Тема. Строение слуховой сенсорной системы

19.04.2019

«... слух наш способен ощущать самые быстрые переливы звуков,
то есть анализировать их во времени». Л. М. Сеченов (1952, т. 1, с. 87 ).

Та или иная анализаторная система может рассматриваться в качестве специализированной к восприятию определенного вида энергии только в том случае, если из всех существующих видов энергии один оказывается для данной системы наиболее эффективным.

Не поняли? Ничего страшного, я прочитал ещё раз, прочитайте и Вы. Это некая аксиома, ключ для дальнейшего понимания.
Хорошо, давайте я своими словами:
Ухо лучше всего приспособлено к восприятию звука

Вот так.
Читаем дальше, чтобы понять, почему же это так.

Известно, например, что звуковая энергия может служить стимулом для проявления функций различных механорецепторных систем. В определенных условиях тактильные рецепторы, рецепторы давления в коже, мышцах и связках, вестибулярные и даже болевые рецепторы способны реагировать на звуки и вибрации значительной интенсивности. Но пи один из перечисленных видов рецепторов нельзя сравнивать с органом слуха по степени эффективности воздействия на него малых акустических энергий, равно как и по количеству получаемой таким путем информации о внешнем мире.

Ещё раз разжёвана наша аксиома

Даже в наш век выдающихся достижений науки и техники поразительные возможности органов чувств, и в частности слуховой системы, остаются предметом постоянного удивления и необозримого поля для исследований. Ни одна из существующих технических систем анализа звука не может сравниться с органом слуха по возможности одновременного сочетания высокой чувствительности, надежности, тончайшему временному и спектральному разрешению и устойчивости.

Как устроена слуховая система человека

Ухо является миниатюрным приемником колебаний воздушной среды. Для неискушенного человека оно представляется рупором с трубкой, закрытой с внутренней стороны барабанной перепонкой, отгораживающей внешнюю среду от внутренних структур уха и мозга. Но на самом деле все обстоит, естественно, далеко не так просто. Об этом свидетельствует уже тот факт, что когда мы говорим об ухе человека, то имеем в виду целостную систему, включающую орган слуха, состоящий из наружного,среднего и внутреннего уха и орган равновесия, содержащий три полукружных канала (рис. 8).

Рис.8. Схема расположения структур уха человека относительно черепа.

Строение слуховой системы

Несмотря на сравнительно значительные размеры (рис. 8), наружные структуры уха человека играют относительно небольшую роль в процессах восприятия звука. В соответствии с наиболее широко распространенной точкой зрения, функции наружного уха, включающего ушную раковину, наружный слуховой проход и внешнюю сторону барабанной перепонки, сводятся к обеспечению направленного приема звуковых волн. Ушные раковины способствуют концентрации звуков, исходящих из определенных участков пространства в направлении наружного слухового прохода, а также участвуют в ограничении потока звуковых сигналов, поступающих с тыльной стороны головы.

Наружный слуховой проход вместе с ушной раковиной можно сравнить с резонатором типа органной трубы, закрытой с одной стороны (рис. 9).

Рис. 9. Строение основных структур уха человека (схема).

1 - ушная раковина и наружный слуховой проход, 2 - барабанная перепонка, 3 - молоточек, 4 - наковальня, 5 - стремечко, 6 - овальное окно, 7 - полукружные каналы, 8 - улитка, 9 - круглое окно, 10 - слуховой нерв, 11 - вестибулярный нерв, 12 - лицевой нерв, 13 - евстахиева труба.

Собственная частота его колебаний зависит от длины и формы комплекса ушная раковина-наружный слуховой проход (1) и несколько различается у разных людей. Резонансная частота колеблется в диапазоне частот, концентрирующихся около 3 кГц. На резонансных частотах акустическое давление, передаваемое к среднему и внутреннему уху, имеет максимальную величину. Усиление давления на резонансной частоте наружного уха человека составляет около 10 дБ. Считается, что существует связь между минимальным порогом слышимости тонов определенного диапазона и величинами резонансных частот наружного уха.

Следует отметить также, что структуры наружного уха играют определенную защитную роль. Они охраняют барабанную перепонку от механических и термических воздействий, обеспечивают постоянную температуру и влажность в области барабанной перепонки. Ушная сера, выделяемая специальными железами и представляющая собой воскоподобное вещество, создает защитное покрытие.

