли соляной кислоты, их получают взаимодействием металлов с хлором или реакциями соляной кислоты с металлами, их оксидами и гидроксидами; путем обмена с некоторыми солями

2Fe + 3Cl2 ® 2FeCl3
Mg + 2HCl ® MgCl2 + H2­
CaO + 2HCl ® CaCl2 + H2O
Ba(OH)2 + 2HCl ® BaCl2 + 2H2O
Pb(NO3)2 + 2HCl ® PbCl2¯ + 2HNO3

Большинство хлоридов растворимы в воде (за исключением хлоридов серебра, свинца и одновалентной ртути).

Хлорноватистая кислота HCl+1O
H–O–Cl

Физические свойства

Существует только в виде разбавленных водных растворов.

Получение

Cl2 + H2O « HCl + HClO

Химические свойства

HClO - слабая кислота и сильный окислитель:

1) Разлагается, выделяя атомарный кислород

HClO –на свету® HCl + O­

2) Со щелочами дает соли - гипохлориты

HClO + KOH ® KClO + H2O

2HI + HClO ® I2¯ + HCl + H2O

Хлористая кислота HCl+3O2
H–O–Cl=O

Физические свойства

Существует только в водных растворах.

Получение

Образуется при взаимодействии пероксида водорода с оксидом хлора (IV), который получают из бертоллетовой соли и щавелевой кислоты в среде H2SO4:

2KClO3 + H2C2O4 + H2SO4 ® K2SO4 + 2CO2­ + 2СlO2­ + 2H2O
2ClO2 + H2O2 ® 2HClO2 + O2­

Химические свойства

HClO2 - слабая кислота и сильный окислитель; соли хлористой кислоты - хлориты:

HClO2 + KOH ® KClO2 + H2O

2) Неустойчива, при хранении разлагается

4HClO2 ® HCl + HClO3 + 2ClO2­ + H2O

Хлорноватая кислота HCl+5O3

Физические свойства

Устойчива только в водных растворах.

Получение

Ba (ClO3)2 + H2SO4 ® 2HClO3 + BaSO4¯

Химические свойства

HClO3 - Сильная кислота и сильный окислитель; соли хлорноватой кислоты - хлораты:

6P + 5HClO3 ® 3P2O5 + 5HCl
HClO3 + KOH ® KClO3 + H2O

KClO3 - Бертоллетова соль; ее получают при пропускании хлора через подогретый (40°C) раствор KOH:

3Cl2 + 6KOH ® 5KCl + KClO3 + 3H2O

Бертоллетову соль используют в качестве окислителя; при нагревании она разлагается:

4KClO3 –без кат® KCl + 3KClO4
2KClO3 –MnO2 кат® 2KCl + 3O2­

Хлорная кислота HCl+7O4

Физические свойства

Бесцветная жидкость, t°кип. = 25°C, t°пл.= -101°C.

Получение

KClO4 + H2SO4 ® KHSO4 + HClO4

Химические свойства

HClO4 - очень сильная кислота и очень сильный окислитель; соли хлорной кислоты - перхлораты.

HClO4 + KOH ® KClO4 + H2O

2) При нагревании хлорная кислота и ее соли разлагаются:

4HClO4 –t°® 4ClO2­ + 3O2­ + 2H2O
KClO4 –t°® KCl + 2O2­

БРОМ И ЕГО СОЕДИНЕНИЯ

Бром Br2 - открыт Ж. Баларом в 1826 г.

Физические свойства

Бурая жидкость с тяжелыми ядовитыми парами; имеет неприятный запах; r= 3,14 г/см3; t°пл. = -8°C; t°кип. = 58°C.

Получение

Окисление ионов Br - сильными окислителями:

MnO2 + 4HBr ® MnBr2 + Br2 + 2H2O
Cl2 + 2KBr ® 2KCl + Br2

Химические свойства

В свободном состоянии бром - сильный окислитель; а его водный раствор - "бромная вода" (содержащий 3,58% брома) обычно используется в качестве слабого окислителя.

