Все о дозах и вреде рентгеновского облучения в медицине. Рентгенография или флюорография? Как подготовиться к рентгену грудной клетки

25.04.2019

Флюорография после рентгена не назначается из-за иррациональности подхода. При флюорографическом обследовании формируется более низкое разрешение, поэтому мелкие тени (менее 4 мм) не визуализируются.

Каждый человек должен убедиться в том, что у него нет заболеваний. Для этих целей ежегодно проводится скрининговое обследование. Флюорография позволяет выявить туберкулез, пневмонию, злокачественные новообразования на ранних стадиях.

Флюорография после рентгена: что это такое и почему назначается

Флюорография после рентгенографии легких не назначается. Снимок органов грудной клетки после описания будет засчитан в качестве флюорографического обследования. Если у человека есть рентгенограммы других органов (костная система, брюшной полости), при выполнении которых человек получил низкую лучевую нагрузку (до 1 мЗв), флюорографию нужно делать (при условии отсутствия исследования в этом году).

Если недавно было проведено рентгеновское обследование с высокой лучевой нагрузкой на пациента, рекомендовано подождать несколько месяцев, чтобы дать организму восстановить поврежденные клетки. Подобная ситуация встречается при рентгенографии позвоночника, контрастных обследованиях.

Цифровая флюорограмма легких курильщика

Технические особенности флюорографии и рентгенографии

Флюорографическое обследование на современных цифровых установках характеризуется низкой лучевой нагрузкой на человека из-за технических особенностей строения аппаратуры. Снимок получается при движении тонкого луча в горизонтальной плоскости. Линейное сканирование по рядам позволяет уменьшить объем облучаемых тканей, поэтому на таком оборудовании при выполнении снимка легких создает доза 0,015 мЗв.

В сравнении с классической рентгенографией, проводимой на пленке, получают более низкое разрешение. Цифровое оборудование принесло дополнительные ограничение. Разрешение визиографа 1078х1024 не позволяет отразить качественно все графические точки, поэтому тени менее 4 мм на изображении выявить практически невозможно. Примерно равна чувствительности пленки цифровая флюорограмма с разрешением более 2000 пикселей.

Старые установки оборудованы рентгенофлюоресцентными экранами. Затем изображение передает не пленку небольших размеров. При изучении таких снимков сложно визуализировать мелкие тени. Аппараты остались лишь в периферийных амбулаторных заведениях из-за низких бюджетных возможностей организации. С течением времени установки будет заменены на современное оборудование.

Основные принципы рентгенографии

Рентгенография – распространенный метод, который постепенно вытесняется компьютерной, магнитно-резонансной томографией.

При формировании рентгенограммы пучок лучей из трубки проходит через тело человека и проецируется на пленке. Способ напоминает изготовлении фотографии, так как используется проявитель и фиксаж. Изготовление рентгеновского снимка происходит в темной комнате.

Формирование изображения возможно вследствие того, что разные ткани по-разному пропускают рентгеновские лучи – поглощают и отражают. Воздушные ткани на негативе являются черными, а плотные кости – белыми.

Технические принципы компьютерной и магнитно-резонансной томографии

Основой получения изображения при выполнении компьютерной томографии является прохождение изображения через тело сразу с нескольких ракурсов. Информация с датчиков, которые расположены по радиусу диагностического стола обрабатывается программным обеспечением. При выполнении процедуры лучевая нагрузка на пациента значительно выше, чем при обычной рентгенографии.

При магнитно-резонансной томографии изображения получаются за испускания радиоволны атомами водорода при воздействии на них сильного магнитного поля. Магнитно-резонансная томография не сопровождается радиационным облучением. Согласно клиническим исследованиям при выполнении исследования нет побочных эффектов на организм при тщательном соблюдении условий проведения обследования.

Перед проведением МРТ обязательно снять металлические предметы, которые могут прийти в движение под действием сильного магнита. Процедура противопоказана людям, которые носят кардиостимуляторы, имплантаты.

Каждое исследование назначается для решения определенных диагностических задач. Если врач считает, что можно делать рентген после флюорографии, значит обнаружены подозрительные тени, которые требуют дополнительной верификации. Рентгенография характеризуется более высокой чувствительностью. При исследовании возможна верификация образований более 3 мм диаметром.

Многие пациенты не понимают разницу между определениями «флюорография» и «рентген», поэтому назначения одного обследования сразу после выполнения второго вызывает массу непонятных вопросов.

Когда нельзя или можно делать рентген после флюорографии

Существуют определенные показания и противопоказания для выполнения обеих процедур. Рентгенография органов грудной клетки назначается для выявления следующих нозологических форм:

1. Плеврит;
2. Пневмония;
3. Туберкулез;
4. Злокачественные новообразования;
5. Бронхит (хронический).

Направление на снимок врачи выписывают при наличии у пациента следующих симптомов:

Хрипы легких;
Боль в груди;
Сильная одышка;
Длительный кашель.

Фото рентгенограммы легких

Согласно законодательству один раз в 2 года профилактическое исследование должен проходить каждый гражданин страны. Есть дополнительные категории, которые должны делать флюорографию раз за 6 месяцев:

1. Осужденные;
2. ВИЧ-инфицированные;
3. Военнослужащие;
4. Работники роддомов.

Детям до 15 лет и беременным исследование противопоказано из-за высокой опасности для жизни. Радиация действует на быстродействующие клетки. Под влиянием ионизирующего излучения происходит мутация генетического аппарата. Подобная модификация становится причиной рака. Чтобы предотвратить данные осложнения, требуется назначать рентген только когда вред от невыясненного диагноза, больше, чем последствия от ионизирующей радиации.

Можно ли после флюорографии делать рентген

Негативное влияние на человеческий организм оказывает рентген и флюорография. Радиация губительна для клеток организма, так как вызывает необратимые изменения клеток крови, провоцирует онкологию.