Наружный слуховой проход, длиной в среднем 2.5 см, заканчивается барабанной перепонкой (2), которая передает колебания воздуха в наружном ухе системе косточек среднего уха. По данным Г, Бекеши, скорость движения участка барабанной перепонки составляет величины того же порядка, что и скорость смещения частиц в плоской волне воздуха. При очень больших интенсивностях звука барабанная перепонка работает как нелинейная структура, генерируя гармоники возбуждающих ее частот.

Барабанная перепонка, площадь которой составляет 66-69.5 мм 2 , является границей между наружным и средним ухом. Она имеет форму конуса с вершиной, направленной в полость среднего уха. Среднее ухо соединяется с задней частью глотки узким каналом - евстахиевой трубой (15), - предназначенным для уравнивания давления в среднем ухе с давлением наружной воздушной среды. Этот канал открывается во время глотания и зевания.

Колебания барабанной перепонки приводят в движение молоточек (5), - ручка которого прикреплена к барабанной перепонке, - присоединяющуюся к молоточку наковальню (4) и конечную в этой цепи косточку - стремечко (5). Основание стремечка, укрепленное в овальном окне улитки (6), в свою очередь приводит в движение перилимфу, заполняющую вестибулярный и барабанный ход улитки (8). Звуковое давление у круглого окна улитки усиливается в 20 раз. Это очень важно, поскольку жидкость обладает значительно большим акустическим сопротивлением, чем воздух.

Среднее ухо у человека обладает полосой пропускания сигналов без затухания частотой до 1 кГц. Наклон частотной характеристики фильтра среднего уха на более высоких частотах составляет, по данным разных авторов, от 7 до 12 дБ на октаву. При высоких интенсивностях звука меняется характер движения слуховых косточек таким образом, что коэффициент передачи среднего уха также резко снижается.

В среднем ухе имеются две мышцы: мускул, натягивающий барабанную перепонку и прикрепленный к ручке молоточка, и стапедиальный мускул, прикрепленный к стремечку. Традиционная точка зрения на функцию мышц среднего уха состоит в том, что их рефлекторное сокращение, возникающее при больших интенсивностях звука, уменьшает амплитуду колебания барабанной перепонки и косточек и таким образом уменьшает коэффициент передачи уровня звукового давления во внутреннее ухо. Скрытый период сокращения мышц слишком велик (порядка 10 мс), чтобы предохранить ухо от действия резких внезапных звуков.

Однако при длительном пребывании в условиях действия шумов сокращение мышц может иметь принципиальное значение. Сокращение мышц среднего уха, особенно стапедиального мускула, отмечается при ориентировочной реакции на появление нового раздражителя, при глотании и зевании, при жевании, а также при звукоизлучении животных и при речевой деятельности у человека. Это позволяет рассматривать активацию мышц среднего уха не просто как защитный акустический рефлекс, но и как важную часть процесса продукции звука, акустической обратной связи и, соответственно, восприятия биологически значимых сигналов.

Важнейшей частью уха является улитка (8) - костная структура внутреннего уха, закрученная в виде спирали. У человека улитка имеет 2.5 оборота вокруг оси. Ее размер - 0.5 см в длину и 1 см в ширину. Костная капсула, в которой размещается улитка, имеет два отверстия, так называемые окна, - овальное и круглое (б, 9). К овальному окну подходит основание стремечка - последней косточки в системе рычагов среднего уха. При попадании в ухо звуковой волны, приводящей в движение барабанную перепонку, а затем цепь слуховых косточек среднего уха, основание стремечка вдавливает эластичную мембрану овального окна, передавая давление в полость улитки.

Внутри улитки, по всей ее длине, проходят две мембраны - основная и рейснерова. Они делят улитку на три части, заполненные несжимаемой жидкостью. Поскольку увеличение давления в области овального окна передается к жидкостной среде, существует специальный механизм для снижения давления. Этот механизм реализуется с участием второго окна, расположенного в задней части улитки, также закрытого тонкой мембраной - круглого окна. На вершине улитки, между мембраной и костными стенками, расположено маленькое отверстие - геликотрема, - соединяющее ходы улитки. Это отверстие и обеспечивает механизм действия двух окон в костной стенке.

Основная мембрана имеет в развернутом виде около 3.5 см в длину, а ширина ее возрастает по направлению от овального окна к вершине (рис. 10, а). На основной мембране находится скопление чувствительных клеток, входящих в состав кортиева органа (рис. 10, б).

