Что такое излучение в физике? Определение, особенности, применение излучения в физике. Что такое тепловое излучение в физике

15.10.2019

Человек постоянно находится под воздействием разнообразных внешних факторов. Одни из них являются видимыми, например, погодные условия, и степень их воздействия можно контролировать. Другие же не видны человеческому глазу и носят название излучений. Каждый должен знать виды излучения, их роль и области применения.

Некоторые виды излучения человек может встретить повсеместно. Ярким примером являются радиоволны. Они представляют собой колебания электромагнитной природы, которые способны распределяться в пространстве со скоростью света. Такие волны несут в себе энергию от генераторов.

Источники радиоволн можно разделить на две группы.

  1. Природные, к ним относятся молнии и астрономические единицы.
  2. Искусственные, то есть созданные человеком. Они включают в себя излучатели с переменным током. Это могут быть приборы радиосвязи, вещания, компьютеры и системы навигации.

Кожа человека способна осаждать на своей поверхности этот вид волн, поэтому есть ряд негативных последствий их воздействия на человека. Радиоволновое излучение способно замедлить деятельность мозговых структур, а также вызвать мутации на генном уровне.

Для лиц, у которых установлен кардиостимулятор, такое воздействие смертельно опасно. У этих приборов имеется четкий максимально допустимый уровень излучения, подъем выше него вносит дисбаланс в работу системы стимулятора и ведет к его поломке.

Все влияния радиоволн на организм были изучены только на животных, прямого доказательства их негативного действия на человека нет, но способы защиты ученые все же ищут. Как таковых эффективных способов пока нет. Единственное, что можно посоветовать, так это держаться подальше от опасных приборов. Поскольку бытовые приборы, включенные в сеть, тоже создают вокруг себя радиоволновое поле, то просто необходимо отключать питание устройств, которыми человек не пользуется в данный момент.

Излучение инфракрасного спектра

Все виды излучения тем или иным образом связаны между собой. Некоторые из них видны человеческому глазу. Инфракрасное излучение примыкает к той части спектра, которую глаз человека может уловить. Оно не только освещает поверхность, но и способно ее нагревать.

Основным естественным источником ИК-лучей является солнце. Человеком созданы искусственные излучатели, посредство которых достигается необходимый тепловой эффект.

Теперь нужно разобраться, насколько полезным или вредным является такой вид излучения для человека. Практически все длинноволновое излучение инфракрасного спектра поглощается верхними слоями кожи, поэтому не только безопасно, но и способно повысить иммунитет и усилить восстановительные процессы в тканях.

Что касается коротких волн, то они могут уходить глубоко в ткани и вызывать перегрев органов. Так называемый тепловой удар является следствием воздействия коротких инфракрасных волн. Симптомы этой патологии известны почти всем:

  • появление кружения в голове;
  • чувство тошноты;
  • возрастание пульса;
  • нарушения зрения, характеризующиеся потемнением в глазах.

Как же уберечь себя от опасного влияния? Нужно соблюдать технику безопасности, пользуясь теплозащитной одеждой и экранами. Применение коротковолновых обогревателей должно быть четко дозировано, нагревательный элемент должен быть прикрыт теплоизолирующим материалом, при помощи которого достигается излучение мягких длинных волн.

Если задуматься, все виды излучения способны проникать в ткани. Но именно рентгеновское излучение дало возможность использовать это свойство на практике в медицине.

Истории наших читателей

Владимир
61 год

Если сравнить лучи рентгеновского происхождения с лучами света, то первые имеют очень большую длину, что позволяет им проникать даже через непрозрачные материалы. Такие лучи не способны отражаться и преломляться. Данный вид спектра имеет мягкую и жесткую составляющую. Мягкая состоит из длинных волн, способных полностью поглощаться тканями человека. Таким образом, постоянное воздействие длинных волн приводит к повреждению клеток и мутации ДНК.

Есть ряд структур, которые не способны пропустить через себя рентгеновские лучи. К ним относится, например, костная ткань и металлы. Исходя из этого и производятся снимки костей человека с целью диагностики их целостности.