При рентгене легких в зависимости от вида оборудования человек получает дозу 0,3-3 мЗв. Аналогичное количество получает человек при перелете на самолете около 2000 километров. При выполнении флюорографии излучение больше в 2-5 раз, что зависит от качества аппаратуры. О таких характеристиках указывает историческая литература, но с появлением современных цифровых установок ситуация изменилась. При рентгенографии органов грудной клетки в прямой проекции доза облучения – 0,18 мЗв, а при цифровой флюорографии – только 0,015 мЗв. Таким образом, если делать снимки на современных флюорографах можно уменьшить уровень облучения в 100 раз.

Согласно требованиям норм радиационной безопасности при выполнении исследования годовая доза облучения для человека не должна превышать 150 мЗв. Лишь после превышения этого порога повышается вероятность злокачественных новообразований.

Умеренные количества рентгенографии безопасны для организма. По нормам Минздрава России при выполнении профилактическая доза для человека не должна превышать 1,4 мЗв. Существенный вред рентгенографии для организма возникает при лучевой терапии опухолей. Если рак не операбельный, его можно уничтожить лучевым воздействием. Других способов ликвидации новообразования не выявлено, поэтому приходит уничтожать здоровые клетки вместе с атипичными, чтобы дать человеку возможно жить дольше.

После флюорографии отправили на рентген – зачем

После флюорографии человека отправляют на рентген легких для более подробного изучения состояния легочных полей. Несколько выше в статье было описано разрешение этих методов. Согласно исследованиям рентгеновский снимок выявляется тени диаметром более 3 мм, флюорографии – 4-5 мм. Если на флюорограмме обнаруживается мелкий очаг, чтобы выяснить его характеристики, нозологическую принадлежность, необходимо рентгенографическое обследование. Процедура предполагает не только рентгенографию в прямой проекции, но также боковые, прицельные рентгенограммы. С помощью полноценной рентгенодиагностики врач-рентгенолог дает лечащему врачу максимальную информацию, которая необходима для правильной постановки диагноза, адекватного лечения.

Как часто можно делать рентгенографию и флюорографию

Рентген легких можно делать столько, сколько нужно лечащему врачу для диагностических целей. При профилактических исследованиях доза облучения пациента не должна превышает 1 мЗв в год. При назначении специалист учитывает возможные осложнения, оценивает вред рентгена для пациента, пользу от полученной информации.

В России флюорографию нужно делать не реже 1 раза в 2 года. Более часто исследование назначается людям, которые имеют риск заражения туберкулезом. Для основного населения нет смысла делать флюорографическое обследование чаще. Если возникает необходимость следует делать рентгенографию.

Что показывает флюорография

Флюорография – профилактическое скрининговое обследование для диагностики разных видов патологии бронхолегочной системы. Применяется для верификации следующих нозологических форм:

Туберкулез;
Рак;
Воспаление легких (пневмония);
Грибковые болезни;
Инородные тела.

Если опухоль около 1 мм, ее нельзя выявить рентгенографией или флюорографией, так как образование находится за пределами разрешающей способности метода. Верифицировать такие узлы помогает компьютерная томография.

Большое значение при профилактическом обследовании играет квалификация врача-рентгенолога. От него зависит анализ множества затемнений, просветлений с четкими, нечеткими контурами, дополнительными деструктивными очагами, дорожками к корню. Множество мелких затемненных участков, патология сердечнососудистой системы – все эти изменения обнаруживаются на снимке, но определить их сможет только подготовленный квалифицированный специалист.

При туберкулезе на начальных стадиях в легких могут не прослеживаться патологические тени. Единственным проявлением заболевания является бугристый контур корней. Увеличенные лимфоузлы становятся основным источником накопления микобактерий. При рентгенографии важной особенностью качественного исследования является не только квалификация специалиста, но и характеристики оборудования. Современные установки оснащены экспонометрами, которые позволяют оптимально выбрать характеристики излучения в зависимости от веса и объема пациента.

В заключение хотелось бы отметить на частый вопрос пациентов – «почему отправляют на флюорографию, если она менее информативна, чем рентген и дозы облучения больше?». При использовании не цифровых флюорографов данное утверждение верно. Ответ скрывается в экономичности массового обследования для государства. Экономия при исследовании при сравнении с рентгеном в 2-3 раза. Только при обнаружении подозрительных теней человека отправляют на рентген. Может быть проще сразу сделать рентген? Этот вопрос лучше адресовать специалистам Министерства Здравоохранения.

Цифровая флюорограмма пациента с фиброзным туберкулезом

Современная медицина богата разнообразными методами исследования, однако рентгенография по-прежнему занимает особое положение среди диагностических процедур 21 века. Актуальна она, прежде всего, при выявлении различных патологий, связанных с бронхолегочной системой.

Стоит иметь в виду, что медики назначают рентген легких ребенку намного реже, нежели взрослым людям, при этом должны наблюдаться довольно строгие показания. Причины подобного явления будут подробно рассматриваться в статье. Также можно будет ознакомиться с особенностями проведения сеанса и вероятными осложнениями, к которым родителям необходимо подготовиться заранее.

В чем состоит необходимость рентгена?

При наличии у ребенка каких-либо подозрительных симптомов в области грудной клетки, для начала следует посетить соответствующего специалиста, который назначит ряд необходимых процедур и анализов. Сразу бежать в рентгенологический кабинет не стоит. Когда лечащий врач увидит веские причины для назначения диагностики, он доведет свои предположения до сведения родителей и выпишет направление.

Если у малыша наблюдаются значительные осложнения, вызванные простудным заболеванием, скорее всего, придется пройти рентген. Связано это с тем, что последствием простуды может служить прогрессирующая пневмония, которая без правильного и своевременного лечения приведет либо к дыхательной недостаточности, либо к летальному исходу.

Иные формы воспалительных недугов легких представляют не меньшую опасность, поэтому при наличии выявленных медицинских показаний не нужно откладывать рентгенографию «в дальний ящик».

