Атомная масса индия. Металл индий

20.09.2019

Индий - металл серебристо-белого цвета с сильным блеском, внешне сходный с цинком. По твердости близок к литию, легко режется ножом. Плотность индия 7.31 г/см3, плавится при температуре 156,5°C. При этом, подобно галлию, температура кипения на пару тысяч градусов выше температуры плавления - 2080°C.

По химическим свойствам похож на алюминий и галлий, поскольку эти металлы находятся в одной группе периодической системы химических элементов, но в целом в реакциях менее активен. Устойчив во влажной атмосфере, не растворяется в щелочах. Реагирует почти со всеми кислотами, медленно растворяется даже в слабых органических.

Индий относится к редким и рассеянным элементам, он не образует собственных месторождений и добывается в качестве побочного продукта при переработке руд других металлов. Для получения индия промышленное значение имеют только те минералы, в которых его содержится не меньше, чем 0,1%. Как правило, больше всего его в сфалерите (сульфид цинка), но и там его количество не превышает 0.5 %. Таким образом, производство индия всегда сопутствует производству цинка, в меньшей степени – олова и свинца. Схема извлечения индия при этом довольно сложная, поскольку металл не обладает отличительными химическими свойствами, которые могли бы помочь в его выделении отдельно от других металлов; при этом последовательно применяются такие методы как ионный обмен, экстракция, а также гидролитическое осаждение и цементация, использующие небольшие различия в степени гидролиза солей и стандартных потенциалах разных металлов. Образующийся на последней стадии черновой металл очищают различными методами, в частности зонной плавкой, позволяющей получить индий чистотой до 99.99999%.

Наиболее обширно используется индий и его соединения в технике: изготовление жидкокристаллических экранов (тонкая пленка из оксида индия-олова), микроэлектроника (примесь к германию и кремнию), уплотнитель в технике высокого вакуума (в частности, космических аппаратов), покрытие зеркал (в частности астрономических, где имеет значение постоянство коэффициента отражения в видимой части спектра), термоэлектрические материалы на основе арсенида индия, производство очень стабильных аккумуляторов с высокой удельной энергоёмкостью для специальных целей (система из оксида ртути и индия), покрытие некоторых элементов двигателей для снижения износа. Помимо этого, индий является важным компонентом припоев (вследствие высокой адгезии индия такая добавка позволяет спаивать металлы со стеклом и другими материалами), из его изотопов изготовляют радиофармацевтические препараты, его ортофосфат добавляют в зубные цементы, а ряд соединений индия обладает люминесцентными свойствами, что находит применение в различных областях. Также сплав индия (5%) с золотом и серебром используется в качестве декоративного металла (так называемое зеленое золото)

Таким образом, с развитием техники растет и потребление индия. При этом производство ЖК-экранов потребляет не менее половины от всего добываемого металла Производство первичного индия (от 500 до 800 тонн в год) время от времени догоняет потребность, что вызывает непостоянство цен. По некоторым оценкам, запасы природного индия будут исчерпаны к 2030 году, если не возрастет степень его вторичной переработки и повторного использования.

Сфалерит, марматит, франклинит, алунит, каламин, родонит, флогопит, мангантанталит, сидерит, касситерит, вольфрамит, самарскит. Таков далеко не полный перечень минералов, в которых содержится элемент №49 – индий.

СССР, Финляндия, Япония, Швеция, США, ФРГ, Перу, Канада – вот неполный перечень стран, в которых есть месторождения индия. Несмотря на это, еще в 1924 г. мировой запас металлического индия весил... 1 г.

Тому несколько причин. Во-первых, это физико-механические свойства индия. Они очень своеобразны, спутать этот металл с каким-либо другим невозможно. Своеобразны и, как казалось тогда, бесполезны. Во-вторых, извлечь индий из минералов достаточно сложно. Это один из рассеянных элементов.

Ни в одном из перечисленных минералов среднее содержание элемента №49 не превышает десятых долей процента. Собственно индиевые минералы – рокезит CuInS 2 , индит FeIn 2 S 4 и джалиндит In(ОН) 3 – очень редки. Крайне редко встречается и самородный индий, хотя при нормальных условиях этот металл кислородом воздуха не окисляется и вообще ему присуща значительная химическая стойкость.

Именно из-за крайней рассеянности индий был открыт лишь во второй половине XIX в. Об открытии элемента свидетельствовали не слитки или крупицы, а лишь характерная синяя линия в спектре.

История индия

В середине прошлого века два крупных немецких ученых Густав Роберт Кирхгоф и Роберт Вильгельм Бунзен пришли к выводу об индивидуальности линейчатых спектров химических элементов и разработали основы спектрального анализа. Это был один из первых методов исследования химических объектов физическими средствами.

Этим методом Бунзен и Кирхгоф в 1860...1861 гг. открыли рубидий и цезий. Взяли его на вооружение и другие исследователи. В 1862 г. англичанин Уильям Крукс в ходе спектроскопического исследования шлама, присланного с одного из немецких сернокислотных заводов, обнаружил линии нового элемента – таллия. А еще через год был открыт индий, причем самый молодой по тому времени метод анализа и самый молодой элемент сыграли в этом открытии не последние роли.