Количество этих клеток, каждая из которых имеет до сотни волосков, составляет у человека около 25 тыс. Волосковые клетки располагаются в два слоя, разделенные дугой. Внутренний слой содержит один ряд клеток, а наружный- 3-5 рядов. Общее число наружных клеток достигает почти 20 тысяч, внутренних - около 3.5 тысяч.

Рис. 10. Схематическое изображение улитки в развернутом виде (а) и рецепторная часть органа слуха - кортиев орган (б).

На. а: вид развернутой улитки (обозначена штриховой линией) сбоку (1) н сверху (в). I - проекция первого завитка, II - второго, III - третьего. Цифры внизу - частоты, в Гц представленные в соответствующих точках основной мембраны. Видно, что ширина основной мембраны увеличивается от основания к вершине улитки. На б: 1 - основная мембрана, г - покровная мембрана, 3 - чувствительные (рецепторные) волосковые клетки, 4 - слуховой нерв.

Движение основной мембраны вызывает деформацию волосков. На наружные волосковые клетки воздействие оказывается сильнее, чем на внутренние, поскольку основная мембрана закреплена. В результате деформации волосков возникает активность рецепторных, а затем и нервных клеток, передающаяся в центральные слуховые структуры, расположенные в различных отделах мозга.

Как бы ни были совершенны механические структуры улитки, преобразующие частоту внешнего звукового воздействия в соотношения колебаний амплитуд основной мембраны, ощущение звука было бы невозможно без трансформации механического процесса в электрический, которая осуществляется на уровне рецепторных клеток и передается в мозговые центры.

Итак, уже на уровне рецепторных клеток внутреннего уха выделяются две системы:

  • одна - преобразующая поступающие из внешней среды акустические сигналы в формы активности, присущие нервной системе, а именно в медленные электрические потенциалы и в короткие импульсы;
  • вторая - передающая уже преобразованную информацию о свойствах внешнего звукового источника к разным отделам мозга.

Обе эти системы составлены из рецепторных и нервных клеток. Рецепторные потенциалы в подавляющем большинстве случаев представляют собой медленный, градуальный процесс, нервные потенциалы могут быть как быстрыми, так и медленными. Последние возникают в различных частях нервных клеток и имеют различное функциональное содержание. Длинный отросток нервной клетки (аксон) обеспечивает передачу информации на значительные расстояния, короткие отростки (дендриты) обеспечивают межнейронное взаимодействие на более коротких расстояниях. Электрические импульсы, в основе которых лежат сложные ионные процессы, генерируются в области тела клетки.

Соединения между нейронами (синапсы) расположены преимущественно в области клеточного тела или на ее дендритах. Импульс передается по аксону до следующего синаптического переключения, где выделяется особое химическое вещество (медиатор), и если его количество достаточно велико, то потенциал нейрона, на котором заканчиваются синапсы, изменяется и возникает распространяющийся процесс - импульс. Весь процесс повторяется на следующем синаптическом уровне.

Импульсы, которые генерируются нервными клетками, очень короткие: их продолжительность составляет 0,0008- 0,001 с. После прохождения импульса аксон становится бездеятельным на время около 0,001 с. Из этого следует, что максимальная теоретически возможная частота импульсов в одиночном нервном волокне составляет всего 1000 импульсов в секунду.

Неудивительно поэтому, что , основанная на оценке частоты разряда в одиночном нервном волокне, встречает существенные затруднения. Не спасает положения и принцип множественного потока, ибо нет таких данных, которые позволяли бы утверждать, что даже группы нейронов могут следовать за частотой тонов выше 2000 Гц. А ведь частотный предел слуха человека в 10 раз выше!

Значение слуха заключается в том, что человек получает пол-ное представление о событиях в жизни только тогда, когда наряду с увиденным услышит смысл происходящего. Например, когда человек слушает спектакль по радио он понимает больше, чем когда то же самое смотрит по телевизору без звука.

Слух и речь

Слух и речь неразрывно связаны между собой. Нормальное фун-кционирование органа слуха человека способствует появлению и развитию у него с малых лет речи. Согласованное развитие слуха и речи у ребенка играет важную роль в его воспитании, обучении, приобретении профессиональных навыков, в понимании им музы-кального искусства и формировании всей его психической деятель-ности.