1) Реагирует с металлами:

2Al + 3Br2 ® 2AlBr3

2) Реагирует с неметаллами:

H2 + Br2 « 2HBr
2P + 5Br2 ® 2PBr5

3) Реагирует с водой и щелочами:

Br2 + H2O « HBr + HBrO
Br2 + 2KOH ® KBr + KBrO + H2O

4) Реагирует с сильными восстановителями:

Br2 + 2HI ® I2 + 2HBr
Br2 + H2S ® S + 2HBr

Бромистый водород HBr

Физические свойства

Бесцветный газ, хорошо растворим в воде; t°кип. = -67°С; t°пл. = -87°С.

Получение

2NaBr + H3PO4 –t°® Na2HPO4 + 2HBr­

PBr3 + 3H2O ® H3PO3 + 3HBr­

Химические свойства

Водный раствор бромистого водорода - бромистоводородная кислота еще более сильная, чем соляная. Она вступает в те же реакции, что и HCl:

1) Диссоциация:

HBr « H+ + Br -

2) С металлами, стоящими в ряду напряжения до водорода:

Mg + 2HBr ® MgBr2 + H2­

3) с оксидами металлов:

CaO + 2HBr ® CaBr2 + H2O

4) с основаниями и аммиаком:

NaOH + HBr ® NaBr + H2O
Fe(OH)3 + 3HBr ® FeBr3 + 3H2O
NH3 + HBr ® NH4Br

5) с солями:

MgCO3 + 2HBr ® MgBr2 + H2O + CO2­
AgNO3 + HBr ® AgBr¯ + HNO3

Соли бромистоводородной кислоты называются бромидами. Последняя реакция - образование желтого, нерастворимого в кислотах осадка бромида серебра служит для обнаружения аниона Br - в растворе.

6) HBr - сильный восстановитель:

2HBr + H2SO4(конц.) ® Br2 + SO2­ + 2H2O
2HBr + Cl2 ® 2HCl + Br2

Из кислородных кислот брома известны слабая бромноватистая HBr+1O и сильная бромноватая HBr+5O3.
ИОД И ЕГО СОЕДИНЕНИЯ

Йод I2 - открыт Б. Куртуа в 1811 г.

Физические свойства

Кристаллическое вещество темно-фиолетового цвета с металлическим блеском.
r= 4,9 г/см3; t°пл.= 114°C; t°кип.= 185°C. Хорошо растворим в органических растворителях (спирте, CCl4).

Получение

Окисление ионов I- сильными окислителями:

Cl2 + 2KI ® 2KCl + I2
2KI + MnO2 + 2H2SO4 ® I2 + K2SO4 + MnSO4 + 2H2O

Химические свойства

1) c металлами:

2Al + 3I2 ® 2AlI3

2) c водородом:

3) с сильными восстановителями:

I2 + SO2 + 2H2O ® H2SO4 + 2HI
I2 + H2S ® S + 2HI

4) со щелочами:

3I2 + 6NaOH ® 5NaI + NaIO3 + 3H2O

Иодистый водород

Физические свойства

Бесцветный газ с резким запахом, хорошо растворим в воде, t°кип. = -35°С; t°пл. = -51°С.

Получение

I2 + H2S ® S + 2HI

2P + 3I2 + 6H2O ® 2H3PO3 + 6HI­

Химические свойства

1) Раствор HI в воде - сильная йодистоводородная кислота:

HI « H+ + I-
2HI + Ba(OH)2 ® BaI2 + 2H2O

Соли йодистоводородной кислоты - йодиды (др. реакции HI см. св-ва HCl и HBr)

2) HI - очень сильный восстановитель:

2HI + Cl2 ® 2HCl + I2
8HI + H2SO4(конц.) ® 4I2 + H2S + 4H2O
5HI + 6KMnO4 + 9H2SO4 ® 5HIO3 + 6MnSO4 + 3K2SO4 + 9H2O

3) Идентификация анионов I- в растворе:

NaI + AgNO3 ® AgI¯ + NaNO3
HI + AgNO3 ® AgI¯ + HNO3

Образуется темно-желтый осадок йодида серебра, нерастворимый в кислотах.