В 1863 г. немецкие химики Рейх и Рихтер подвергли спектроскопическому анализу цинковую обманку из окрестностей города Фрейберга. Из этого минерала ученые получили хлорид цинка и поместили его в спектрограф, надеясь обнаружить характерную для таллия ярко-зеленую линию. Надежды оправдались, однако не эта линия принесла Рейху и Рихтеру мировую известность.

В спектре оказалась и линия синего цвета (длина волны 4511 Å), примерно такого же, какой дает известный краситель индиго. Ни у одного из известных элементов такой линии не было.

Так был открыт индий – элемент, названный по цвету характерной для него индиговой линии в спектре.

До 1870 г. индий считался двухвалентным элементом с атомным весом 75,6. В 1870 г. Д.И. Менделеев установил, что этот элемент трехвалентен, а его атомный вес 113: так получалось из закономерностей периодического изменения свойств элементов. В пользу этого предположения говорили также новые данные о теплоемкости индия. Какие рассуждения привели к этому выводу, говорится в отрывке из статьи Д.И. Менделеева (см. ниже «Менделеев об индии»).

Позже было установлено, что природный индий состоит из двух изотопов с массовыми числами 113 и 115. Преобладает более тяжелый изотоп – на его долю приходится 95,7%.

До 1950 г. считалось, что оба эти изотопа стабильны. Но в 1951 г. выяснилось, что индий-115 подвержен бета-распаду и постепенно превращается в олово-115. Процесс этот происходит очень медленно: период полураспада ядер индия-115 очень велик – 6·10 14 лет. Из-за этого и не удавалось обнаружить радиоактивность индия раньше.

В последние десятилетия искусственным путем получено около 20 радиоактивных изотопов индия. Самый долгоживущий из них 114 In имеет период полураспада 49 дней.

Как получают индий

Говорят, что в химии нет бесполезных отходов. Одним из доказательств справедливости такого взгляда на вещи может служить тот факт, что индий получают из отходов (или промежуточных продуктов) производства цинка, свинца, меди, олова. Используются пыли, возгоны, кеки (так называются твердые остатки, полученные после фильтрации растворов). Во всех этих веществах индия немного – от тысячных до десятых долей процента.

Вполне естественно, что выделение столь малых количеств элемента №49, отделение его от массы других элементов – цинка, кадмия, сурьмы, меди, мышьяка и прочих – дело очень сложное. Но «игра стоит свеч»: индий нужен, индий дорог*.

* В 1960 г. в США килограмм индия стоил 40,2 доллара, в то время как килограмм серебра – 29,3 доллара.

Технология извлечения индия, как и многих других металлов, обычно состоит из двух стадий: сначала получают концентрат, а затем уже черновой металл.

На первой стадии концентрирования индий отделяют от цинка, меди и кадмия. Это достигается простым регулированием кислотности раствора или, точнее говоря, величины pH. Гидроокись кадмия осаждается из водных растворов при pH, равном 8, гидроокиси меди и цинка – при 6. Для того чтобы «высадить» гидроокись индия, pH раствора нужно довести до 4.

Хотя технологические процессы, основанные на осаждении и фильтровании, известны давно и считаются хорошо отработанными, они не позволяют извлечь из сырья весь индий. К тому же они требуют довольно громоздкого оборудования.

Более перспективным считается метод жидкостной экстракции. Это процесс избирательного перехода одного или нескольких компонентов смеси из водного раствора в слой несмешивающейся с ним органической жидкости. К сожалению, в большинстве случаев в «органику» переходит не один элемент, а несколько. Приходится экстрагировать и реэкстрагировать элементы по нескольку раз – переводить нужный элемент из воды в растворитель, из растворителя снова в воду, оттуда в другой растворитель и так далее, вплоть до полного разделения.

Для некоторых элементов, в том числе и для индия, найдены реактивы-экстрагенты с высокой избирательной способностью. Это позволяет увеличивать концентрацию редких и рассеянных элементов в сотни и тысячи раз. Экстракционные процессы легко автоматизировать, это одно из самых важных их достоинств.

Из сложных по составу сернокислых растворов, в которых индия было намного меньше, чем Zn, Cu, Cd, Fe, As, Sb, Co, Mn, Tl, Ge и Se, индий хорошо, избирательно, экстрагируется алкилфосфорными кислотами. Вместе с индием в них переходят в основном ионы трехвалентного железа и сурьмы.

Избавиться от железа несложно: перед экстракцией раствор нужно обрабатывать таким образом, чтобы все ионы Fe 3+ восстановились до Fe 2+ , а эти ионы индию не попутчики. Сложнее с сурьмой: ее приходится отделять реэкстракцией или на более поздних этапах получения металлического индия.

Метод жидкостной экстракции индия алкилфосфорными кислотами (из них особенно эффективной оказалась ди-2-этилгексилфосфорная кислота) позволил значительно сократить время получения этого редкого металла, уменьшить его себестоимость и, главное, извлекать индии более полно.

Но так получают только черновой индий. А в числе главных потребителей элемента №49 – полупроводниковая техника (об этом ниже); значит, нужен высокочистый индий. Поэтому черновой индий рафинируют электрохимическими или химическими методами. Сверхчистый индий получают зонной плавкой и методом Чохральского – вытягиванием монокристаллов из тиглей.