В настоящее время созданы приборы, позволяющие не только делать фиксированный снимок, например, конечности, но и наблюдать за происходящими с ней изменениями «онлайн». Эти устройства помогаю врачу выполнить оперативное вмешательство на костях под контролем зрения, не производя широких травматичных разрезов. При помощи таких приборов можно исследовать биомеханику суставов.

Что касается негативного воздействия рентгеновских лучей, то длительный контакт с ними может привести к развитию лучевой болезни, которая проявляется рядом признаков:

  • нарушения неврологического характера;
  • дерматиты;
  • снижение иммунитета;
  • угнетение нормального кроветворения;
  • развитие онкологической патологии;
  • бесплодие.

Чтобы защитить себя от страшных последствий, при контакте с этим видом излучения нужно использовать экранирующие щиты и накладки из материалов, не пропускающих лучи.

Данный вид лучей люди привыкли называть попросту – свет. Этот вид излучения способен поглощаться объектом воздействия, частично проходя через него и частично отражаясь. Такие свойства широко применяются в науке и технике, особенно при изготовлении оптических приборов.

Все источники оптического излучения делятся на несколько групп.

  1. Тепловые, имеющие сплошной спектр. Тепло в них выделяется за счет тока или процесса горения. Это могут быть электрические и галогенные лампы накаливания, а также пиротехнические изделия и электродосветные приборы.
  2. Люминесцентные, содержащие газы, возбуждаемые потоками фотонов. Такими источниками являются энергосберегающие приборы и катодолюминесцентные устройства. Что касается радио- и хемилюминесцентных источников, то в них потоки возбуждаются за счет продуктов радиоактивного распада и химических реакций соответственно.
  3. Плазменные, чьи характеристики зависят от температуры и давления плазмы, образующейся в них. Это могут быть газоразрядные, ртутные трубчатые и ксеноновые лампы. Не исключением являются и спектральные источники, а также приборы импульсного характера.

Оптическое излучение на организм человека действует в комплексе с ультрафиолетовым, что провоцирует выработку меланина в коже. Таким образом, положительный эффект длится до тех пор, пока не будет достигнуто пороговое значение воздействия, за пределами которого находится риск ожогов и кожной онкопатологии.

Самым известным и широко применяемым излучением, воздействие которого можно встретить повсеместно, является ультрафиолетовое излучение. Данное излучение имеет два спектра, один из которых доходит до земли и участвует во всех процессах на земле. Второй задерживается слоем озона и не проходит через него. Слой озона обезвреживает этот спектр, тем самым выполняя защитную роль. Разрушение озонового слоя опасно проникновением вредных лучей на поверхность земли.

Естественный источник этого вида излучения – Солнце. Искусственных источников придумано огромное количество:

  • Эритемные лампы, активизирующие выработку витамина Д в слоях кожи и помогающие лечению рахита.
  • Солярии, не только позволяющие позагорать, но и имеющие лечебный эффект для людей с патологиями, вызванными недостатком солнечного света.
  • Лазерные излучатели, используемые в биотехнологиях, медицине и электронике.

Что касается воздействия на организм человека, то оно двоякое. С одной стороны, недостаток ультрафиолета может вызвать различные болезни. Дозированная нагрузка таким излучением помогает иммунитету, работе мышц и легких, а также предотвращает гипоксию.

Все виды влияний делятся на четыре группы:

  • способность убивать бактерий;
  • снятие воспаления;
  • восстановление поврежденных тканей;
  • уменьшение боли.

К отрицательным воздействиям ультрафиолета можно отнести способность провоцировать рак кожи при длительном воздействии. Меланома кожи крайне злокачественный вид опухоли. Такой диагноз почти на 100 процентов означает грядущую смерть.

Что касается органа зрения, то чрезмерное воздействие лучей ультрафиолетового спектра повреждает сетчатку, роговицу и оболочки глаза. Таким образом, использовать этот вид излучения нужно в меру. Если при определенных обстоятельствах приходится длительно контактировать с источником ультрафиолетовых лучей, то необходимо защитить глаза очками, а кожу специальными кремами или одеждой.

Это так называемые космические лучи, несущие в себе ядра атомов радиоактивных веществ и элементов. Поток гамма-излучения имеет очень большую энергию и способен быстро проникать в клетки организма, ионизируя их содержимое. Разрушенные клеточные элементы действуют как яды, разлагаясь и отравляя весь организм. В процесс обязательно вовлекается ядро клеток, что ведет к мутациям в геноме. Здоровые клетки разрушаются, а на их месте образуются мутантные, не способные в полной мере обеспечить организм всем необходимым.