Кислородные кислоты йода

Йодноватая кислота HI+5O3

Бесцветное кристаллическое вещество, t°пл.= 110°С, хорошо растворимое в воде.

Получают:

3I2 + 10HNO3 ® 6HIO3 + 10NO­ + 2H2O

HIO3 - сильная кислота (соли - йодаты) и сильный окислитель.

Йодная кислота H5I+7O6

Кристаллическое гигроскопичное вещество, хорошо растворимое в воде, t°пл.= 130°С.
Слабая кислота (соли - перйодаты); сильный окислитель.

ОБЩАЯ ХАРАКТЕРИСТИКА

Галогены (от греч. halos - соль и genes - образующий) - элементы главной подгруппы VII группы периодической системы: фтор, хлор, бром, йод, астат.

Таблица. Электронное строение и некоторые свойства атомов и молекул галогенов

Символ элемента
Порядковый номер
Строение внешнего электронного слоя

2s 2 2p 5

3s 2 3p 5

4s 2 4p 5

5s 2 5p 5

6s 2 6p 5

Энергия ионизации, эв

17,42

12,97

11,84

10,45

~9,2

Сродство атома к электрону, эв

3,45

3,61

3,37

3,08

~2,8

Относительная электроотрицательность (ЭО)

~2,2

Радиус атома, нм

0,064

0,099

0,114

0,133

Межъядерное расстояние в молекуле Э 2 , нм

0,142

0,199

0,228

0,267

Энергия связи в молекуле Э 2 (25°С), кДж/моль
Степени окисления

1, +1, +3,
+4, +5, +7

1, +1, +4,
+5, +7

1, +1, +3,
+5, +7

Агрегатное состояние

Бледно-зел.
газ

Зел-желт.
газ

Бурая
жидкость

Темн-фиол.
кристаллы

Черные
кристаллы

t°пл.(°С)
t°кип.(°С)
r (г * см -3 )

1,51

1,57

3,14

4,93

Растворимость в воде (г / 100 г воды)

реагирует
с водой

2,5: 1
по объему

0,02

1) Общая электронная конфигурация внешнего энергетического уровня - nS2nP5.
2) С возрастанием порядкового номера элементов увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства (увеличиваются металлические свойства); галогены - сильные окислители, окислительная способность элементов уменьшается с увеличением атомной массы.
3) Молекулы галогенов состоят из двух атомов.
4) С увеличением атомной массы окраска становится более темной, возрастают температуры плавления и кипения, а также плотность.
5) Сила галогеноводородных кислот возрастает с увеличением атомной массы.
6) Галогены могут образовывать соединения друг с другом (например, BrCl)

ФТОР И ЕГО СОЕДИНЕНИЯ

Фтор F2 - открыл А. Муассан в 1886 г.

Физические свойства

Газ светло-желтого цвета; t°пл.= -219°C, t°кип.= -183°C.

Получение

Электролиз расплава гидрофторида калия KHF2:

Химические свойства

F2 - самый сильный окислитель из всех веществ:

1. 2F2 + 2H2O ® 4HF + O2
2. H2 + F2 ® 2HF (со взрывом)
3. Cl2 + F2 ® 2ClF

Фтористый водород

Физические свойства

Бесцветный газ, хорошо растворим в воде t°пл. = - 83,5°C; t°кип. = 19,5°C;

Получение

CaF2 + H2SO4(конц.) ® CaSO4 + 2HF­

Химические свойства

1) Раствор HF в воде - слабая кислота (плавиковая):

HF « H+ + F-

Соли плавиковой кислоты - фториды

2) Плавиковая кислота растворяет стекло:

SiO2 + 4HF ® SiF4­+ 2H2O

SiF4 + 2HF ® H2 гексафторкремниевая кислота

ХЛОР И ЕГО СОЕДИНЕНИЯ

Хлор Cl2 - открыт К. Шееле в 1774 г.

Физические свойства

Газ желто-зеленого цвета, t°пл. = -101°C, t°кип. = -34°С.