На что индий не годен

Индий – довольно тяжелый (плотность 7,31 г/см 3) и красивый металл серебристо-белого цвета. Его поверхность не замутнена окисной пленкой, на свету ярко блестит даже расплавленный индий.

Тем не менее, никому не придет в голову делать украшения из этого металла. Ювелиры совершенно не интересуются им, как, впрочем, и большинство конструкторов. В качестве конструкционного материала индий абсолютно ни на что не пригоден. Стержень из индия легко согнуть, порезать на кусочки, можно даже отщипнуть кусочек индия ногтями. Удивительно хилый металл! Известно, что свинец тоже не блещет выдающимися прочностными характеристиками, он самый непрочный из металлов, с которыми мы встречаемся в повседневной жизни. У индия же предел прочности на растяжение в 6 раз меньше, чем у свинца.

В качестве примера очень мягкого, податливого к обработке металла приводят обычно чистое золото или тот же свинец. Индий в 20 раз мягче чистого золота. Из десяти минералов, составляющих шкалу твердости по Моосу, девять (все, кроме талька) оставляют на индии след. Однако, как это ни странно, добавка индия увеличивает твердость свинца и особенно олова.

Недостаточные твердость и прочность индия закрыли ему доступ во многие области техники. К примеру, индий достаточно хорошо захватывает тепловые нейтроны, можно было бы использовать его как материал для регулирующих стержней в реакторах. Однако в справочнике по редким металлам он не фигурирует даже в числе возможных конструкционных материалов атомной техники – слишком непрочен. (Правда, есть сведения, что за рубежом пытались делать регулирующие стержни из сплава серебра, кадмия и индия).

Но, несмотря на исключительно скверные прочностные характеристики индия, его производство растет и растет довольно быстро.

На что индий годен

Естественно, что в XIX в. рассеянный и непрочный индий не находил практического применения. Лишь в 30-х годах нашего столетия появились промышленные способы получения элемента №49 – следствие того, что инженеры поняли, наконец, где и как использовать его своеобразнейшие свойства.

Вначале индий применяли главным образом для изготовления подшипников. Добавка индия улучшает механические свойства подшипниковых сплавов, повышает их коррозионную стойкость и смачиваемость.

Широко распространены свинцово-серебряные подшипники с индиевым поверхностным слоем. Делают их так. На стальную основу наносят электролитическим способом тонкий слой серебра. Назначение этого слоя – придать подшипнику повышенное сопротивление усталости. Поверх серебряного слоя таким же образом наносят слой пластичного свинца, а на него – слой еще более пластичного индия.

Но, как мы уже упоминали, сплав свинца и индия прочнее и тверже, чем каждый из этих металлов в отдельности. Поэтому четырехсложный (если считать и стальную основу) подшипник нагревают – для лучшей диффузии индия в свинцовый слой. Часть индия проникает в свинец и превращает его в свинцово-индиевый сплав. Происходит, конечно, и обратный процесс – диффузия свинца в слой индия. Но толщину последнего слоя рассчитывают таким образом, чтобы и после прогрева рабочая поверхность подшипника была если не полностью индиевой, то сильно обогащенной индием.

Такие подшипники устанавливают в авиационных и автомобильных двигателях. Четырехслойная конструкция – это пятикратный срок службы подшипника по сравнению с обычными.

В некоторых странах Европы производят также свинцово-бронзовые подшипники с индиевым поверхностным слоем.

Индий нашел применение и в производстве некоторых сплавов, особенно легкоплавких. Известен, например, сплав индия с галлием (соответственно 24 и 76%), который при комнатной температуре находится в жидком состоянии. Его температура плавления всего 16°C. Другой сплав, в состав которого вместе с индием входят висмут, свинец, олово и кадмий, плавится при 46,5°C и применяется для пожарной сигнализации.

Иногда индий и его сплавы применяют в качестве припоя. Будучи расплавленными, они хорошо прилипают ко многим металлам, керамике, стеклу, а после охлаждения «схватываются» с ними накрепко. Такие припои применяются в производстве полупроводниковых приборов и в других отраслях техники.

Полупроводниковая промышленность вообще стала основным потребителем индия. Некоторые соединения элемента №49 с элементами V группы обладают ярко выраженными полупроводниковыми свойствами. Наибольшее значение приобрел антимонид индия (интерметаллическое соединение последнего с сурьмой), у которого особенно сильно меняется электропроводность под действием инфракрасного излучения. Он стал основой инфракрасных детекторов – приборов, «видящих» в темноте нагретые предметы (от электроплитки до выхлопной трубы танка или мотора тягача). Кстати, получить это соединение очень просто – нагреванием механической смеси индия и сурьмы. Делается это, конечно, в более чем стерильных условиях – в кварцевых ампулах, в вакууме.

Арсенид индия InAs тоже применяется в инфракрасных детекторах, а также в приборах для измерения напряженности магнитного поля. Для производства квантовых генераторов, солнечных батарей, транзисторов и других приборов перспективен и фосфид индия. Однако получить это соединение очень трудно: оно плавится при 1070°C и одновременно разлагается. Избежать этого можно только создав в реакторе большое (порядка десятков атмосфер) давление паров фосфора.