Строение органа слуха — уха. Орган слуха расположен в височ-ной области черепа и делится на три части: наружное, среднее и внутреннее ухо (рис. 77).

Наружное ухо

Наружное ухо состоит из ушной раковины и наружного слу-хового прохода. В конце наружного слухового прохода имеется ба-рабанная перепонка толщиной 0,1 мм, состоящая из соединитель-ной ткани, она отделяет наружный слуховой проход от полости внутреннего уха.

Среднее ухо

Полость среднего уха с помощью слуховой трубки соединена с носоглоткой. Расположенные в среднем ухе три последовательно соединенные между собой слуховые косточки (молоточек, наковаль-ня, стремячко) передают колебания барабанной перепонки, образу-ющиеся под действием звуковых волн, во внутреннее ухо.

Внутреннее ухо

Внутреннее ухо образовано из системы полостей и извитых ка-налов, представляющих собой костный лабиринт.

Внутри костного лабиринта расположен перепончатый лабиринт, узкое пространство между ними заполнено жидкостью — перелимфой. А внутри пере-пончатого лабиринта находится прозрачная жидкость — эндолимфа. В костном лабиринте расположена улитка, в ней находятся клетки, воспринимающие звуки, то есть слуховые рецепторы.

В мешковидных образованиях тех частей костного лабиринта, которые называются преддверием и полукружными канальцами, рас-положены рецепторы вестибулярного анализатора, обеспечивающе-го равновесие тела человека в пространстве.

Звуковые волны обычно рас-пространяются по воздуху (воздушная проводимость) и вызывают колебания барабанной перепонки либо через костные структуры височной кости, если источник зву-ка контактирует с костями черепа (костная проводи-мость). Колебания передаются на молоточек, наковаль-ню и стремечко. Это изменяет давление жидкости во внутреннем ухе, приводит к распространению волны ко-лебаний на базальную мембрану улитки, что, в свою очередь, вызывает раздражение рецепторов (слуховых волосков) волосковых клеток, встроенных в покровную мембрану спирального органа, каждый из которых от-вечает на звук определенного тона (рис. 1.3.14).

Волосковые клетки контак-тируют с дендритами рецеп-торного нейрона , находящего-ся в слуховом узле внутренне-го уха: его аксон в составе кохлеарной порции нерва проходит внутренний слухо-вой проход и затем вместе с вестибулярной порцией всту-пает в мостомозжечковый угол и идет в мозговой ствол, оканчиваясь в слуховых яд-рах, где лежат вторые нейро-ны. Их аксоны после частич-ного перехода на другую сто-рону (латеральная петля) до-стигают заднего двухолмия и медиальных коленчатых тел, хотя некоторые волокна сле-дуют к вышеуказанным обра-зованиям после переключе-ния в нейронах моста (ядра трапециевидного тела).

От клеток заднего (слух) и переднего (зрение) двухол-мия, так же, как и частично от рассматриваемых как подкорковые слуховые и зрительные центры медиальных и латеральных коленчатых тел, начинается нисходя-щий эфферентный путь ургентного реагирования — тектоспинальный тракт. Через сегментарный двигательный аппарат он осуществляет локомоторные реакции незамед-лительного действия («шарахание» от наезжающего авто-мобиля и пр.).

Другая часть волокон латеральной петли оканчивается в медиальном коленчатом теле (фактически это особая часть зрительного бугра), где находится основная часть третьих нейронов слухового пути. Их аксоны проходят в подчечевичном сегменте внутренней капсулы, достигая проекционной коры — поперечных извилин височной до-ли (см. рис. 1.3.14).

При поражении слухового нерва больные жалуются на снижение слуха, шум в ухе. Своеобразна жалоба боль-ных при невропатии лицевого нерва с локализацией по-ражения до отхождения от него в канале височной кости стремянного нерва (к мышце стремечка). Они ощущают низкие звуки на стороне патологии как более громкие (гиперакузия).

Шум в ушах

Наиболее часто больные пожилого возраста жалуются на шум в ушах. Как правило, он сопровождает кондук-тивную и нейросенсорную тугоухость. Шум в ухе может либо возникнуть остро, например после атаки при бо-лезни Меньера, либо, что бывает чаще, формируется постепенно. Односторонний шум — симптом невриномы слухового нерва. Пульсирующий шум обычно является следствием сосудистой патологии: артериовенозной анев-ризмы в области средней черепной ямки, гемангиомы яремной вены, частичного сдавления опухолью артерии внутреннего уха. У пожилых людей жалобы на шум в ушах, а часто и в голове обычно бывают проявлением атеросклероза мозговых сосудов.