Ни в коем случае нельзя проводить лучевую терапию только по прихоти родителей, так как активно формирующийся детский организм, поддаваясь частому излучению аппарата, может негативно отреагировать на него.

Если пациент проходил цифровую рентгенографию, то его организм получил намного меньший объем облучения по сравнению с обычным рентгеном

Особые показания к проведению

Рентген легких не проводят ребенку с целью профилактики, как было отмечено ранее, для этого необходимы существенные показания:

  • лейкоцитоз (значительное повышение количества лейкоцитов в крови);
  • подозрение на туберкулезное заболевание;
  • повышенная температура (от 38° по Цельсию) в совокупности с сильным кашлем, продолжающаяся более 3 суток;
  • подтверждение легочного воспаления;
  • подозрение на гиперплазию вилочковой железы или на иную патологию тимуса;
  • выявление опухолевых образований.

Когда альтернативные методы исследования не дали никаких результатов при изучении состояния легких и бронхов, также назначается рентгенография.

При наличии у малыша очага кровотечения процедура не проводится. Если он находится в крайне тяжелом состоянии, лучевая терапия также стоит под запретом. Новорожденным до 2–3 месяцев выдают направление на рентген исключительно в крайних случаях. Выражаясь современным языком, польза диагностики должна превышать для этого предполагаемый вред от нее.

Ход процедуры

Детский рентген обладает некоторыми отличиями, с которыми следует ознакомиться непосредственно перед прохождением сеанса. Поскольку наиболее важной гарантией получения информативных и четких снимков является неподвижность в момент сканирования, крайне необходимо обеспечить временную статичность маленького ребенка во избежание повторного назначения исследования.

Для этого были разработаны специализированные устройства, представляющие собой нетвердые подставки с несколькими фиксаторами у основания, которые прочно удерживают конечности и туловище юного пациента в обычном неподвижном состоянии. Подобная разработка не требуется детям старшего возраста.

Далее на ребенка надевают свинцовый фартук, защищающий его внутренние органы от вредоносного воздействия рентгеновского излучения. Обычно рядом со своим чадом находятся в рентгенологическом кабинете и родители, наблюдающие за процессом подготовки и психологическим состоянием малыша. При этом им могут выдаваться особые средства индивидуальной защиты.


Так выглядит детское крепление для рентгена

После того как маленький пациент будет надежно зафиксирован, лаборант покидает помещение и приводит в действие рентгеновский аппарат. Процесс исследование длится всего несколько секунд, в это время ребенок не чувствует боли, но в некоторых случаях небольшой дискомфорт могут вызывать фиксирующие ремешки.

Когда сканирование подойдет к концу, специалист снова зайдет в диагностический кабинет, освободит малыша и вместе с близкими людьми поможет ему самостоятельно встать. Затем пациенты могут спокойно покинуть помещение. Снимки можно будет получить по истечении озвученного специалистом времени.

Некоторые крупные медицинские учреждения имеют в своем арсенале цифровые регистраторы и сверхсовременные аппараты, позволяющие проводить сеансы с минимальным уровнем облучения. Подобные устройства регистрируют полученное изображение в электронном виде. Некоторые врачи рекомендуют при наличии возможности проводить детский рентген именно с помощью таких разработок.

Требуется ли специальная подготовка?

Рентгенография не требует принятия определенных медикаментозных препаратов или ограничения в питании. В некоторых случаях родителям придется ознакомить своих детей с принципами предстоящей диагностики, конечно, если речь идет о подросших ребятах. В первую очередь, рекомендуется в спокойной домашней обстановке пояснить необходимость лучевого исследования и акцентировать внимание на безболезненности и кратковременности сеанса.

Интернет располагает множеством видеороликов, в которых доходчиво рассматривается внешний вид сканирующих аппаратов, а также подробный процесс проведения процедуры. Подобную возможность также можно использовать в целях ознакомления.

Представляет ли рентген опасность?

На самом деле рентгеновское излучение действительно оказывает негативное воздействие на организм, вызывая различные по своей природе последствия от обильного выпадения волос до заболеваний онкологического характера. Однако подобная нелицеприятная картина наблюдается только при постоянном использовании сканирующего аппарата.


Если педиатр назначает рентгенографию только с целью перестраховки, стоит на всякий случай проконсультироваться по этому поводу с другим врачом

Известно, что ежедневно практически каждый современный человек получает малую дозу радиоактивного излучения, считающуюся относительной нормой, с медицинской точки зрения. Один сеанс лучевой диагностики приравнивают приблизительно к 9–10 дням естественного среднестатистического облучения. Следовательно, увлекаться данным методом исследования настоятельно не рекомендуется.

Также стоит иметь в виду, что рентгеновские лучи оказывают на ребенка влияние, которое в 1,5–2 раза превышает то же воздействие на организм физически сформированного человека.

Конечно, в некоторых частных клиниках недобросовестные врачи, желая заработать как можно больше денег, проводят процедуру для ребенка при каждом проявлении личного желания у родителей. В таком случае заботливым маме и папе следует знать: серьезные нарушения в работе той или иной системы организма, вызванные постоянным воздействием облучения, проявляются лишь некоторое время спустя. Пошатнувшееся здоровье малыша будет находиться исключительно на их совести!