Получение

Окисление ионов Cl- сильными окислителями или электрическим током:

MnO2 + 4HCl ® MnCl2 + Cl2­ + 2H2O
2KMnO4 + 16HCl ® 2MnCl2 + 5Cl2­ + 2KCl + 8H2O
K2Cr2O7 + 14HCl ® 2CrCl3 + 2KCl + 3Cl2­ + 7H2O

электролиз раствора NaCl (промышленный способ):

2NaCl + 2H2O ® H2­ + Cl2­ + 2NaOH

Химические свойства

Хлор - сильный окислитель.

1) Реакции с металлами:

2Na + Cl2 ® 2NaCl
Ni + Cl2 ® NiCl2
2Fe + 3Cl2 ® 2FeCl3

2) Реакции с неметаллами:

H2 + Cl2 –hn® 2HCl
2P + 3Cl2 ® 2PClЗ

3) Реакция с водой:

Cl2 + H2O « HCl + HClO

4) Реакции со щелочами:

Cl2 + 2KOH –5°C® KCl + KClO + H2O
3Cl2 + 6KOH –40°C® 5KCl + KClOЗ + 3H2O
Cl2 + Ca(OH)2 ® CaOCl2(хлорная известь) + H2O

5) Вытесняет бром и йод из галогеноводородных кислот и их солей.

Cl2 + 2KI ® 2KCl + I2
Cl2 + 2HBr ® 2HCl + Br2

Соединения хлора
Хлористый водород

Физические свойства

Бесцветный газ с резким запахом, ядовитый, тяжелее воздуха, хорошо растворим в воде (1: 400).
t°пл. = -114°C, t°кип. = -85°С.

Получение

1) Синтетический способ (промышленный):

H2 + Cl2 ® 2HCl

2) Гидросульфатный способ (лабораторный):

NaCl(тв.) + H2SO4(конц.) ® NaHSO4 + HCl­

Химические свойства

1) Раствор HCl в воде - соляная кислота - сильная кислота:

HCl « H+ + Cl-

2) Реагирует с металлами, стоящими в ряду напряжений до водорода:

2Al + 6HCl ® 2AlCl3 + 3H2­

3) с оксидами металлов:

MgO + 2HCl ® MgCl2 + H2O

4) с основаниями и аммиаком:

HCl + KOH ® KCl + H2O
3HCl + Al(OH)3 ® AlCl3 + 3H2O
HCl + NH3 ® NH4Cl

5) с солями:

CaCO3 + 2HCl ® CaCl2 + H2O + CO2­
HCl + AgNO3 ® AgCl¯ + HNO3

Образование белого осадка хлорида серебра, нерастворимого в минеральных кислотах используется в качестве качественной реакции для обнаружения анионов Cl- в растворе.
Хлориды металлов - соли соляной кислоты, их получают взаимодействием металлов с хлором или реакциями соляной кислоты с металлами, их оксидами и гидроксидами; путем обмена с некоторыми солями

2Fe + 3Cl2 ® 2FeCl3
Mg + 2HCl ® MgCl2 + H2­
CaO + 2HCl ® CaCl2 + H2O
Ba(OH)2 + 2HCl ® BaCl2 + 2H2O
Pb(NO3)2 + 2HCl ® PbCl2¯ + 2HNO3

Большинство хлоридов растворимы в воде (за исключением хлоридов серебра, свинца и одновалентной ртути).

Хлорноватистая кислота HCl+1O
H–O–Cl

Физические свойства

Существует только в виде разбавленных водных растворов.

Получение

Cl2 + H2O « HCl + HClO

Химические свойства

HClO - слабая кислота и сильный окислитель:

1) Разлагается, выделяя атомарный кислород

HClO –на свету® HCl + O­

2) Со щелочами дает соли - гипохлориты

HClO + KOH ® KClO + H2O

2HI + HClO ® I2¯ + HCl + H2O

Хлористая кислота HCl+3O2
H–O–Cl=O

Физические свойства

Существует только в водных растворах.