Данное излучение опасно тем, что человек его никак не ощущает. Последствия воздействия проявляются не сразу, а имеют отдаленное действие. В первую очередь страдают клетки кроветворной системы, волос, половых органов и лимфоидной системы.

Радиация очень опасна развитием лучевой болезни, но даже такому спектру нашли полезное применение:

  • с его помощью стерилизуют продукты, оборудование и инструменты медицинского предназначения;
  • измерение глубины подземных скважин;
  • измерение длины пути космических аппаратов;
  • воздействие на растения с целью выявления продуктивных сортов;
  • в медицине такое излучение применяется для проведения лучевой терапии в лечении онкологии.

В заключение нужно сказать, что все виды лучей с успехом применяются человеком и являются необходимыми. Благодаря им существуют растения, животные и люди. Защита от чрезмерного воздействия должна быть приоритетным правилом при работе.

Для тех, кто не знаком с физикой или только начинает ее изучать, вопрос, что такое излучение, является сложным. Но с данным физическим явлением мы встречаемся практически каждый день. Если сказать просто, то излучение - это процесс распространения энергии в виде электромагнитных волн и частиц или, другими словами, это энергетические волны, распространяющиеся вокруг.

Источник излучения и его виды

Источник электромагнитных волн может быть как искусственный, так и природный. Для примера, к искусственному излучению относят рентгеновские лучи.

Почувствовать излучение можно, даже не выходя из дома: стоит только подержать руку над горящей свечой, и сразу же вы ощутите излучение тепла. Его можно назвать тепловым, но кроме него в физике есть еще несколько видов излучений. Вот некоторые из них:

  • Ультрафиолетовое - это излучение человек может чувствовать на себе во время загорания на солнце.
  • Рентгеновское излучение обладает самыми короткими волнами, они называются рентгеновскими лучами.
  • Инфракрасные лучи может видеть даже человек, пример этого - обычный детский лазер. Этот вид излучения образуется при совпадении микроволновых радиоизлучений и видимого света. Часто инфракрасное излучение применяется в физиотерапии.
  • Радиоактивное излучение образуется во время распада химических радиоактивных элементов. Узнать подробнее о радиации можно из статьи .
  • Оптическое излучение - это не что иное, как световое излучение, свет в широком смысле слова.
  • Гамма-излучение - вид электромагнитного излучения с малой длиной волны. Используется, например, в лучевой терапии.

Ученым уже давно известно, что некоторые излучения пагубно влияют на организм человека. Насколько сильным будет это влияние, зависит от длительности и мощности излучения. Если подвергать себя длительное время излучению, это может привести к изменениям на клеточном уровне. Вся электронная техника, которая нас окружает, будь-то мобильный телефон, компьютер или микроволновая печь, - всё это оказывает влияние на здоровье. Поэтому нужно следить за тем, чтобы не подвергать себя лишнему излучению.

Важным свойством радиоактивности является ионизирующее излучение. Опасность этого явления для живого организма исследователи обнаружили с самого начала открытия радиоактивности. Так, А. Беккерель и М. Кюри-Склодовская, изучавшие свойства радиоактивных элементов, получили сильнейшие ожоги кожи от излучения радия.

Ионизирующее излучение – любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков. Различают следующие виды ионизирующих излучений: α-,β-излучение, фотонное и нейтронное излучение. Ультрафиолетовое излучение и видимую часть светового спектра не относят к ионизирующим излучениям. Указанные выше виды излучения имеют различную проникающую способность (рис. 3.6), зависящую от носителя и энергии излучения.

Энергию излучения измеряют в электрон-вольтах (эВ). За 1 эВ принята энергия, которую приобретает электрон при перемещении в ускоряющем электрическом поле с разностью потенциалов в 1 В. На практике чаще применяются десятичные кратные единицы: килоэлектрон-вольт (1 кэВ = 103эВ) и мегаэлектронвольт (1 МэВ = 10эВ). Связь электрон-вольта с системной единицей энергии Дж задается выражением: 1 эВ = 1,6·10 -19 Дж.