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 рентген в час [Р/ч] = 2,77777777777778E-06 зиверт в секунду [Зв/с]

Исходная величина

Преобразованная величина

грей в секунду эксагрей в секунду петагрей в секунду терагрей в секунду гигагрей в секунду мегагрей в секунду килогрей в секунду гектогрей в секунду декагрей в секунду децигрей в секунду сантигрей в секунду миллигрей в секунду микрогрей в секунду наногрей в секунду пикогрей в секунду фемтогрей в секунду аттогрей в секунду рад в секунду джоуль на килограмм в секунду ватт на килограмм зиверт в секунду миллизиверты в год миллизиверты в час микрозиверты в час бэр в секунду рентген в час миллирентген в час микрорентген в час

Подробнее о мощности поглощенной дозы и суммарной мощности дозы ионизирующего излучения

Общие сведения

Излучение - природное явление, которое проявляется в том, что электромагнитные волны или элементарные частицы с высокой кинетической энергией движутся внутри среды. В этом случае среда может быть либо материей, либо вакуумом. Излучение - вокруг нас, и наша жизнь без него немыслима, так как выживание человека и других животных без излучения невозможно. Без излучения на Земле не будет таких необходимых для жизни природных явлений как света и тепла. В этой статье мы обсудим особый тип излучения, ионизирующее излучение или радиацию, которая окружает нас везде. В дальнейшем в этой статье под излучением мы подразумеваем именно ионизирующее излучение.

Источники излучения и его использование

Ионизирующее излучение в среде может возникнуть благодаря либо естественным, либо искусственным процессам. Естественные источники излучения включают солнечное и космическое излучения, а также излучение некоторых радиоактивных материалов, таких как уран. Такое радиоактивное сырье добывают в глубине земных недр и используют в медицине и промышленности. Иногда радиоактивные материалы попадают в окружающую среду в результате аварий на производстве и в отраслях, где используют радиоактивное сырье. Чаще всего это происходит из-за несоблюдения правил безопасности по хранению радиоактивных материалов и работе с ними или из-за отсутствия таких правил.

Стоит заметить, что до недавнего времени радиоактивные материалы не считались опасными для здоровья, и даже наоборот, их использовали как целебные препараты, а также они ценились за их красивое свечение. Урановое стекло - пример радиоактивного материала, используемого в декоративных целях. Это стекло светится флюоресцентным зеленым светом благодаря тому, что в него добавлен оксид урана. Процент содержания урана в этом стекле относительно мал и количество выделяемой им радиации невелико, поэтому урановое стекло на данный момент считают безопасным для здоровья. Из него даже изготавливают стаканы, тарелки, и другую посуду. Урановое стекло ценится за его необычное свечение. Солнце излучает ультрафиолет, поэтому урановое стекло светится и в солнечном свете, хотя это свечение намного более выражено под лампами ультрафиолетового света.

У радиации множество применений - от производства электроэнергии до лечения больных раком. В этой статье мы обсудим, как радиация влияет на ткани и клетки людей, животных и биоматериала, уделяя особое внимание тому, как быстро и насколько сильно происходит поражение облученных клеток и тканей.

Определения

Вначале рассмотрим некоторые определения. Существует множество способов измерять радиацию, в зависимости от того, что именно мы хотим узнать. Например, можно измерить общее количество радиации в среде; можно найти количество радиации, которое нарушает работу биологических тканей и клеток; или количество радиации, поглощенной телом или организмом, и так далее. Здесь мы рассмотрим два способа измерения радиации.

Общее количество радиации в среде, измеряемое на единицу времени, называют суммарной мощностью дозы ионизирующего излучения . Количество радиации, поглощенное организмом за единицу времени, называют мощностью поглощенной дозы . Суммарную мощность дозы ионизирующего излучения легко найти с помощью широко распространенных измерительных приборов, таких как дозиметры , основной частью которых обычно являются счетчики Гейгера . Работа этих приборов более подробно описана в статье об экспозиционной дозе радиации . Мощность поглощенной дозы находят, используя информацию о суммарной мощности дозы и о параметрах предмета, организма, или части тела, которая подвергается излучению. Эти параметры включают массу, плотность и объем.

Радиация и биологические материалы

У ионизирующего излучения очень высокая энергия, и поэтому оно ионизирует частицы биологического материала, включая атомы и молекулы. В результате электроны отделяются от этих частиц, что приводит к изменению их структуры. Эти изменения вызваны тем, что ионизация ослабляет или разрушает химические связи между частицами. Это повреждает молекулы внутри клеток и тканей и нарушает их работу. В некоторых случаях ионизация способствует образованию новых связей.

Нарушение работы клеток зависит от того, насколько радиация повредила их структуру. В некоторых случаях нарушения не влияют на работу клеток. Иногда работа клеток нарушена, но повреждения невелики и организм постепенно восстанавливает клетки в рабочее состояние. В процессе нормальной работы клеток нередко случаются подобные нарушения и клетки сами возвращаются в норму. Поэтому если уровень радиации низок и нарушения невелики, то вполне возможно восстановить клетки до их рабочего состояния. Если же уровень радиации высок, то в клетках происходят необратимые изменения.

При необратимых изменениях клетки либо работают не так, как должны, либо перестают работать вовсе и отмирают. Повреждение радиацией жизненно важных и незаменимых клеток и молекул, например молекул ДНК и РНК, белков или ферментов вызывает лучевую болезнь. Повреждение клеток может также вызвать мутации, в результате которых у детей пациентов, чьи клетки поражены, могут развиться генетические заболевания. Мутации могут также вызвать чрезмерно быстрое деление клеток в организме пациентов - что, в свою очередь, увеличивает вероятность заболевания раком.

Условия, которые усугубляют влияние радиации на организм

Стоит отметить, что некоторые исследования влияния радиации на организм, которые проводили в 50-х - 70-х гг. прошлого века, были неэтичны и даже бесчеловечны. В частности, это исследования, проводимые военными в США и в Советском Союзе. Большая часть этих экспериментов была проведена на полигонах и в специально отведенных зонах для тестирования ядерного оружия, например на полигоне в Неваде, США, на ядерном полигоне на Новой Земле на нынешней территории России, и на Семипалатинском испытательном полигоне на нынешней территории Казахстана. В некоторых случаях эксперименты проводили во время военных учений, как например, во время Тоцких войсковых учений (СССР, на нынешней территории России) и во время военных учений Дезерт Рок в штате Невада, США.