Шепотная речь

Остроту слуха проверяют на каждое ухо в отдельности шепотной речью на расстоянии 5 м.

Проба Ринне

Снижение слуха может быть связано как с поражением звуковосприни-мающего (внутреннее ухо), так и звукопроводящего (среднее ухо) аппарата. Для исследования применяют звучащий камертон. Проверяют восприятие звука ка-мертона у уха (воздушная проводимость) и при упоре его ножки на сосцевидном отростке (костная проводи-мость — проба Ринне). В норме воздушная проводимость дольше костной. При поражении звукопроводящего ап-парата воздушная проводимость уменьшается, при пора-жении звуковоспринимающего — уменьшается как воз-душная, так и костная проводимость.

Проба Вебера

Применяют также пробу Вебера. Звучащий камертон приставляется к се-редине темени. В норме звучание слышится одинаково с обеих сторон. При поражении среднего уха звучание камертона сильнее воспринимается на пораженной сто-роне, при поражении внутреннего уха — на противопо-ложной.

Аудиометр

Количественную оценку снижения слуха проводят с помощью аудиометра — электрического прибора, позво-ляющего исследовать остроту слуха при воздействии звука разной частоты и интенсивности. Снижение слуха называют тугоухостью. Различают два вида тугоухости: кондуктивную и нейросенсорную. Материал с сайта

Кондуктивная тугоухость является следстви-ем поражения звукопроводящего аппарата — наружного слухового прохода (серные пробки, воспаления , новооб-разования), перфорации барабанной перепонки (травма, средний отит), слуховых косточек (травмы, инфекции, рубцы, опухоли среднего уха), нарушения их подвижно-сти (отосклероз).

Нейросенсорная тугоухость обусловлена по-ражением звуковоспринимающего аппарата — повреж-дением волосковых клеток кортиева органа (шумовая травма, интоксикации, в том числе ятрогенные, напри-мер, стрептомицином), переломы височной кости, ото-склероз улитки, болезнь Меньера, воз-растная инволюция.

Слуховая сенсорная система (слуховой анализатор) - второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) - это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2 и на рис. 12.9 2 .

Таблица 12.2

Строение и функции уха

Часть уха

Строение

Функции

Наружное ухо

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она - слуховые косточки

Среднее ухо

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединенная с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Внутреннее ухо

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган - звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передает импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

  • 1 См.: Резанова Е.Л., Антонова И.П., Резанов А.А. Указ. соч.
  • 2 См.: Физиология человека: Учебник. В 2 т.

Рис. 12.9.

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии - мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передается далее на волокна преддверно-улиткового нерва (рис. 12.10 ).

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделенные друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3500. Наружные волосковые клетки располагаются в три-четыре ряда; их общее число 12 000-20 000. Каждая волосковая клетка имеет удлиненную

Рис. 12.10.

Канал улитки разделен на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделен от барабанной лестницы базилярной мембраной. В ее составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками

форму; один ее полюс фиксирован на основной мембране, а второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереотипии. Их число на каждой внутренней клетке составляет 30-40, и они очень короткие - 4-5 мкм; на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от одного до пяти ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает поступать калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна - около 2-10 -13 Н. Еще более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс, означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее - генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибаются один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интера- уральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удаленности звука от организма связана с ослаблением звука и изменением его тембра.

  • См.: Физиология человека: Учебник. В 2 т.

Общая физиология сенсорных систем

Сенсорной системой (анализатором, по И.П.Павлову) называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов. Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма.

Информация, поступающая в мозг, необходима для простых и сложных рефлекторных актов вплоть до психической деятельности человека. И.М. Сеченов писал, что «психический акт не может явиться в сознании без внешнего чувственного возбуждения». Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула. Если осознание происходит, говорят об ощущении. Понимание ощущения приводит к восприятию.

И.П. Павлов считал анализатором совокупность рецепторов (периферический отдел анализатора), путей проведения возбуждения (проводниковый отдел), а также нейронов, анализирующих раздражитель в коре мозга (центральный отдел анализатора).