«Сердцем» большинства полупроводниковых приборов считают так называемый p–n -переход. Это граница полупроводников p -типа – с дырочной проводимостью и n -типа – с электронной проводимостью. Примесь индия придает германию дырочную проводимость. Это обстоятельство лежит в основе технологии изготовления многих типов германиевых диодов. К пластинке германия n -типа прижимается контактная игла, покрытая слоем индия, который во время формовки вплавляют в германий, создавая в нем область p -проводимости. А если два шарика индия вплавить с двух сторон германиевой пластинки, то тем самым создается p–n–p -структура – основа транзисторов.

О прочих применениях элемента №49 и его соединений обычно говорят, добавляя эпитет «возможные» или «потенциальные». Их немало.

К примеру, легкоплавкий индий мог бы служить отличной смазкой для трущихся деталей, работающих при температурах выше 160, но ниже 2000°C – такие температуры часто развиваются в современных машинах и механизмах.

Разнообразие существующих и возможных применений однозначно утверждает: «хилому» металлу индию уже никогда не быть безработным.

Менделеев об индии

Отрывок из статьи «Периодическая законность химических элементов», 1871 г.

«Положим, что дан элемент, образующий одну, выше не окисляющуюся, не очень энергическую основную окись, в которой эквивалент элемента = 38 (надо не забыть, что в этом числе заключается некоторая, неизбежная погрешность). Спрашивается, какой его атомный вес или какова формула его окиси? Придав окиси состав R 2 0, будем иметь R = 38, и элемент должно поместить в I группу. Но там на этом месте уже стоит K = 39, да судя по атоманалогии основание такого рода должно быть и растворимое, и энергическое. Придав окиси состав RO, атомный вес R будет = 76, но во II группе нет места для элемента с таким атомным весом, потому что Zn = 65, Sr = 87, да и все места элементов с малыми атомными весами в ней полны... Придав окиси состав R 2 O 3 , будем иметь для R атомный вес = 114 и его должно отнести к III группе. В ней действительно есть свободное место между Cd = 112 и Sn = 118 для элемента с атомным весом около 114. Судя по атоманалогии с Al 2 O 3 и Тl 2 O 3 , с CdO и SnO 2 , окись его должна быть слабым основанием. Следовательно, можно сюда поставить наш элемент. Придав (же) ей состав RO 2 , получим атомный вес R = 152, но в IV группе нет места для такого элемента. Свободное место, соответствующее элементу с атомным весом 162, должно принадлежать такому, окись которого будет очень слабою кислотою, слабейшею, чем SnO 2 , но более энергическою, чем PbO 2 . С атомным весом 152 есть свободное место в VIII группе, но элемент этого места, занимая средину между Pd и Pt, должен обладать такою совокупностию свойств, которую нельзя не заметить при изучении тела, и если ее нет в нем, то это место и этот вес атома ему и не подходят. Придав окиси состав R 2 O 5 , получим атомный вес R = 190, но в V группе нет места для такого элемента, потому, что Ta = 182 и Bi = 208, да и элементы этих мест кислотны в виде R 2 O 5 .

Точно так же не подходят нашему элементу и составы окислов RO 3 и R 2 O 7 , а потому единственный приличный для нашего элемента атомный вес есть R = 114, а окиси его формула R 2 O 3 .

Но такой элемент и есть индий . Его эквивалент по наблюдению Винклера = 37,8, следовательно, его атомный вес должен быть изменен (до сих пор признавали его = 75, а окись за InO) в In = 113, состав его окиси In 2 O 3 , его атоманалоги из группы III суть Al и Tl, а из 7-го ряда – Cd и Sn...

Чтобы убедиться в справедливости приведенного выше изменения в формуле окиси индия и в атомном весе индия, я определил его теплоемкость и нашел ее (0,055) согласною с тем выводом, который был сделан на основании закона периодичности, по в то же время Бунзен, испытывая свой изящный калориметрический прием, также определил теплоемкость индия, и наши результаты оказались согласными (Бунзен дает число 0,057), а потому нет никакого сомнения в том, что путем применения закона периодичности ость возможность исправлять атомные веса мало исследованных элементов».

Индий-защитник

Износостойкость материала обычно увеличивают, нанося на его поверхность какой-нибудь твердый сплав. Это понятно: при трении твердый покров мало истирается и защищает от износа основной материал. Однако можно повышать износостойкость и другим способом – нанесением мягкого индия. Дело в том, что индий значительно уменьшает коэффициент трения. Например, стальные фильеры для волочения алюминия после покрытия индием изнашиваются почти в полтора раза медленнее, чем обычные. Индий применяют также для защиты острий контактов и графитовых щеток в электроприборах.

На железо и сталь нельзя непосредственно наносить индий. Поэтому железные и стальные изделия сначала покрывают тонким слоем (до 0,025 мм) цинка или кадмия, затем наносят индий и нагревают до температуры чуть большей, чем температура плавления индия. За несколько часов выдержки при такой температуре индий и материал подслоя взаимно диффундируют. Образуется прочное, устойчивое к коррозии и истиранию покрытие.

Гори, гори ясно...

Издавна считается, что лучше всего прожекторные зеркала делать из серебра. Однако, обладая высокой отражательной способностью, серебро довольно быстро тускнеет на воздухе. На помощь светотехникам пришел индий. Серебряные зеркала с индиевым покрытием не теряют отражательной способности намного дольше серебряных.