Радиоактивные выбросы во время этих экспериментов принесли вред здоровью военных, а также мирных жителей и животных в окрестных районах, так как меры по защите от облучения были недостаточны или полностью отсутствовали. Во время этих учений исследователи, если можно их так назвать, изучали воздействие радиации на организм человека после атомных взрывов.

С 1946 по 1960-е эксперименты по влиянию радиации на организм проводили также в некоторых американских больницах без ведома и согласия больных. В некоторых случаях такие эксперименты проводили даже над беременными женщинами и детьми. Чаще всего радиоактивное вещество вводили в организм больного во время приема пищи или через укол. В основном главной целью этих экспериментов было проследить, как радиация влияет на жизнедеятельность и на процессы, происходящие в организме. В некоторых случаях исследовали органы (например, мозг) умерших больных, которые при жизни получили дозу облучения. Такие исследования проводили без согласия родных этих больных. Чаще всего больные, над которыми проводили эти эксперименты, были заключенными, смертельно больными пациентами, инвалидами, или людьми из низших социальных классов.

Доза радиации

Нам известно, что большая доза радиации, называемая дозой острого облучения , вызывает угрозу для здоровья, и чем выше эта доза - тем выше риск для здоровья. Нам также известно, что радиация влияет на разные клетки в организме по-разному. Наиболее сильно страдают от радиации клетки, которые подвергаются частому делению, а также те, что не специализированы. Так, например, клетки в зародыше, кровяные клетки, и клетки репродуктивной системы больше всего подвержены отрицательному влиянию радиации. Кожа, кости, и мышечные ткани менее подвержены воздействию, а самое малое влияние радиации - на нервные клетки. Поэтому в некоторых случаях общее разрушительное воздействие радиации на клетки, менее подверженные влиянию радиации меньше, даже если на них действует большее количество радиации, чем на клетки, более подверженные влиянию радиации.

Согласно теории радиационного гормезиса малые дозы радиации, наоборот, стимулируют защитные механизмы в организме, и в результате организм становится крепче, и менее подвержен заболеваниям. Необходимо заметить, что эти исследования на данный момент на начальной стадии, и пока неизвестно, удастся ли получить такие результаты за пределами лаборатории. Сейчас эти эксперименты проводят на животных и неизвестно, происходят ли эти процессы в организме человека. Из этических соображений трудно получить разрешение на такие исследования с участием людей, так как эти эксперименты могут быть опасны для здоровья.

Мощность дозы излучения

Многие ученые считают, что общее количество радиации, которому подвергся организм - не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения - также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте - при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.

Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.

В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации .

Опасность для здоровья, вызванная радиацией

.
Мощность дозы излучения, мкЗв/ч Опасно для здоровья
>10 000 000 Смертельно опасно: недостаточность органов и смерть в течение нескольких часов
1 000 000 Очень опасно для здоровья: рвота
100 000 Очень опасно для здоровья: радиоактивное отравление
1 000 Очень опасно: немедленно покиньте зараженную зону!
100 Очень опасно: повышенный риск для здоровья!
20 Очень опасно: опасность лучевой болезни!
10 Опасно: немедленно покиньте эту зону!
5 Опасно: как можно быстрее покиньте эту зону!
2 Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах

Рентгенография является методом функциональной диагностики организма человека с применением рентгеновских лучей. Такие исследования бывают двух видов: прицельные и обзорные. В первом случае исследованию подвергается небольшой участок тела человека. Во втором случае исследуется крупная область человеческого тела: голова, грудь или конечности.

Одним из современных методов диагностики состояния хрящевой и костной ткани, с использованием специального оборудования, является метод рентгена колена. Чтобы получить полноценную и точную оценку имеющихся патологий или повреждений, можно сделать снимок в таких проекциях:

  • Прямой. Назначается для диагностики наличия переломов.
  • Тангенциальной. Назначается при подозрении на хроническое заболевание суставов.
  • Боковой. Назначается для диагностики разрыва связок и общей оценки сустава.
  • Чрезмыщелковой проекции. Назначается при подозрении на разрыв связок, асептический некроз, остеоартроз.

Обычно делать рентген-снимок коленного сустава при обращении в травматологию или ортопедию приходится при подозрении на мыщелковый перелом бедренной кости, перелом бугристости большеберцовой кости и мыщелков, перелом шейки малоберцовой кости или головки кости, при переломе или вывихе надколенника. Рентгенография коленного сустава в 2-х проекциях: прямой и боковой, выполняется при стандартном обследовании.

Прямой рентгеновский снимок выполняется в следующей последовательности:

  • Пациент укладывается на спину.
  • Ноги кладет ровно.
  • Нога, с которой следует сделать снимок, укладывается перпендикулярно столу.

Боковой рентген выполняется в такой последовательности:

  • Пациент укладывается набок.
  • Больную ногу укладывают снизу и сгибают в колене.

Снимок здорового коленного сустава

Если сделать снимок здорового сустава в прямой проекции можно увидеть суставные концы большеберцовой и бедренной кости. Осколков и трещин на поверхности кости видно не будет. Однородной будет и плотность костной ткани. Соответствовать друг другу будут и поверхности концов костей. Симметричной будет и суставная щель с обеих сторон , без вкраплений и наростов.

Что может показать рентген-снимок колена

Суставная щель на прицельном снимке будет выглядеть широкой, будто между костями пустота. Возникает такая иллюзия в силу того, что рентгеновский луч проходит через хрящевую ткань, покрывающую суставные поверхности, без препятствий.

На снимке сам хрящ будет не виден, но по подлежащим замыкательным пластинам сустава определяют его изменения.

Если сделать рентген колена можно выявить такие патологии:

  • Артрит или артроз сустава. Эти заболевания видно по поражениям суставного хряща: утончению или утолщению замыкательных суставных пластин.
  • Вывих или травматическое повреждение сустава. В этом случае делают несколько снимков с периодичностью между ними для контроля лечения.
  • Врожденные изменения суставов.
  • Для выявления опухолей.