Получение

Образуется при взаимодействии пероксида водорода с оксидом хлора (IV), который получают из бертоллетовой соли и щавелевой кислоты в среде H2SO4:

2KClO3 + H2C2O4 + H2SO4 ® K2SO4 + 2CO2­ + 2СlO2­ + 2H2O
2ClO2 + H2O2 ® 2HClO2 + O2­

Химические свойства

HClO2 - слабая кислота и сильный окислитель; соли хлористой кислоты - хлориты:

HClO2 + KOH ® KClO2 + H2O

2) Неустойчива, при хранении разлагается

4HClO2 ® HCl + HClO3 + 2ClO2­ + H2O

Хлорноватая кислота HCl+5O3

Физические свойства

Устойчива только в водных растворах.

Получение

Ba (ClO3)2 + H2SO4 ® 2HClO3 + BaSO4¯

Химические свойства

HClO3 - Сильная кислота и сильный окислитель; соли хлорноватой кислоты - хлораты:

6P + 5HClO3 ® 3P2O5 + 5HCl
HClO3 + KOH ® KClO3 + H2O

KClO3 - Бертоллетова соль; ее получают при пропускании хлора через подогретый (40°C) раствор KOH:

3Cl2 + 6KOH ® 5KCl + KClO3 + 3H2O

Бертоллетову соль используют в качестве окислителя; при нагревании она разлагается:

4KClO3 –без кат® KCl + 3KClO4
2KClO3 –MnO2 кат® 2KCl + 3O2­

Хлорная кислота HCl+7O4

Физические свойства

Бесцветная жидкость, t°кип. = 25°C, t°пл.= -101°C.

Получение

KClO4 + H2SO4 ® KHSO4 + HClO4

Химические свойства

HClO4 - очень сильная кислота и очень сильный окислитель; соли хлорной кислоты - перхлораты.

HClO4 + KOH ® KClO4 + H2O

2) При нагревании хлорная кислота и ее соли разлагаются:

4HClO4 –t°® 4ClO2­ + 3O2­ + 2H2O
KClO4 –t°® KCl + 2O2­

БРОМ И ЕГО СОЕДИНЕНИЯ

Бром Br2 - открыт Ж. Баларом в 1826 г.

Физические свойства

Бурая жидкость с тяжелыми ядовитыми парами; имеет неприятный запах; r= 3,14 г/см3; t°пл. = -8°C; t°кип. = 58°C.

Получение

Окисление ионов Br - сильными окислителями:

MnO2 + 4HBr ® MnBr2 + Br2 + 2H2O
Cl2 + 2KBr ® 2KCl + Br2

Химические свойства

В свободном состоянии бром - сильный окислитель; а его водный раствор - "бромная вода" (содержащий 3,58% брома) обычно используется в качестве слабого окислителя.

1) Реагирует с металлами:

2Al + 3Br2 ® 2AlBr3

2) Реагирует с неметаллами:

H2 + Br2 « 2HBr
2P + 5Br2 ® 2PBr5

3) Реагирует с водой и щелочами:

Br2 + H2O « HBr + HBrO
Br2 + 2KOH ® KBr + KBrO + H2O

4) Реагирует с сильными восстановителями:

Br2 + 2HI ® I2 + 2HBr
Br2 + H2S ® S + 2HBr

Бромистый водород HBr

Физические свойства

Бесцветный газ, хорошо растворим в воде; t°кип. = -67°С; t°пл. = -87°С.

Получение

2NaBr + H3PO4 –t°® Na2HPO4 + 2HBr­

PBr3 + 3H2O ® H3PO3 + 3HBr­

Химические свойства

Водный раствор бромистого водорода - бромистоводородная кислота еще более сильная, чем соляная. Она вступает в те же реакции, что и HCl:

1) Диссоциация:

HBr « H+ + Br -

2) С металлами, стоящими в ряду напряжения до водорода:

Mg + 2HBr ® MgBr2 + H2­

3) с оксидами металлов:

CaO + 2HBr ® CaBr2 + H2O

4) с основаниями и аммиаком:

NaOH + HBr ® NaBr + H2O
Fe(OH)3 + 3HBr ® FeBr3 + 3H2O
NH3 + HBr ® NH4Br

5) с солями:

MgCO3 + 2HBr ® MgBr2 + H2O + CO2­
AgNO3 + HBr ® AgBr¯ + HNO3

Соли бромистоводородной кислоты называются бромидами. Последняя реакция - образование желтого, нерастворимого в кислотах осадка бромида серебра служит для обнаружения аниона Br - в растворе.