Соли индия применяют в качестве добавок к некоторым люминесцентным составам. Они уничтожают фосфоресценцию состава, после того как возбуждение снято. Если обычная люминесцентная лампа после выключения еще некоторое время продолжает светить, то лампа с составом, содержащим соли индия, гаснет сразу после выключения.

Металлический «мыльный пузырь»

Тонкостенный полый шар или оболочку иной формы проще всего сделать так. Из легкоплавкого индиевого сплава отливают изделие нужной формы и электролитически покрывают его нужным металлом. После этого изделие нагревают, индиевый сплав плавится и выливается, а в руках мастера остается тонкая оболочка.

Индий и стекло

Соединить металл со стеклом можно при помощи простой пайки, если припоем служит известный сплав Вуда с добавкой 18% индия. Такой припой плавится при 46,5°C. А чтобы сделать стекло проводящим электричество, его покрывают окисью индия. При этом прозрачность стекла практически не уменьшается. Индиевые нити применяют также для нанесения сеток на объективы телескопов.

— серебристо-белый металл c сильным блеском, по внешнему виду напоминающий свежий срез цинка. Его относят к группе лёгких металлов. Он довольно мягкий, к тому же ковкий и легкоплавкий (плавится при температуре 156,5 °C). Индий без труда режется ножом, он почти в 5 раз мягче свинца. На бумаге оставляет след. Это довольно редкий, ценный и дорогой метал. По химическим свойствам индий сходен с галлием и алюминием. Его атомная масса 114,818 г/моль. Элемент состоит из двух изотопов, один из которых обладает довольно слабой β-радиоактивностью.

Смотрите так же:

ГЕОХИМИЯ И МИНЕРАЛОГИЯ

Учитывая электронную структуру атома индия, он относится к халькофильным элементам (18 электронов в предпоследнем слое). В настоящее время известно менее 10 индиевых минералов: самородный индий, рокезит CuInS 2 , индит FeIn 2 S 4 , кадмоиндит CdIn 2 S 4 , джалиндит In(OH) 3 , сакуранит (CuZnFe) 3 InS 4 и патрукит (Cu,Fe,Zn) 2 (Sn,In)S 4 . В основном индий находится в виде изоморфной примеси в раннем высокожелезистом сфалерите, где его содержание достигает десятых долей процента. В некоторых разновидностях халькопирита и станнина содержание индия составляет сотые-десятые процента, а в касситерите и пирротине - тысячные доли процента. В пирите, арсенопирите, вольфрамите и некоторых других минералах концентрация индия - граммы на тонну. Промышленное значение для получения металла пока имеют сфалерит и другие минералы, содержащие не менее 0,1 % индия.

СВОЙСТВА

Индий – металл серебристо-белого цвета, не тускнеющий на воздухе при длительном хранении и даже в расплавленном состоянии. Плотность кристаллического индия 7310 кг/м 3 , а расплавленного – 7030 кг/м 3 . Металл плавится при 156,7° С, кипит при 2072° С. Индий очень мягок и пластичен. Его твердость по шкале Мооса чуть больше 1 (мягче только тальк), поэтому индиевый стержень, если им водить по листу бумаги, оставляет на нем серый след. Индий в 20 раз мягче чистого золота и легко царапается ногтем, а его сопротивление растяжению в 6 раз меньше, чем у свинца. Палочки из индия легко сгибаются и при этом заметно хрустят (громче, чем оловянные). Индий — диамагнетик, магнитное поле в нем ослабевает.

Индий, так же как и галлий, не образует ни с одним из металлов непрерывных твердых растворов. В индии хорошо растворяются металлы-соседи по периодической системе – галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере цинк. Выше 800° С индий горит на воздухе сине-фиолетовым пламенем с образованием оксида индия(III).

ЗАПАСЫ И ДОБЫЧА

На сегодняшний день нет достоверных сведений о мировых ресурсах индия, так как его извлечение всегда привязано к переработке цинковых руд. По приблизительным оценкам United States Geological Surveys (по состоянию на июнь 2004) суммарный мировой запас разведанных месторождений индия составляет 2,5·10 3 тонн в пересчете на металл, а объемы резервной базы (с учетом неразведанных ресурсов) – 6·10 3 тонн металла. Мировыми лидерами по запасам индия являются Канада (30% мировых запасов), Китай и США (10% мировых запасов)
Получают индий из отходов и промежуточных продуктов производства цинка, и в меньшей степени, свинца и олова. Это сырьё содержит от 0,001 % до 0,1 % индия. Из исходного сырья производят концентрат индия, из концентрата - черновой металл, который затем рафинируют. Исходное сырьё обрабатывают серной кислотой и переводят индий в раствор, из которого гидролитическим осаждением выделяют концентрат. Из концентрата черновой металл извлекают цементацией на цинке и алюминии. Для рафинирования используются различные методы, например, зонная плавка.
Основным производителем индия является Китай (390 тонн в 2012 году), также производится Канадой, Японией и Южной Кореей (примерно по 70 тонн).
В последние годы мировое потребление индия быстро растёт и в 2005 достигло 850 тонн.
Количество используемого индия сильно зависит от мирового производства ЖК-экранов. В 2007 году в мире было добыто 475 тонн и ещё 650 тонн было получено путём переработки. На производство ЖК экранов для компьютерных дисплеев и телевизоров уходило 50-70 % доступного индия.
Стоимость индия в 2002 году составила около 100$ за кг, но рост потребности в металле привел к повышению и флуктуациям цен. В 2006-2009 годах они колебались в пределах 400-900 долларов за кг.
По современным оценкам, запасы индия будут исчерпаны в ближайшие 20 лет, если не будет повышена степень вторичного использования металла