В зависимости от выявляемого заболевания делают снимки коленки в одной или двух проекциях. Прицельный снимок или боковую рентгенографию при согнутом колене врач назначает при подозрении на перелом. Этот метод остается по-прежнему актуальным, несмотря на более современные методы диагностики.

Показания к рентгену коленей

Рентгеновский снимок незаменим при повреждениях суставов или исследовании заболеваний. Этот метод применяют для отслеживания динамики изменений в результате лечения, а также для первичной диагностики.

Этот метод диагностики показан:

Этот метод не только показывает изменения в костях, но и наличие жидкости в суставах. От заболевания намного легче избавиться при раннем выявлении патологии.

Противопоказания

Рентгенография имеет свои противопоказания , как и все медицинские исследования, в случаях:

  • Беременности на всех сроках.
  • Заболевания шизофренией и другими психическими расстройствами в период обострения.
  • Тяжелого состояния пациента.
  • Сильного ожирения (при этом заболевании снимок искажается).
  • Наличия болтов и металлических протезов в колене.
  • Имеющейся лучевой болезни.

После проведенного рентгеновского обследования не рекомендуется планировать зачатие детей мужчинам в течение трех месяцев, а женщинам в течение одного. В случаях частого назначения этого вида обследования рекомендуется употреблять зеленый чай, молоко и натуральные соки с мякотью.

Делая один снимок коленного сустава, человек получает дозу облучения, равную дневной дозе облучения при пользовании мобильным телефоном. Современное оборудование позволяет получать меньшую дозу облучения.

Изменения в суставах

При обследовании колена врач назначает рентгенографию в качестве первоочередного обследования. В зависимости от цели исследования назначают рентген в прямой или боковой проекции. На сделанных снимках можно увидеть:

При артрозе колена чаще всего назначается рентгеновское обследование. При этом обследовании врач может качественно оценить изменения в костной ткани. При обследовании патологий мягких тканей и хрящей прибегают к альтернативному методу ультразвукового исследования. Этот же метод чаще всего применяют и у детей, как более щадящий.

Как и где сделать рентген колена

Сделать рентгенографию можно в любом медицинском центре, который оснащен современным аппаратом. Чтобы получить правильный результат следует заранее взять направление у лечащего врача. Снимок делается без предварительной подготовки в день обращения или по предварительной записи. По месту жительства можно пройти эту процедуру бесплатно. В частных клиниках стоимость варьируется в зависимости от сложности обследования и составляет в среднем от 1 100 до 2 000 рублей.

Врач поможет правильно расположить ногу на столе и сделает снимок. Чтобы снимок был четким и не смазался, требуется на несколько секунд задержать дыхание и не шевелиться. Правильная поза пациента тоже отражается на качестве снимка.

Для получения снимка в прямой проекции больному следует занять положение, лежа на спине. К таким снимкам прибегают для выявления различных заболеваний. Два дополнительных обследования в прицельной или боковой проекции обычно назначают после полученной травмы. От квалификации врача нередко зависит и качество самого снимка.

Назначение контрастной рентгенографии

Хрящи и связки практически незаметны на обычном рентгеновском снимке. С этой целью врач может назначить контрастную рентгенографию. Чтобы сделать такое обследование в сустав вводят воздух и контрастное вещество. Полость заполняется и увеличивается в размере, после чего на снимке можно увидеть хрящи и связки.

Назначают такое исследование в случаях, если:

  • Подозревают патологию суставной оболочки.
  • Хотят выявить застарелую травму связок или сустава.
  • Подозревают наличие опухоли.
  • Хотят выявить наличие внутрисуставной патологии (наличие инородного тела).

Эту процедуру нельзя отнести к легким обследованиям. После него многие пациенты жалуются на хруст в коленном суставе, и может развиться аллергическая реакция.

Альтернативные методы диагностики

Наука не стоит на месте и методы исследований подвергаются постоянной модернизации. Сегодня в некоторых клиниках пациентам могут предложить прохождение цифровой рентгенографии. Проводят ее на модернизированных аппаратах и полученное изображение переносят на дисплей.

Такой метод очень действенен для травматологии, потому что помогает врачу получить снимок в кратчайшие сроки. Такой снимок можно сразу отправить по локальной сети лечащему врачу и улучшить его вид.

Компьютерная томография является еще одним альтернативным методом диагностики. Этот метод позволяет хирургам получать гораздо больше информации, хотя пациент получает гораздо больше облучения при этом методе обследования по сравнению с обычным рентгеном.

Этот аппарат позволяет делать снимки одновременно в нескольких плоскостях без изменения положения тела пациентом. Полученную информацию врач сохраняет на электронных носителях, что позволяет в кратчайшие сроки передать информацию лечащему врачу по локальной или глобальной сети.

До XX столетия врачам приходилось работать с «завязанными глазами». Увидеть внутренние органы пациента - об этом мечтали еще древние доктора. «Проникающее сквозь плоть» зрение помогло бы понять, что происходит в организме больного, установить более точный диагноз, назначать более эффективное лечение.

Но многие столетия врачи были вынуждены разбираться в причинах болезней лишь по внешним симптомам. Ситуация изменилась в 1895 году, когда 50-летний физик Вильгельм Рентген открыл новый вид излучения. Рентгеновские лучи позволили впервые проникнуть в святая святых человеческого тела - получать «фотографии» костей, суставов, внутренних органов.

Несмотря на то, что сегодня существуют более высокотехнологичные методы диагностики, врачи продолжают активно применять рентген. Это помогает получить много ценной и нужной информации.

В каких случаях нужно делать рентген? Какие болезни это помогает диагностировать?

Рентгеновское исследование - один из самых часто используемых методов визуализации. Его применяют для диагностики самых разных заболеваний, в разных сферах медицины.