Альфа-излучение (α-излучение) – ионизирующее излучение, представляющее собой поток относительно тяжелых частиц (ядер гелия, состоящих из двух протонов и двух нейтронов), испускаемых при ядерных превращениях. Энергия α-частиц составляет порядка нескольких мегаэлектрон-вольт и различна для разных радионуклидов. При этом некоторые радионуклиды испускают α-частицы нескольких энергий.

Этот вид излучения, имея малую длину пробега частиц, характеризуется слабой проникающей способностью, задерживаясь даже листком бумаги. Например, пробег α-частиц с энергией 4 МэВ в воздухе составляет 2,5 см, а в биологической ткани лишь 31 мкм. Излучение практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому α-излучение не опасно до тех пор, пока радиоактивные вещества, испускающие альфа-частицы, не попадут внутрь организма через органы дыхания, пищеварения или через открытые раны и ожоговые поверхности. Степень опасности радиоактивного вещества зависит от энергии испускаемых им частиц. Поскольку энергия ионизации одного атома составляет единицы–десятки электрон-вольт, каждая α-частица способна ионизировать до 100000 молекул внутри организма.

Бета-излучение – поток β-частиц (электронов и позитронов), обладающих большей проникающей способностью в сравнении сα-излучением. Испускаемые частицы имеют непрерывный энергетический спектр, распределяясь по энергии от нуля до определенного максимального значения, характерного для данного радионуклида. Максимальная энергияβ-спектра различных радионуклидов лежит в интервале от нескольких кэВ до нескольких МэВ.

Пробег β-частиц в воздухе может достигать нескольких метров, а в биологической ткани нескольких сантиметров. Так, пробег электронов с энергией 4 МэВ в воздухе составляет 17,8 м, а в биологической ткани 2,6 см. Однако они легко задерживаются тонким листом металла. Как и источники α-излучения, β-активные радионуклиды более опасны при попадании внутрь организма.

Фотонное излучение включает в себя рентгеновское и гамма-излучение (γ-излучение). После радиоактивного распада атомное ядро конечного продукта часто оказывается в возбужденном состоянии. Переход ядра из этого состояния на более низкий энергетический уровень (в нормальное состояние) происходит с испусканием гамма-квантов. Таким образом, γ-излучение имеет внутриядерное происхождение и представляет собой довольно жесткое электромагнитное излучение с длиной волны 10 -8 –10 -11 нм.

Энергия кванта γ-излучения Е (в эВ) связана с длиной волны соотношением

где λ выражена в нанометрах (1 нм = 10 -9 м).

Распространяясь со скоростью света, γ-лучи имеют высокую проникающую способность, значительно большую, чем α и β - частицы. Их может задержать лишь толстая свинцовая или бетонная плита. Чем выше энергияγ -излучения и соответственно меньше длина его волны, тем выше проникающая способность. Обычно энергия гамма-квантов лежит в диапазоне от нескольких кэВ до нескольких МэВ.

В отличие от γ-излучения рентгеновское имеет атомное происхождение, Оно образуется в возбужденных атомах при переходе электронов с удаленных орбит на более близкую к ядру орбиту или возникает при торможении заряженных частиц в веществе. Соответственно первое имеет дискретный энергетический спектр и называется характеристическим, второе – непрерывный спектр и называется тормозным. Диапазон энергий рентгеновского излучения – от сотен электрон-вольт до десятков килоэлектрон-вольт. Несмотря на различное происхождение этих излучений, природа их одинакова, и поэтому рентгеновское и γ–излучение называют фотонным излучением.

Под действием фотонного излучения происходит облучение всего организма. Оно является основным поражающим фактором при воздействии на организм излучения от внешних источников.

Нейтронное излучение возникает при делении тяжелых ядер и в других ядерных реакциях. Источниками нейтронного излучения на АЭС являются ядерные реакторы, плотность потока нейтронов в которых составляет 10 10 –10 14 нейтронов/(см·с); изотопные источники, содержащие естественные или искусственные радионуклиды, смешанные с веществом, испускающим нейтроны под влиянием бомбардировки егоα -частицами или γ-квантами. Такие источники применяют для градуировки контрольно-измерительной аппаратуры. Они дают потоки порядка 10 7 –10 8 нейтронов/с.