ПРОИСХОЖДЕНИЕ

Индий самостоятельных месторождений не образует, а входит в состав руд месторождений других металлов. Наиболее высокое содержание индия установлено в рудах касситеритоносных скарнов и сульфидно-касситеритовых месторождений различных типов.
По содержанию в земной коре индий относится к типичным редким элементам, а по характеру распространения – к типичным рассеянным элементам. Кларк индия в земной коре равен 1,4·10 –5 %. Содержание индия в подавляющем большинстве минералов-носителей невелико и редко когда выходит за пределы нескольких тысячных долей процента. Количество минералов, в которых содержание индия достигает нескольких десятых долей процента (0,05–1%) чрезвычайно мало. Среди них можно отметить цилиндрит Pb 3 Sn 4 Sb 2 S 14 (0,1–1% In) и франкеит Pb 5 Sn 3 Sb 2 S 14 (до 0,1% In), минералы класса сульфостаннанов, цинковую обманку ZnS (0,1–1% In), халькопирит CuFeS 2 (0,05–0,1% In) и борнит Cu 3 FeS 3 (0,01–0,05% In). Из-за незначительного распространения в природе сульфостаннанов они не имеют значения для промышленных процессов извлечения индия. Концентрация индия в цинковых обманках тем выше, чем больше содержание в них железа и марганца, а из разнообразных по условиям своего образования обманках (марматит, сфалерит, клейофан) богаты индием ранние высокотемпературные, темноокрашенные представители – марматиты. Так, в сфалерите с высоким содержанием железа (темном сфалерите) содержание индия достигает 1%. Однако среднее содержание индия в сфалеритовых месторождениях не превышает и сотой доли процента.

В небольших концентрациях индий обнаружен в золе каменных углей, некоторых нефтяных месторождений (до 2,2·10 –6 % In), а также в морской ((0,02–7)·10 –10 % In) и дождевой ((0,002–2)·10 –7 %) воде. Содержание индия во Вселенной оценивается в 3·10 –10 %(масс.) или 3·10 –12 %(ат.).

ПРИМЕНЕНИЕ

Широко применяется в производстве жидкокристаллических экранов для нанесения прозрачных плёночных электродов из оксида индия-олова.Используется в микроэлектронике как акцепторная примесь к германию и кремнию. Ранее, когда широко применялась сплавная технология производства первых полупроводниковых приборов, характерным решением было сплавление индия с германием для получения pn-перехода, например в диодах серий ДГ-Ц1, Д7 итд до сотни мг индия.
Компонент ряда легкоплавких припоев и сплавов (так, жидкий при комнатной температуре галинстан содержит 21,5 % индия).Обладает высокой адгезией ко многим материалам, позволяя спаивать, например, металл со стеклом.

  • Иногда применяется (чистый или в сплаве с серебром) для покрытия зеркал, в частности, автомобильных фар, при этом отражающая способность зеркал не хуже, чем у серебряных, а стойкость к воздействию атмосферы (особенно сероводорода) - больше.
  • В покрытии астрономических зеркал используется постоянство коэффициента отражения индия в видимой части спектра.
  • Материал для фотоэлементов.
  • Соединения используются как люминофоры.
  • Покрытие юбок алюминиевых поршней дизельных двигателей для снижения износа.
  • Арсенид индия применяется как высокотемпературный термоэлектрический материал с очень высокой эффективностью, для увеличения эффективности обычно легируется 10 % фосфида индия.
  • Изотопы индия 111 In и 113m In используются в качестве радиофармацевтических препаратов.
  • Точка плавления индия (429,7485 К или 156,5985 °C) - одна из определяющих точек международной температурной шкалы ITS-90.
  • Индий входит в состав «голубого золота».
  • В сплаве с оловом применяется как припой с высокой теплопроводностью для «процессорного термоинтерфейса».

Индий(англ. indium) — In

Элемент индий обладает многими полезными свойствами, благодаря которым его можно использовать в космонавтике, технике, электронике, атомной промышленности и других отраслях. Однако найти его в природе и отделить от других веществ чрезвычайно сложно. Из-за этого он числится в списке редких элементов. Какими свойствами обладает индий? Металл это или неметалл? Давайте узнаем обо всех его особенностях.

История открытия элемента

Индий был впервые обнаружен всего 154 года назад. Отчасти это произошло случайно, ведь его первооткрыватели искали совсем другой элемент. В 1863 году химики Теодор Рихтер и Фердинанд Райх пытались обнаружить в таллий - новый на то время металл, который только предстояло изучить.

Для своих поисков они использовали спектральный анализ Кирхгофа и Бунзена. Суть метода состоит в том, что при нагревании до высоких температур атомы элементов начинают излучать свет, соответствующий конкретному диапазону частот. По спектру этого свечения можно выяснить, что за элемент перед вами.

