Какие органоиды не характерны для животной клетки. Что такое органоид? Строение и функции органоидов

25.04.2019

Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой. Клетка - это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.

Существуют растения, построенные из одной-единственной клетки. К ним относятся одноклеточные водоросли и одноклеточные грибы. Обычно это микроскопические организмы, но есть и довольно крупные одноклеточные (длина одноклеточной морской водоросли ацетабулярии достигает 7 см). Большинство растений, с которыми мы сталкиваемся в повседневной жизни, - это многоклеточные организмы, построенные из большого числа клеток. Например, в одном листе древесного растения их около 20 000 000. Если дерево имеет 200 000 листьев (а это вполне реальная цифра), то число клеток во всех них составляет 4 000 000 000 000. Дерево в целом содержит еще раз в 15 больше клеток.

Растения, за исключением некоторых низших, состоят из органов, каждый из которых выполняет свою функцию в организме. Например, у цветковых растений органами являются корень, стебель, лист, цветок. Каждый орган обычно построен из нескольких тканей. Ткань - это собрание клеток, сходных по строению и функциям. Клетки каждой ткани имеют свою специальность. Выполняя работу по своей специальности, они вносят вклад в жизнь целого растения, которая состоит в сочетании и взаимодействии разных видов работы различных клеток, органов, тканей.

Основными, самыми общими компонентами, из которых построены клетки, являются ядро, цитоплазма с многочисленными органоидами различного строения и функций, оболочка, вакуоль. Оболочка покрывает клетку снаружи, под ней находится цитоплазма, в ней - ядро и одна или несколько вакуолей. Как строение, так и свойства клеток разных тканей в связи с их разной специализацией резко различаются. Перечисленные основные компоненты и органоиды развиты в них в различной степени, имеют неодинаковое строение, а иногда тот или иной компонент может вовсе отсутствовать.

Главнейшими группами тканей, из которых построены вегетативные (непосредственно не связанные с размножением) органы высшего растения, являются следующие: покровные, основные, механические, проводящие, выделительные, меристематические. В каждую группу обычно входит несколько тканей, имеющих сходную специализацию, но построенных каждая по-своему из определенного вида клеток. Ткани в органах не изолированы друг от друга, а составляют системы тканей, в которых элементы отдельных тканей чередуются. Так, древесина - это система из механической и проводящей, а иногда и основной ткани.

В растительной клетке следует различать клеточную оболочку и содержимое. Основные жизненные свойства присуши именно содержимому клетки - протопласту. Кроме того, для взрослой растительной клетки характерно наличие вакуоли - полости, заполненной клеточным соком. Протопласт состоит из ядра, цитоплазмы и включенных в нее крупных органелл, видимых в световой микроскоп: пластид, митохондрий. В свою очередь цитоплазма представляет собой сложную систему с многочисленными мембранными структурами, такими, как аппарат Гольджи, эндоплазматический ретикулум, лизосомы, и немембранными структурами-микротрубочки, рибосомы и др. Все указанные органеллы погружены в матрикс цитоплазмы - гиалоплазму, или основную плазму.

Каждая из органелл имеет свою структуру и ультраструктуру. Под ультраструктурой понимается расположение в пространстве отдельных молекул, составляющих данную органеллу. Даже с помощью электронного микроскопа далеко не всегда можно увидеть ультраструктуру более мелких органелл (рибосом). По мере развития науки открываются все новые структурные образования, находящиеся в цитоплазме, и в этой связи наши современные представления о ней ни в коей мере не являются окончательными. Размеры клеток и отдельных органелл приблизительно следующие: клетка 10 мкм, ядро 5-30 мкм, хлоропласт 2-6 мкм, митохондрии 0,5-5 мкм, рибосомы 25 нм. В создании надмолекулярных структур отдельных органоидов клетки большое значение имеют так называемые слабые химические связи.

Наиболее важную роль играют водородные, вандерваальсовы и ионные связи. Важнейшей особенностью является то, что энергия образования этих связей незначительна и лишь немного превышает кинетическую энергию теплового движения молекул. Именно поэтому слабые связи легко возникают и легко разрушаются. Средняя продолжительность жизни слабой связи составляет лишь долю секунды. Наряду со слабыми химическими связями большое значение имеют гидрофобные взаимодействия. Обусловлены они тем, что гидрофобные молекулы или части молекул, находящиеся в водной среде, располагаются так, чтобы не контактировать с водой. При этом молекулы воды, объединяясь друг с другом, как бы выталкивают неполярные группы, сближая их. Именно слабые связи определяют в большой степени конформацию (форму) таких макромолекул, как белки и нуклеиновые кислоты, лежат в основе взаимодействия молекул и, как следствие, в образовании и самосборке субклеточных структур, в том числе органелл клетки.

Для поддержания сложной структуры цитоплазмы необходима энергия. Согласно второму закону термодинамики всякая система стремится к уменьшению упорядоченности, к энтропии. Поэтому любое упорядоченное расположение молекул требует притока энергии извне. Выяснение физиологических функций отдельных органелл связано с разработкой метода их изоляции (выделения из клетки). Таков метод дифференциального центрифугирования, который основан на разделении отдельных компонентов протопласта. В зависимости от ускорения удается выделить все более и более мелкие фракции органелл. Совместное применение методов электронной мик-роскопии и дифференциального центрифугирования дало возможность наметить связи между структурой и функциями отдельных органелл.