В зависимости от энергии нейтроны подразделяют на следующие типы: медленные, или тепловые (со средней энергией∼ 0,025 эВ); резонансные (с энергией до 0,5 кэВ); промежуточные (с энергией от 0,5 кэВ до 0,5 МэВ); быстрые (с энергией от 0,5 до 20 МэВ); сверхбыстрые (с энергией свыше 20 МэВ).

При взаимодействии нейтронов с веществом наблюдаются два типа процессов: рассеяние нейтронов и ядерные реакции, в том числе вынужденное деление тяжелых ядер. Именно с последним видом взаимодействий связано возникновение цепной реакции, происходящей при атомном взрыве (неуправляемая цепная реакция) и в ядерных реакторах (управляемая цепная реакция) и сопровождающейся выделением огромных количеств энергии.

Проникающая способность нейтронного излучения сравнима с γ-излучением. Тепловые нейтроны эффективно поглощаются материалами, содержащими бор, графит, свинец, литий, гадолиний и некоторые другие вещества; быстрые нейтроны эффективно замедляются парафином, водой, бетоном и др.

Основные понятия дозиметрии. Имея разную проникающую способность, ионизирующие излучения различных типов оказывают различное воздействие на ткани живого организма. При этом повреждений, вызываемых излучением, будет тем больше, чем большая энергия воздействует на биологический объект. Количество энергии, переданное организму при ионизирующем воздействии, называется дозой.

Физической основой дозы ионизирующего излучения является преобразование энергии излучения в процессе его взаимодействия с атомами или их ядрами, электронами и молекулами облучаемой среды, в результате которого часть этой энергии поглощается веществом. Поглощенная энергия является первопричиной процессов, приводящих к наблюдаемым радиационно-индуцированным эффектам, и потому дозиметрические величины оказываются связанными с поглощенной энергией излучения.

Дозу облучения можно получить от любого радионуклида или от их смеси независимо от того, находятся они вне организма или внутри него в результате попадания с пищей, водой или воздухом. Дозы рассчитываются по-разному с учетом того, каков размер облученного участка и где он расположен, один ли человек подвергся облучению или группа людей и в течение какого времени это происходило.

Количество энергии, поглощенное единицей массы облучаемого организма, называется поглощенной дозой и измеряется в системе СИ в греях (Гр). Размерность грея – джоуль, деленный на килограмм массы (Дж/кг). Однако величина поглощенной дозы не учитывает того, что при одинаковой поглощенной дозе α-излучение и нейтронное излучение гораздо опаснее, чем β-излучение илиγ -излучение. Поэтому для более точной оценки степени поражения организма величину поглощенной дозы надо увеличить на некоторый коэффициент, отражающий способность излучения данного вида повреждать биологические объекты. Такой коэффициент называется радиационным взвешивающим фактором. Его величина для β и γ-излучений принимается равной 1, для α-излучения – 20, для нейтронного излучения изменяется в диапазоне 5–20 в зависимости от энергии нейтронов.

Пересчитанную таким образом дозу называют эквивалентной дозой, которая в системе СИ измеряется в зивертах (Зв). Размерность зиверта такая же, как у грея – Дж/кг. Доза, полученная за единицу времени, классифицируется в системе СИ как мощность дозы и имеет размерность Гр/с или Зв/с. В системе СИ допустимо применение несистемных единиц измерения времени, таких как час, сутки, год, поэтому при расчете доз применяют такие размерности, как Зв/ч, Зв/сут, Зв/год.

До сих пор в геофизике, геологии и частично в радиоэкологии применяется несистемная единица дозы – рентген. Эта величина была введена в употребление еще на заре атомной эры (в 1928 г.) и использовалась для измерения величины экспозиционной дозы. Рентген равен такой дозеγ -излучения, которая создает в одном кубическом сантиметре сухого воздуха общий заряд ионов, равный одной единице электрического заряда. При измерении в воздухе экспозиционной дозыγ -излучения используются соотношения между рентгеном и греем: 1 Р = 8,77 мДж/кг или 8,77 мГр. Соответственно 1 Гр = 114 Р.