У таллия цвет должен быть ярко-зеленым, но вместо него ученые обнаружили голубое свечение. Ни один известный элемент не обладал таким спектром, и химики поняли, что им улыбнулась удача. Из-за особенностей оттенка свою находку они назвали в честь цвета индиго. Так и был обнаружен новый металл - индий. А теперь более подробно об особенностях.

Что это за металл?

Индий - светло-серебристый и очень блестящий металл, напоминающий цинк. В Периодической системе он относится к третьей группе, стоит под номером 49 и обозначается символом In.

В природе он существует в виде двух изотопов: In 113 и In 115 . Последний более распространен, но является радиоактивным. Какой период у металла индий 115? Он распадается за 6·10 14 лет, превращаясь в олово. Существует также около 20 искусственных изотопов, которые распадаются гораздо быстрее. У наибольшего «долгожителя» среди них период полураспада составляет 49 дней.

Индий плавится при температуре +156,5 °C и кипит при +2072 °C. Он легко поддается ковке и другому механическому воздействию и вполне мог бы использоваться в ювелирных изделиях. Однако из-за высокой мягкости он быстро деформируется. Металл без труда можно согнуть, разрезать ножом и даже поцарапать ногтем.

Химические свойства

По своим химическим свойствам он похож на галлий или алюминий. Непрерывных твердых соединений он не может образовать ни с каким металлом. Он совершенно не реагирует с растворами щелочей. При определенных температурах вступает в реакцию с йодом, селеном, серой и ее диоксидом, реагирует с хлором и бромом. В индии запросто растворяются металлы, которые окружают его в Периодической системе, а именно: таллий, олово, галлий, свинец, висмут, ртуть, кадмий.

  • Даже при длительном пребывании не воздухе он не тускнеет. Не происходит это и при расплавлении металла.
  • Если начать сгибать индий, то он издаст характерный звук, похожий на скрип или хруст. Он появляется от деформации кристаллической решетки вещества.
  • Индий горит при +800 °С, пламя при этом окрашено в сине-фиолетовый цвет, или же цвет индиго.
  • Это который можно держать в руках. Превосходит его только литий, но он слишком активен и сразу же окисляется на воздухе, образуя ядовитую щелочь.
  • Сплав индия с галлием является очень легкоплавким и становится жидким уже при +16 °C.

Металл индий не образует самостоятельных месторождений. Он очень рассеян и в виде самородков встречается крайне редко. Среди собственных минералов индия: сакуранит, рокезит, патрукит, джалиндит. Однако их редкость не позволяет применять их в промышленности.

Небольшое количество индия встречается в морской и дождевой воде, в нефти, а также в золах каменного угля. Из-за схожести ионных радиусов индий способен встраиваться в кристаллические решетки железа, магния, цинка, свинца, маганца, олова и т. д. Благодаря этому его незначительное количество иногда обнаруживают вместе с ними.

Как правило, содержание индия в минералах не превышает 0,05-1%. Больше всего металла содержится в сфалеритах и мармаритах. Обычно его концентрация тем выше, чем больше в них цинка, железа и других, уже названных металлов.

Цена металла

Индий уже через несколько лет после открытия удалось выделить в чистом виде. Из-за сложности этого процесса, один грамм индия тогда оценивался примерно в 700 долларов. И хотя за полтора столетия методы его получения значительно улучшились, он до сих пор считается редким и дорогим.

Сегодня его средняя цена составляет 600-800 долларов за килограмм и, что удивительно, не сильно падает с увеличением объемов его добычи. Чистота металла обычно указывается в его маркировке: ИН-2, ИН-1, ИН-0, ИН-00, ИН-000, ИН-00000. Чем больше нулей, тем он качественнее и дороже. Например, индий марки ИН-000 может оцениваться в сумму около 2000 долларов за килограмм.

Высокая стоимость металла индия объясняется и его низким содержанием в природе, и большим спросом. В год добывается 600-800 тонн, что абсолютно не покрывает всех потребностей в нем. Благодаря своим уникальным свойствам он оказывается гораздо лучше и долговечнее других, более дешевых металлов. Чтобы не терять столь ценный материал, во многих странах его используют вторично.

Где применяют

Металл индий повышает смачиваемость и стойкость сплава к коррозии. Им покрывают свинцово-серебряные подшипники, которые используют в авиационной и автомобильной технике. Он также способен понижать температуру плавления других металлов. Так, его смесь с кадмием и висмутом плавится при 46,5 °С, благодаря чему используется для пожарной сигнализации.

Окись индия и олова применяется для полупроводников и различных припоев. Кроме того, ее используют для изготовления компьютерных мониторов, экранов телевизоров и планшетов. В сплаве с серебром или самостоятельно он применяется для астрономических зеркал и зеркал автомобильных фар.

Он отлично подходит для создания фотоэлементов, люминофоров, термоэлектрических материалов, уплотнителей в космической технике. Индий хорошо поглощает нейтроны и может использоваться в атомных реакторах.

О биологической роли этого элемента в нашем организме ничего не известно, однако его научились использовать и в медицине. Его применяют как радиоактивный препарат при диагностировании печени, мозга и легких для обнаружения опухолей и других заболеваний.

Способы получения

Основное количество металла индия добывают из цинковых и оловянных месторождений. Его получают из отходов от переработки полиметаллических, оловянных, Отделение и очищение индия проводится в несколько стадий.