Когда человек, который получил травму, поступает в травмпункт, первым делом врач назначит ему рентген. Исследование помогает разобраться, были ли повреждены кости и суставы, отличить переломы и вывихи от менее серьезных травм. Травматологи используют рентгенографию, чтобы проверить, насколько правильно были репонированы (сопоставлены) отломки кости, правильно ли установлены, не сместились ли спицы, винты и другие металлические конструкции.

Врачам-стоматологам рентгенография помогает оценить состояние корня зуба и тканей, которые его окружают, челюстных костей. ЛОР-врачи применяют рентгеновские лучи, чтобы оценить состояние придаточных пазух носа. Рентгенография грудной клетки играет важную роль в диагностике патологий сердца и легких.

Часто рентгенографию применяют для диагностики заболеваний позвоночника. Она помогает выявить аномалии и травмы (переломы, подвывихи) позвонков, оценить состояние осанки, межпозвонковых дисков, диагностировать сколиоз, остеохондроз и другие заболевания. Это незаменимый метод диагностики в работе врачей-неврологов, ортопедов.

Мягкие ткани видны на рентгенограммах не так хорошо, как кости. Но их можно «прокрасить» при помощи специальных рентгеноконтрастных растворов. Рентгенографию с контрастом применяют для исследования сосудов, органов пищеварительной системы, бронхов, почек и мочевого пузыря.

Разновидности рентгена

Первый снимок костей кисти, сделанный Вильгельмом Рентгеном, стал самой настоящей сенсацией. Врачи смогли впервые увидеть, что находится внутри тела человека, не прибегая к вскрытию. Со временем рентгенография претерпела большие изменения, её возможности сильно выросли. В современных клиниках применяют разные виды рентгенодиагностики.

Во время рентгеноконтрастных исследований в орган вводят раствор специального вещества, которое дает на снимках яркую тень и тем самым контурирует его стенки. Контрастный раствор можно выпить, применять в виде клизмы, ввести через специальные катетеры в бронхи, мочевой пузырь, мочеточники и почечные лоханки, жёлчные протоки и протоки поджелудочной железы, в другие органы. Отдельная разновидность рентгеноконтрастных исследований - ангиография, во время которой раствор контраста вводят в сосуды.

Рентгенографию можно сочетать с рентгеноскопией - исследованием, во время которого врач наблюдает за работой органа на экране в реальном времени. Отдельные виды рентгенографии применяют для скрининга - ранней диагностики онкологических и других заболеваний. Например, помогает вовремя обнаружить патологические образования в грудной клетке, маммография - в молочной железе.

Если во время исследования особым образом перемещать источник излучения и пленку, можно получить изображение со «срезом» исследуемой части тела на разных уровнях. Такое исследование называют томографией. Во время компьютерной томографии также применяется рентгеновское излучение.

Рентгеновские лучи - это опасно?

Рентгеновские лучи - разновидность электромагнитных волн. Их испускают электроны, которые, сильно разогнавшись, ударяются о плотный материал. Рентгеновские волны - не что-то созданное искусственно человеком, это естественное излучение, которое попадает на Землю с лучами Солнца. Каждый человек ежедневно испытывает на себе действие рентгеновского, и даже радиоактивного излучения, в минимальных дозах.

Да, ученые относят рентгеновские лучи к канцерогенам, то есть к факторам, которые повышают риск рака. Однако, если использовать X-лучи правильно, риски ничтожны, они несопоставимы с той пользой, которую приносит рентген.

Лучше сделать рентгеновский снимок, если это приносит пользу. Постановка диагноза и выбор лучшего способа лечения перевешивает очень небольшой риск от проведения рентгеновского исследования.

Рентгенография - безопасный метод диагностики, потому что:

  • Уровень излучения в рентгеновских аппаратах жестко дозируется. Во время исследования пациент получает безопасную дозу.
  • Врачи назначают исследование, только если оно необходимо, если без него невозможно установить правильный диагноз и назначить эффективное лечение.
  • Между рентгенографиями выдерживают определенные промежутки времени. Ни один врач не станет назначать вам исследование каждый день.
  • Современные аппараты обеспечивают более низкий уровень излучения по сравнению с более старыми моделями, организм получает минимальную дозу.
  • Если врач обнаружит у вас противопоказания, вам не станут назначать рентгенографию. Доктора всегда сопоставляют потенциальную пользу и потенциальные риски.

У кого рентген не применяют?

  • В первую очередь рентгенография противопоказана при беременности, так как рентгеновские лучи могут вызвать нежелательные мутации в клетках эмбриона. Степень риска зависит от срока беременности. Иногда врачи всё же делают исключение и назначают исследование беременной женщине.
  • Рентгенографию не проводят у пациентов, которые находятся в тяжелом состоянии, если есть серьезное кровотечение или повреждение грудной клетки с разгерметизацией плевральной полости.
  • В состав растворов, которые применяют для рентгеноконтрастных исследований, входит йод. У некоторых людей он вызывает аллергические реакции. Если пациент страдает аллергией на йод, контраст вводить нельзя.
  • Рентгеноконтрастные исследования противопоказаны при некоторых заболеваниях щитовидной железы, тяжелых патологиях почек и печени, активном туберкулезе, декомпенсированном сахарном диабете.