В дозиметрии сохранилась еще одна внесистемная единица – рад, равная поглощенной дозе облучения, при которой 1 кг облучаемого вещества поглощает энергию, равную 0,01 Дж. Соответственно I рад = 100 эрг/г = 0,01 Гр. В настоящее время эта единица выходит из употребления.

При расчете доз, получаемых организмом, следует учитывать, что одни части тела (органы, ткани) более чувствительны к облучению, чем другие. В частности, при одинаковой эквивалентной дозе поражение легких более вероятно, чем, например, щитовидной железы. Междуна

родной комиссией по радиационной защите (МКРЗ) были разработаны пересчетные коэффициенты, которые рекомендуется использовать при оценке дозы облучения различных органов и биологических тканей человека (рис. 3.7).

После умножения величины эквивалентной дозы для данного органа на соответствующий коэффициент и суммирования ее по всем органам и тканям получают эффективную эквивалентную дозу, отражающую суммарный эффект от облучения на организм. Эта доза также измеряется в зивертах. Описанное понятие дозы характеризует лишь индивидуально получаемые дозы.

При необходимости изучения эффектов действия радиации на группу людей используется понятие коллективной эффективной эквивалентной дозы, которая равна сумме индивидуальных эффективных эквивалентных доз и измеряется в человеко-зивертах (чел.-Зв).

Поскольку многие радионуклиды распадаются очень медленно и будут действовать на население в отдаленном будущем, коллективную эффективную эквивалентную дозу от подобных источников будут получать еще многие поколения людей, живущих на планете. Для оценки указанной дозы введено понятие ожидаемой (полной) коллективной эффективной эквивалентной дозы, которая позволяет прогнозировать поражение группы людей от действия постоянных источников радиации. Для наглядности описанная выше система понятий проиллюстрирована на рис. 3.8.


Радиоактивное излучение является мощным воздействием на человеческий организм, способным вызвать необратимые процессы, ведущие к трагическим последствиям. В зависимости от мощности различные виды радиоактивных излучений могут вызвать тяжелые заболевания, а могут, наоборот, лечить человека. Некоторые из них используются в диагностических целях. Другими словами, все зависит от контролируемости процесса, т.е. его интенсивности и продолжительности воздействия на биологические ткани.

Сущность явления

В общем случае под понятием радиация подразумевается высвобождение частиц и их распространение в виде волн. Радиоактивность подразумевает самопроизвольный распад ядер атомов некоторых веществ с появлением потока заряженных частиц большой мощности. Вещества, способные на такое явление, получили название радионуклидов.

Так что такое радиоактивное излучение? Обычно под этим термином отмечаются как радиоактивные, так и радиационные излучения. По своей сути, это направленный поток элементарных частиц значительной мощности, вызывающих ионизацию любой среды, попадающей на их пути: воздух, жидкости, металлы, минералы и другие вещества, а также биологические ткани. Ионизация любого материала ведет к изменению его структуры и основных свойств. Биологические ткани, в т.ч. человеческого организма, подвергаются изменениям, которые не совместимы с их жизнедеятельностью.

Различные типы радиоактивного излучения имеют разную проникающую и ионизирующую способность. Поражающие свойства зависят от следующих основных характеристик радионуклеидов: вид радиации, мощность потока, период полураспада. Ионизирующая способность оценивается по удельному показателю: количеству ионов ионизируемого вещества, формируемых на расстоянии в 10 мм по пути проникновения излучения.

Негативное воздействие на человека

Радиационное облучение человека приводит к структурным изменениям в тканях организма. В результате ионизации в них появляются свободные радикалы, которые представляют собой активные в химическом плане молекулы, поражающие и убивающие клетки. Первыми и наиболее сильно страдают желудочно-кишечная, мочеполовая и кроветворная системы. Появляются выраженные симптомы их дисфункции: тошнота и рвота, повышенная температура, нарушение стула.

Достаточно типичной является лучевая катаракта, вызванная воздействием излучения на глазные ткани. Наблюдаются и другие серьезные последствия радиационного облучения: сосудистый склероз, резкое снижение иммунитета, гематогенные проблемы. Особую опасность представляет повреждение генетического механизма. Возникающие активные радикалы способны изменить структуру главного носителя генетической информации — ДНК. Такие нарушения могут приводить к непрогнозируемым мутациям, отражающимся на следующих поколениях.