6) HBr - сильный восстановитель:

2HBr + H2SO4(конц.) ® Br2 + SO2­ + 2H2O
2HBr + Cl2 ® 2HCl + Br2

Из кислородных кислот брома известны слабая бромноватистая HBr+1O и сильная бромноватая HBr+5O3.
ИОД И ЕГО СОЕДИНЕНИЯ

Йод I2 - открыт Б. Куртуа в 1811 г.

Физические свойства

Кристаллическое вещество темно-фиолетового цвета с металлическим блеском.
r= 4,9 г/см3; t°пл.= 114°C; t°кип.= 185°C. Хорошо растворим в органических растворителях (спирте, CCl4).

Получение

Окисление ионов I- сильными окислителями:

Cl2 + 2KI ® 2KCl + I2
2KI + MnO2 + 2H2SO4 ® I2 + K2SO4 + MnSO4 + 2H2O

Химические свойства

1) c металлами:

2Al + 3I2 ® 2AlI3

2) c водородом:

3) с сильными восстановителями:

I2 + SO2 + 2H2O ® H2SO4 + 2HI
I2 + H2S ® S + 2HI

4) со щелочами:

3I2 + 6NaOH ® 5NaI + NaIO3 + 3H2O

Иодистый водород

Физические свойства

Бесцветный газ с резким запахом, хорошо растворим в воде, t°кип. = -35°С; t°пл. = -51°С.

Получение

I2 + H2S ® S + 2HI

2P + 3I2 + 6H2O ® 2H3PO3 + 6HI­

Химические свойства

1) Раствор HI в воде - сильная йодистоводородная кислота:

HI « H+ + I-
2HI + Ba(OH)2 ® BaI2 + 2H2O

Соли йодистоводородной кислоты - йодиды (др. реакции HI см. св-ва HCl и HBr)

2) HI - очень сильный восстановитель:

2HI + Cl2 ® 2HCl + I2
8HI + H2SO4(конц.) ® 4I2 + H2S + 4H2O
5HI + 6KMnO4 + 9H2SO4 ® 5HIO3 + 6MnSO4 + 3K2SO4 + 9H2O

3) Идентификация анионов I- в растворе:

NaI + AgNO3 ® AgI¯ + NaNO3
HI + AgNO3 ® AgI¯ + HNO3

Образуется темно-желтый осадок йодида серебра, нерастворимый в кислотах.

Кислородные кислоты йода

Йодноватая кислота HI+5O3

Бесцветное кристаллическое вещество, t°пл.= 110°С, хорошо растворимое в воде.

Получают:

3I2 + 10HNO3 ® 6HIO3 + 10NO­ + 2H2O

HIO3 - сильная кислота (соли - йодаты) и сильный окислитель.

Йодная кислота H5I+7O6

Кристаллическое гигроскопичное вещество, хорошо растворимое в воде, t°пл.= 130°С.
Слабая кислота (соли - перйодаты); сильный окислитель.

Химические свойства галогенов

Фтор может быть только окислителем, что легко объяснить его положением в периодической системе химических элементов Д. И. Менделеева. Это сильнейший окислитель, окисляющий даже некоторые благородные газы:

2F 2 +Хе=XeF 4

Высокую химическую активность фтора следует объяснить

о на разрушение молекулы фтора требуется намного меньше энергии, чем ее выделяется при образовании новых связей.

Так, вследствие малого радиуса атома фтора неподеленные электронные пары в молекуле фтора взаимно сталкиваются и ослабевает

Галогены взаимодействуют почти со всеми простыми веществами.

1. Наиболее энергично протекает реакция с металлами. При нагревании фтор взаимодействует со всеми металлами (в том числе с золотом и платиной); на холоду реагирует с щелочными металлами, свинцом, железом. С медью, никелем реакция на холоду не протекает, поскольку на поверхности металла образуется защитный слой фторида, предохраняющий металл от дальнейшего окисления.

Хлор энергично реагирует с щелочными металлами, а с медью, железом и оловом реакция протекает при нагревании. Аналогично ведут себя бром и иод.