Методы исследования сенсорных систем

Для изучения сенсорных систем используют электрофизиологические, нейрохимические, поведенческие и морфологические исследования на животных, психофизиологический анализ восприятия у здорового и больного человека, методы картирования его мозга. Сенсорные функции также моделируют и протезируют.

Моделирование сенсорных функций позволяет изучать на биофизических или компьютерных моделях такие функции и свойства сенсорных систем, которые пока недоступны для экспериментальных методов. Протезирование сенсорных функций практически проверяет истинность наших знаний о них. Примером могут быть электро-фосфеновые зрительные протезы, которые восстанавливают зрительное восприятие у слепых людей разными сочетаниями точечных электрических раздражений зрительной области коры большого мозга.

Общие принципы строения сенсорных систем

Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие:

1) многослойность , т.е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний - с нейронами моторных областей коры большого мозга. Это свойство дает возможность специализировать нейронные слои на переработке разных видов сенсорной информации, что позволяет организму быстро реагировать на простые сигналы, анализируемые уже на первых уровнях сенсорной системы. Создаются также условия для избирательного регулирования свойств нейронных слоев путем восходящих влияний из других отделов мозга;

2) многоканальность сенсорной системы, т.е. наличие в каждом слое множества (от десятков тысяч до миллионов) нервных клеток, связанных с множеством клеток следующего слоя. Наличие множества таких параллельных каналов обработки и передачи информации обеспечивает сенсорной системе точность и детальность анализа сигналов и большую надежность;

3) разное число элементов в соседних слоях, что формирует «сенсорные воронки». Так, в сетчатке глаза человека насчитывается 130 млн. фоторецепторов, а в слое ганглиозных клеток сетчатки нейронов в 100 раз меньше («суживающаяся воронка»).

На следующих уровнях зрительной системы формируется «расширяющаяся воронка»: число нейронов в первичной проекционной области зрительной области коры в тысячи раз больше, чем ганглиозных клеток сетчатки. В слуховой и в ряде других сенсорных систем от рецепторов к коре большого мозга идет «расширяющаяся воронка». Физиологический смысл «суживающейся воронки» заключается в уменьшении избыточности информации, а «расширяющейся» - в обеспечении дробного и сложного анализа разных признаков сигнала; дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали заключается в образовании отделов, каждый из которых состоит из нескольких нейронных слоев. Таким образом, отдел представляет собой более крупное морфофункциональное образование, чем слой нейронов. Каждый отдел (например, обонятельные луковицы, кохлеарные ядра слуховой системы или коленчатые тела) осуществляет определенную функцию. Дифференциация по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев. Так, в зрении работают два параллельных нейронных канала, идущих от фоторецепторов к коре большого мозга и по-разному перерабатывающих информацию, поступающую от центра и от периферии сетчатки глаза.

Основные функции сенсорной системы

Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

Обнаружение сигналов. Оно начинается в рецепторе - специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо - и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло - и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

Общие механизмы возбуждения рецепторов. При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себятри основных этапа:

1) взаимодействие стимула, т.е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки;

Слуховой анализатор (слуховая сенсорная система) – второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего, сенсорная информация передаётся в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) – это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2, рис. 12.10.

Таблица 12.2.

Строение и функции уха

Часть уха

Строение

Функции

Наружное ухо

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она – слуховые косточки.

Среднее ухо

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединённая с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Внутреннее ухо

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган – звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передаёт импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

Рис . 12.10. Органы слуха и равновесия . Наружное, среднее и внутреннее ухо, а также отходящие от рецепторных элементов органа слуха (кортиев орган) и равновесия (гребешки и пятна) слуховая и преддверная (вестибулярная) ветви преддверно–улиткового нерва (VIII пара черепных нервов).

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передаётся далее на волокна преддверно-улиткового нерва (рис. 12.11).

Рис . 12.11. Перепончатый канал и спиральный (кортиев) орган . Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделён от барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками.

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделённые друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3 500. Наружные волосковые клетки располагаются в 3-4 ряда; их общее число 12 000-20 000. Каждая волосковая клетка имеет удлинённую форму; один её полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии . Их число на каждой внутренней клетке составляет 30-40 и они очень короткие – 4-5 мкм; на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна, около 2·10 -13 ньютон. Ещё более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс (микросекунд), означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибается один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интерауральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удалённости звука от организма связана с ослаблением звука и изменением его тембра.



Похожие статьи