Степень поражения человеческого организма зависит от того, какие виды радиоактивного излучения имели место, какова интенсивность и индивидуальная восприимчивость организма. Главный показатель — доза облучения, показывающая, какое количество радиации проникло в организм. Установлено, что разовая большая доза значительно опаснее, чем накопление такой дозы при длительном облучении маломощным излучением. Поглощенное организмом количество радиации измеряется в эйвертах (Эв).

Любая жизненная среда имеет определенный уровень радиации. Нормальным считается радиационный фон не выше 0,18-0,2 мЭв/ч или 20 микрорентгенов. Критический уровень, ведущий к летальному исходу, оценивается в 5,5-6,5 Эв.

Разновидности излучения

Как отмечалось, радиоактивное излучение и его виды могут по-разному воздействовать на человеческий организм. Можно выделить следующие основные разновидности радиации.

Излучения корпускулярного типа, представляющие собой потоки частиц:

  1. Альфа-излучение. Это поток, составленный из альфа-частиц, имеющих огромную ионизирующую способность, но глубина проникновения небольшая. Даже листок плотной бумаги способен остановить такие частицы. Одежда человека достаточно эффективно исполняет роль защиты.
  2. Бета-излучение обусловлено потоком бета-частиц, летящих со скоростью, близкой к скорости света. Из-за огромной скорости эти частицы имеют повышенную проникающую способность, но ионизирующие возможности у них ниже, чем в предыдущем варианте. В качестве экрана от данного излучения могут служить оконные окна или металлический лист толщиной 8-10 мм. Для человека оно очень опасно при прямом попадании на кожу.
  3. Нейтронное излучение состоит из нейтронов и обладает наибольшим поражающим воздействием. Достаточная защита от них обеспечивается материалами, в структуре которых есть водород: вода, парафин, полиэтилен и т.п.

Волновое излучение, представляющее собой лучевое распространение энергии:

  1. Гамма-излучение является, по своей сути, электромагнитным полем, создающимся при радиоактивных превращениях в атомах. Волны испускаются в виде квантов, импульсами. Излучение имеет очень высокую проницаемость, но низкую ионизирующую способность. Для защиты от таких лучей нужны экраны из тяжелых металлов.
  2. Рентгеновское излучение, или Х-лучи. Эти квантовые лучи во многом аналогичны гамма-излучению, но проникающие возможности несколько занижены. Такой тип волны вырабатывается в вакуумных рентгеновских установках за счет удара электронами о специальную мишень. Общеизвестно диагностическое назначение данного излучения. Однако следует помнить, что продолжительное действие его способно нанести человеческому организму серьезный вред.

Как может облучиться человек

Человек получает радиоактивное облучение при условии проникновения радиации в его организм. Оно может происходить 2 способами: внешнее и внутреннее воздействие. В первом случае источник радиоактивного излучения находится снаружи, а человек по разным причинам попадает в поле его деятельности без надлежащей защиты. Внутреннее воздействие осуществляется при проникновении радионуклида внутрь организма. Это может произойти при употреблении облученных продуктов или жидкостей, с пылью и газами, при дыхании зараженным воздухом и т.д.

Внешние источники радиации можно подразделить на 3 категории:

  1. Естественные источники: тяжелые химические элементы и радиоактивные изотопы.
  2. Искусственные источники: технические устройства, обеспечивающие излучение при соответствующих ядерных реакциях.
  3. Наведенная радиация: различные среды после воздействия на них интенсивного ионизирующего излучения сами становятся источником радиации.

К наиболее опасным объектам в части возможного радиационного облучения можно отнести следующие источники радиации:

  1. Производства, связанные с добычей, переработкой, обогащением радионуклидов, изготовлением ядерного топлива для реакторов, в частности урановая промышленность.
  2. Ядерные реакторы любого типа, в т.ч. на электростанциях и кораблях.
  3. Радиохимические предприятия, занимающиеся регенерацией ядерного топлива.
  4. Места хранения (захоронения) отходов радиоактивных веществ, а также предприятия по их переработке.
  5. При использовании радиационных излучений в разных отраслях: медицина, геология, сельское хозяйство, промышленность и т.п.
  6. Испытание ядерного оружия, ядерные взрывы в мирных целях.