Взаимодействие галогенов с металлами является экзотерми­ческим процессом и может быть выражена уравнением:

2М+nHaI 2 =2МНаI DH<0

Галогениды металлов являются типичными солями.

Галогены в этой реакции проявляют сильные окислительные свойства. При этом атомы металла отдают электроны, а атомы галогена принимают, например:

2. При обычных условиях фтор реагирует с водородом в тем­ноте со взрывом. Взаимодействие хлора с водородом протекает на ярком солнечном свету.

Бром и водород взаимодействуют только при нагревании, а иод с водородом реагирует при сильном нагревании (до 350°С), но этот процесс обратимый.

Н 2 +Сl 2 =2НСl Н 2 +Br 2 =2НBr

Н 2 +I 2 « 350° 2HI

Галоген в данной реакции является окислителем.

Как показали исследования, реакция взаимодействия водо­рода с хлором на свету имеет следующий механизм.

Молекула Сl 2 поглощает квант света hv и распадается на неор­ганические радикалы Сl . . Это служит началом реакции (первона­чальное возбуждение реакции). Затем она продолжается сама со­бой. Радикал хлора Сl . реагирует с молекулой водорода. При этом образуется радикал водорода Н. и НСl. В свою очередь радикал водорода Н. реагирует с молекулой Сl 2 , образуя НСl и Сl . и т.д.

Сl 2 +hv=Сl . +Сl .

Сl . +Н 2 =НСl+Н.

Н. +Сl 2 =НСl+С1 .

Первоначальное возбуждение вызвало цепь последователь­ных реакций. Такие реакции называются цепными. В итоге полу­чается хлороводород.

3. Галогены с кислородом и азотом непосредственно не взаи­модействуют.

4. Хорошо реагируют галогены с другими неметаллами, на­пример:

2Р+3Сl 2 =2РСl 3 2Р+5Сl 2 =2РСl 5 Si+2F 2 =SiF 4

Галогены (кроме фтора) не реагируют с инертными газами. Химическая активность брома и иода по отношению к неме­таллам выражена слабее, чем у фтора и хлора.

Во всех приведенных реакциях галогены проявляют окисли­тельные свойства.

Взаимодействие галогенов со сложными веществами. 5. С водой.

Фтор реагирует с водой со взрывом с образованием атомарного кислорода:

H 2 O+F 2 =2HF+O

Остальные галогены реагируют с водой по следующей схеме:

Гал 0 2 +Н 2 О«НГал -1 +НГал +1 О

Эта реакция является реакцией диспропорционирования, когда галоген является одновременно и восстановителем, и окис­лителем, например:

Сl 2 +Н 2 O«НСl+НСlO

Cl 2 +H 2 O«H + +Cl - +HClO

Сl°+1e - ®Сl - Cl°-1e - ®Сl +

где НСl - сильная соляная кислоты; НСlO - слабая хлорноватис­тая кислота

6. Галогены способны отнимать водород от других веществ, скипидар+С1 2 = НС1+углерод

Хлор замещает водород в предельных углеводородах: СН 4 +Сl 2 =СН 3 Сl+НСl

и присоединяется к непредельным соединениям:

С 2 Н 4 +Сl 2 =С 2 Н 4 Сl 2

7. Реакционная способность галогенов снижается в ряду F-Сl - Br - I. Поэтому предыдущий элемент вытесняет последую­щий из кислот типа НГ (Г - галоген) и их солей. В этом случае активность убывает: F 2 >Сl 2 >Br 2 >I 2

Применение

Хлор применяют для обеззараживания питьевой воды, отбел­ки тканей и бумажной массы. Большие количества его расходу­ются для получения соляной кислоты, хлорной извести и др. Фтор нашел широкое применение в синтезе полимерных материалов - фторопластов, обладающих высокой химической стойкостью, а также в качестве окислителя ракетного топлива. Некоторые со­единения фтора используют в медицине. Бром и иод - сильные окислители, используются при различных синтезах и анализах веществ.

Большие количества брома и иода расходуются на изготовле­ние лекарств.