Цены на рентгенографию

Наименование услуги Цена
Маммография 2400,00
Рентгенография легких (в 2-х проекциях) 1900,00
Обзорная рентгенография органов грудной клетки 1700,00
Рентгенография всего черепа, в одной или более проекциях 1900,00
Рентгенография шейно-дорсального отдела позвоночника 1900,00
Рентгенография позвоночника, специальные исследования и проекции (шейный отдел) 2300,00
Рентгенография дорсального отдела позвоночника 1900,00
Рентгенография пояснично-крестцового отдела позвоночника 1900,00
Рентгенография грудины 1900,00
Рентгенография лицевого скелета 1900,00
Рентгенография основания черепа (и 2-х верхних позвонков через открытый рот) 2000,00
Рентгенография кости, сустава (одной области) 1900,00
Рентгенография ребер 1700,00
Плантография (рентгенография стоп) 2000,00
Рентгенография носоглотки 1900,00
Рентгенография акромиально- ключичного сочленения 1900,00
Рентгенография нижних челюстных суставов 1700,00
Rg-графия верхней или нижней челюсти 1200,00
Rg-графия костей носа,скуловой кости 1200,00
Rg -графия решетчатой кости (носогубная, носолобная укладка) 1000,00
1000,00
Rg-графия позвоночника с функциональными пробами 1950,00
Rg-графия позвоночника в косых проекциях 1800,00
Rg-графия таза 1900,00
Rg-графия подвздошной кости 1700,00
Rg-графия лонного сочленения 1700,00
Rg-графия лимфатических узлов, флеболитов 1700,00
Rg-графия пяточной кости 1700,00
Обзорная Rg-графия почек 1700,00
Обзорная Rg-графия молочных желез в прямой и косой проекциях 1700,00
Флюорография 1500,00
Распечатка рентгеновского снимка на пленке 500,00
Консультация рентгенограмм, трактовка исследований, выполненных в другом ЛПУ 700,00
Rg-графия сосцевидного отростка 1100,00
Рентгенография органов грудной клетки в 2-х проекциях 1900,00
Обзорная рентгенография брюшной полости (1 снимок) 1800,00
Рентгенография височно-челюстного сустава в 1-й проекции 1300,00
Рентгенография нижней челюсти в 2-х проекциях 1700,00
Рентгенография височных костей в 1-й проекции (2 снимка) 1700,00
Рентгенография плечевого сустава в 1-й проекции 1700,00
Рентгенография локтевого сустава в 2-х проекциях 1900,00
Рентгенография запястья в 2-х проекциях 1900,00
Рентгенография кисти в 2-х проекциях или обе кисти в 1-й проекции 1900,00
Рентгенография голени в 2-х проекциях 1900,00
Рентгенография костей стопы в 2-х проекциях 1900,00
Рентгенография стопы при поперечном плоскостопии (2 снимка) 1700,00
Рентгенография стопы при продольном плоскостопии (1 снимок) 1700,00
Рентгенография пяточной кости при травме (2 снимка) 1700,00
Рентгенография лопатки (1 снимок) 1300,00
Рентгенография плечевой кости (2 снимка) 1900,00
Рентгенография трубчатых костей предплечья (2 снимка) 1900,00
Рентгенография одной фаланги пальца в 2-х проекциях 1700,00
Рентгенография обзорная мочевого пузыря (1 снимок) 1300,00
Рентгенография органов грудной клетки (легкие) в 1 проекции 1700,00
Рентгенография органов грудной клетки (легкие) в 2-х проекциях 1900,00
Рентгенография органов грудной клетки по Флешнеру (дополнительная проекция) 1000,00
Прицельная рентгенография органорв грудной клетки (дополнительная проекция) 1000,00
Рентгенография брюшной полости (обзорная) -необходима специальная подготовка пациента(кроме экстренных случаев) 1900,00
Обзорная рентгенография почек (обзорная урография)- необходима специальная подготовка пациента 1900,00
Рентгенография костей черепа (2 проекции) 1900,00
Рентгенография костей черепа (дополнительная проекция) 1000,00
Рентгенография костей черепа (1 проекция) 1700,00
Рентгенография турецкого седла (2 проекции) 2500,00
Рентгенография придаточных пазух носа в носо-подбородочной проекции с открытым ртом (1 проекция) 1500,00
Рентгенография костей носа (2 проекции) 1700,00
Рентгенография нижней челюсти (1 проекция) — прямая 1500,00
Прицельная рентгенография верхних шейных позвонков через открытый рот 1500,00
Рентгенография шейного отдела позвоночника в 2-х проекциях 1700,00
Рентгенография шейного отдела позвоночника в косых 2-х проекциях 1700,00
2700,00
Рентгенография грудного отдела позвоночника в 2-х проекциях 1700,00
Рентгенография грудного отдела позвоночника в косых 2-х проекциях 1700,00
Рентгенография поряснично-крестцового отдела позвоночника в 2-х проекциях 1500,00
Рентгенография пояснично-крестцового отдела позвоночника в косых проекциях (дополнительных) 1500,00
Рентгенография шейного отдела позвоночника с функциональными пробами (4 снимка) 2700,00
Рентгенография копчика (2 проекции) -необходима специальная подготовка пациента(кроме экстренных случаев) 1900,00
Рентгенография трубчатых костей (рук, ног) с захватом сустава (1 проекция) 1700,00
Рентгенография трубчатых костей (рук, ног) с захватом сустава (2 проекции) 1900,00
Рентгенография крупного сустава в 2-х проекциях (1 сустав): лучезапястный, локтевой, плечевой, голеностопный, коленный, тазобедренный 1900,00
Рентгенография крупного сустава в 2-х проекциях (2 сустава): лучезапястный, локтевой, плечевой, голеностопный, коленный, тазобедренный 2000,00
Рентгенография лопатки, грудины, ключицы, ребер (2 проекции) 1700,00
Рентгенограмма костей таза (1 проекция) 1700,00
Рентгенограмма мелких суставов кистей, стоп (1 проекция) 1700,00
Рентгенограмма мелких суставов кистей, стоп (2 проекции) 1900,00
Рентгенограмма пяточных костей в одной проекции (2 стопы) 1900,00
Рентгенограмма пяточных костей в одной проекции (1 стопа) 1700,00
Рентгенограмма пяточных костей в двух проекции (1 стопа) при травме 1900,00
Рентгенограмма надколенника в аксиальной проекции 1700,00
Расшифровка рентгенограмм (из других ЛПУ) 1200,00

Запишитесь на рентгенографию в медицинский центр ПрофМедЛаб. Для записи звоните по телефону



Похожие статьи