Сначала его осаждают при помощи регулирования уровня кислотности раствора. Полученный «черновой металл» затем нужно очистить. Делают это путем рафинирования зонной плавкой или другими способами.

На сегодняшний день одним из главных производителей индия является Канада. Кроме нее, большие объемы металла добывают США, Китай, Япония, Южная Корея. Однако запасы этого элемента очень ограничены, предполагается, что они иссякнут в течение нескольких десятков лет.

Индий был открыт в 1863 г. Райхом (Reich) и Рихтером (Richter) в остатках от переработки цинковой обманки из Фрейбергского месторождения, которую они исследовали спектроскопически на присутствие таллия. Новый элемент был обнаружен по своеобразной индиго-синей линии и был назван по ее цвету. Вначале индий считали двухвалентным. Однако Менделеев на основании свойств индия поставил его на правильное место в периодической системе и установил его трехвалентность. Валентность, равная трем, была вскоре подтверждена определением удельной теплоемкости, путем вычисления атомного объема и открытием соответствующих квасцов.

Получение:

В качестве исходного продукта для получения индия в первую очередь используются полупродукты от выплавки свинца и цинка из руд, содержащих индий. Цинк с относительно высоким содержанием индия обрабатывают соляной кислотой в количестве, недостаточном для полного растворения цинка. Индий при этом остается в шламе, из раствора этого шлама большая часть имеющихся тяжелых металлов осаждается сероводородом. Из фильтрата после прибавления аммиака индий выделяется в виде гидроксида, обычно вместе с железом. Способ отделения железа от индия зависит от содержания последнего.
Получение металлического индия из оксида нагреванием в токе водорода или электролизом кислых растворов не представляет особых трудностей из-за легкой восстанавливаемости соединений индия.

Физические свойства:

Индий - серебристо-белый, обладающий сильным блеском металл. Он очень мягкий, легко режется ножом и плавится при весьма низкой температуре (температура плавления 156,4°). Температура кипения, напротив, довольно высока (2300°). Удельный вес 7,31. Удельная теплоемкость 0,057.

Химические свойства:

В атмосфере сухого воздуха индий не теряет блеск, при нагревании он покрывается пленкой, но сильно окисляться начинает только при температуре выше температуры плавления. При нагревании в токе хлора индий энергично сгорает. Он непосредственно соединяется и с другими галогенами, а также с серой.
С обычными кислотами реагирует медленно, быстрее с азотной кислотой, со щелочами не взаимодействует.

Важнейшие соединения:

В соединениях степень окисления индия обычно +3, реже, особенно в соединениях с галогенами и халькогенами +2 и +1. Для соединений индия в низших степенях окисления характерно диспропорционирование в водной среде на соединения индия(III) и свободный металл.
Оксид индия In 2 O 3 образуется пря нагревания гидроксида, сульфата или нитрата. Это светло-желтый порошок, при нагревании темнеющий, растворимый в кислотах и нерастворимый в воде, щелочах и аммиаке.
Гидроксид индия(III) , In 2 O 3 ·aq выпадает из раствора солей индия при добавлении аммиака. Гидроксид - белый, студенистый осадок, нерастворимый в разбавленном аммиаке, может легко образовать коллоидный раствор, что препятствует его выпадению. Легко растворим в кислотах и в избытке щелочей, является амфотерным соединением.
Соли : например, нитрат In(NО 3) 3 ·41/2Н 3 О; сульфат In 2 (SO 4) 3 . Соли трехвалентного индия, как правило, бесцветны, за исключением оксалатов, фосфатов и сульфидов, легко растворимы в воде. В растворе они сильно гидролизованы.
В щелочной среде образуются кислородсодержащие соли, в которых индий входит в состав аниона, называемые индатами . Индий также может образовывать ацидосоединения. В водном растворе индий не образует аммиачных комплексов.
Галогениды InCl 3 и InВг 3 бесцветны, InI 3 существует в желтой и красной модификации, растворимы (InF 3 очень мало растворим). В парообразном состоянии галогениды ассоциированы в димерные молекулы, так же как галогениды алюминия.
Двойные соли (ацидосоли): например, K 3 InCl 6 ·11/2H 2 O (гексахлороиндат(III) калия); NH 4 In(SO 4) 2 ·12H 2 O (аммониевые квасцы индия).
Хлорид индия(II) InCl 2 получают при нагревании индия в токе хлористого водорода в виде янтарно-желтого расплава, который застывает в бесцветные кристаллы. Считают, что в решетке места катионов заполнены статистически распределенными ионами In+ и In3+, In. Вода разлагает InCl 2 на металлический индий и InCl 3 . Реакция идет в две стадии:
1) 2InCl 2 = InCl + InCl 3
2) 3InCl = 2In + InCl 3 .

Применение:

Индий используется вместо серебра для покрытия рефлекторов; рефлекторы, покрытые индием, со временем не тускнеют, и поэтому их коэффициент отражения остается постоянным.
Индий применяется также для покрытия вкладышей подшипников и в качестве одного из компонентов сплава для плавких предохранителей.
В качестве присадок к германию и в виде интерметаллических соединений с мышьяком и с сурьмой индий применяется в полупроводниковой электронике.
Мировое производство (без СССР) - около 45 т/год (1979).



Похожие статьи