Галогеноводороды

Соединения галогенов с водородом НХ, где X - любой га­логен, называются галогеноводородами. Вследствие высокой электроотрицательности галогенов связующая электронная пара смещена в их сторону, поэтому молекулы этих соединений полярны.

Галогеноводороды - бесцветные газы, с резким запахом, легко растворимы в воде. При 0°С в 1 объеме воды растворяете 500 объемов НС1, 600 объемов HBr и 450 объемов HI. Фтороводород смешивается с водой в любых соотношениях. Высокая раство­римость этих соединений в воде позволяет получать концентриро-

Таблица 16. Степени диссоциации галогеноводородных кислот

ванные растворы. При растворении в воде галогеноводороды диссоциируют по типу кислот. HF относится к слабо диссоциированным соединениям, что объясняется особой прочностью связи в куле. Остальные же растворы галогеноводородов относятся к числу сильных кислот.

HF - фтороводородная (плавиковая) кислота НС1 - хлороводородная (соляная) кислота HBr - бромоводородная кислота HI - иодоводородная кислота

Сила кислот в ряду HF - НСl - HBr - HI возрастает, что объясняется уменьшением в том же направлении энергии связи и увеличением межъядерного расстояния. HI - самая сильная кислота из ряда галогеноводородных кислот (см. табл. 16).

Поляризуемость растет вследствие того, что вода поляризует

больше ту связь, чья длина больше. I Соли галогеноводородных кислот носят соответственно следующие названия: фториды, хлориды, бромиды, иодиды.

Химические свойства галогеноводородных кислот

В сухом виде галогеноводороды не действуют на большинство металлов.

1. Водные растворы галогеноводородов обладают свойствами бескислородных кислот. Энергично взаимодействуют со многими металлами, их оксидами и гидроксидами; на металлы, стоящие в электрохимическом ряду напряжений металлов после водорода, не действуют. Взаимодействуют с некоторыми солями и газами.



Фтороводородная кислота разрушает стекло и силикаты:

SiO 2 +4HF=SiF 4 +2Н 2 O

Поэтому она не может храниться в стеклянной посуде.

2. В окислительно-восстановительных реакциях галогеноводородные кислоты ведут себя как восстановители, причем восста­новительная активность в ряду Сl - , Br - , I - повышается.

Получение

Фтороводород получают действием концентрированной серной кислоты на плавиковый шпат:

CaF 2 +H 2 SO 4 =CaSO 4 +2HF­

Хлороводород получают непосредственным взаимодействием водорода с хлором:

Н 2 +Сl 2 =2НСl

Это синтетический способ получения.

Сульфатный способ основан на реакции концентрированной

серной кислоты с NaCl.

При небольшом нагревании реакция протекает с образовани­ем НСl и NaHSO 4 .

NaCl+H 2 SO 4 =NaHSO 4 +HCl­

При более высокой температуре протекает вторая стадия ре­акции:

NaCl+NaHSO 4 =Na 2 SO 4 +HCl­

Но аналогичным способом нельзя получить HBr и HI, т.к. их соединения с металлами при взаимодействии с концентрировав-

ной серной кислотой окисляются, т.к. I - и Br - являются сильны­ми восстановителями.

2NaBr -1 +2H 2 S +6 O 4(к) =Br 0 2 +S +4 O 2 ­+Na 2 SO 4 +2Н 2 O

Бромоводород и иодоводород получают гидролизом PBr 3 и PI 3: PBr 3 +3Н 2 O=3HBr+Н 3 PO 3 PI 3 +3Н 2 О=3HI+Н 3 РO 3

Галогениды

Галогениды металлов являются типичными солями. Харак­теризуются ионным типом связи, где ионы металла имеют поло­жительный заряд, а ионы галогена отрицательный. Имеют крис­таллическую решетку.

Восстановительная способность галогенидов повышается в ряду Сl - , Br - , I - (см. §2.2).

Растворимость малорастворимых солей уменьшается в ряду AgCl - AgBr - AgI; в отличие от них, соль AgF хорошо раство­рима в воде. Большинство же солей галогеноводородных кислот хорошо растворимы в воде.



Похожие статьи