Проявление поражения организма

Характеристика радиоактивных излучений играет решающую роль в степени поражения человеческого организма. В результате воздействия развивается лучевая болезнь, которая может иметь 2 направления: соматическое и генетическое поражение. По времени проявления выделяется ранний и отдаленный эффект.

Ранний эффект выявляет характерные симптомы в период от 1 часа до 2 месяцев. Типичными считаются такие признаки: кожная краснота и шелушение, мутность глазного хрусталика, нарушение кроветворного процесса. Крайний вариант при большой дозе облучения — летальный исход. Локальное поражение характеризуются такими признаками, как лучевой ожог кожного покрова и слизистой оболочки.

Отдаленные проявления выявляются через 3-5 месяцев, а то и через несколько лет. В этом случае отмечаются устойчивые кожные поражения, злокачественные опухоли различной локализации, резкое ухудшение иммунитета, изменение состава крови (значительное снижение уровня эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов). В результате этого часто развиваются различные инфекционные болезни, существенно снижается продолжительность жизни.

Для предотвращения облучения человека ионизирующим излучением применяются различные виды защиты, которые зависят от типа радиации. Кроме того, регламентируются жесткие нормы по максимальной продолжительности пребывания человека в зоне облучения, минимальному расстоянию до источника радиации, использованию индивидуальных средств защиты и установке защитных экранов.

Радиоактивное излучение способно оказывать сильное разрушительное воздействие на все ткани человеческого организма. В то же время оно используется и при лечении различных болезней. Все зависит от дозы облучения, получаемой человеком в разовом или длительном режиме. Только неукоснительное соблюдение норм радиационной защиты поможет сохранить здоровье, даже если находиться в пределах действия радиационного источника.

Все атомы в возбужденном состоянии способны излучать электромагнитные волны. Для этого им необходимо перейти в основное состояние, в котором их внутренняя энергия приобретает . Процесс подобного перехода сопровождается испусканием электромагнитной волны. В зависимости от длины, она обладает различными свойствами. Существует несколько видов такого излучения.

Видимый свет

Длиной волны называется кратчайшее расстояние между поверхностью равных фаз. Видимый свет - это электромагнитные волны, которые могут восприниматься человеческим глазом. Длина световых волн варьируется от 340 (фиолетовый свет) до 760 нанометров (красный свет). Лучше всего глаз человека ощущает желто-зеленую область спектра.

Инфракрасное излучение

Все, что окружает человека, включая его самого, - источники инфракрасного или теплового излучения (длина волны до 0,5 мм). Атомы излучают электромагнитные волны в этом диапазоне при хаотическом столкновении друг с другом. При каждом столкновении их кинетическая энергия переходит в тепловую. Атом возбуждается и излучает волны в инфракрасном диапазоне.

От Солнца до поверхности Земли доходит лишь небольшая часть инфракрасного излучения. До 80% поглощается молекулами воздуха и особенно углекислого газа, который вызывает парниковый эффект.

Ультрафиолетовое излучение

Длина волны ультрафиолетового излучения значительно меньше, чем инфракрасного. В спектре Солнца также имеется ультрафиолетовая составляющая, но она блокируется озоновым слоем Земли и не доходит до ее поверхности. Такое излучение очень вредно для всех живых организмов.

Длина ультрафиолетового излучения лежит в области от 10 до 740 нанометров. Та небольшая его доля, которая доходит до поверхности Земли вместе с видимым светом, вызывает у людей загар, как защитную реакцию кожи на вредное для нее воздействие.

Радиоволны

С помощью радиоволн длиной до 1,5 км можно передавать информацию. Это используется в радиоприемниках и телевидении. Такая большая длина позволяет им огибать поверхность Земли. Наиболее короткие радиоволны могут отражаться от верхних слоев атмосферы и доходить до станций, расположенных на противоположной стороне земного шара.

Гамма-лучи

Гамма-лучи относят к особо жесткому ультрафиолетовому излучению. Они образуются при взрыве атомной бомбы, а также при протекании процессов на поверхности звезд. Это излучение губительно для живых организмов, но магнитосфера Земли не пропускает их. Фотоны гамма-лучей обладают сверхвысокими энергиями.



Похожие статьи