Растительная клетка. Её строение, функции, химический состав. Органоиды клетки.

Название органоида

Строение

Функции

Мембрана

Состоит из клетчатки. Она очень упругая (это ее физическое св-во). Состоит из 3-х слоев: внутренний и внешний из которых состоят из молекул белка; средний - из двухслойной молекулы фосфолипидов. Внешняя оболочка – мягкая, образована из молекул гликокаликса.

Опорная функция

Плазмалемма

Очень тонкая (10 мм). Внешняя сторона образована из углеводов, внутренняя – из толстой белковой молекулы. Покрыта молекулами углеводо-гликоликса толщиной 3- 4 мм. Химическую основу мембраны составляют: белки - 60%, жиры - 40% и углеводы - 2-10%.

*Проницаемость;

*Транспортная ф-я;

*Защитная ф-я.

Цитоплазма

Полужидкое вещество, окружающее ядро-клетки. Основа - гиоплазма. Ее состав разнообразен. В ее составе содержатся гранулированные тела, белки, ферменты, нуклеиновые кислоты, углеводы, молекулы АТФ; содержит молекулы белка тубулина.

Может переходить из 1 состояния (жидкого) в другое - твердое и наоборот.

МЕМБРАННЫЕ ОРГАНОИДЫ

ЭПС (эндоплазматическая сеть)

Состоит из полостей и копальцев. Делится на 2 вида - гранулярную и гладкую. Гранулярная - продолговатые копальца и полости; имеются плотные гранулы. Поры ЭПС взаимосвязаны с порами ядерной мембраны.

*Уч-ет в синтезе молекул гликолипидов и их транспортировке;

*Уч-ет в биосинтезе белка, транспортировке синтезирующих веществ.

Комплекс Гольджи

Находится в нервных клетках. Его мембрана очень хорошо впитывает раствор осмия. Комплекс Гольджи входит в состав всех эукариотических клеток. Иногда встречается в виде сети, соединенной между собой системой полостей. Бывает овальной или сердцевидной.

*Уч-ет в формировании продуктов жизнедеятельности клетки;

*Распадается до диктиосомы (при делении);

*Выделительная функция.

Лизосома

Означает растворитель вещ-в. Встречается во всех клетках эукариот (больше в лейкоцитах). В составе содержатся ферменты гидролиза. Лизосома окружена липопротеидной мембраной, при ее разрушении ферменты лизосом воздействуют на внешнюю среду. В состав лизосом входит около 60 гидролизных ферментов.

*Ф-я всасывания;

*Ф-я выделения;

*Функция защитная.

Митохондрия

В клетке имеет форму зерна, гранулы и встречается в кол-ве от 1 до 100 тысяч. Кол-во зависит от активности клетки. Иногда мит-рия находится в непрерывном движении. Ее ср. длина 10 мкм, диаметр 0,2-1 мкм. Она относится к друмембранным органоидам и сост. из: а) наружной мембраны, б) внутренней мембраны, в) межмембранного пространства. В матриксе митохондрии встречаются кольцевидные ДНК и РНК, рибосомы, гранулы, тельца. Синтезируются белки и жиры. Мит-рия состоит на 65-70% из белка, 25-30% из липидов, нуклеиновых кислот и витаминов. Митохондрия - это система синтеза белка.

*Ф-ю мит-рии иногда выполняют хлоропласты;

*Транспортная ф-я;

*Синтез белка;

*Синтез АТФ.

Пластиды - мембранные органоиды

Это основной органоид растит. клетки.

1) хлоропласты - зеленые, по форме овальные, длина 5 мкм, ширина 2-4 мкм, толщина – 7 мкм. Внутри много широко мембранных тилакоидов и составляющих его массу белков стром. Имеются нуклеиновые кислоты - ДНК, РНК, рибосомы. Размножаются делением.

2) хромопласты - разного цвета. В них находятся различные пигменты. Их роль велика.

3) лейкопласты - бесцветные. Находятся в тканях половых клеток, цитоплазмах спор и материнских гамет, семенах, плодах, корнях. В них идет синтез и накопление крахмала.

*Выполняют процесс фотосинтеза

НЕМЕМБРАННЫЕ ОРГАНОИДЫ

Рибосома

Сост. из двух частей: большая и малая. Имеет яйцеобразную форму, ср. диаметр-15-35нм. Бывают 2-х видов: эукариотические и прокариотические. Общ. Размер эукариотических: 80s, малой - 20s, большой - 60s. Прокариотических: от 30s до 70s (колеблется). Рибосома сост. из РНК (на 50-60% из белков).

*Тут происходит биосинтез белка;

*Синтез молекулы белка;

*Транспортная ф-я.

Клеточный центр

Сост. из 2-х центриолей, кот имеют цилиндрическую форму, длина из 1 мкм. Центр делится пополам перед делением клетки и подтягивается от экватора к полюсам. Кл. центр удваивается путем деления.

*Уч-ет в мейозе и митозе

Клеточное ядро

Имеет сложное строение. Ядерная оболочка сост. из 2-х трехслойных мембран. Поры ядерной мембраны открываются подобно порам ЭПС. В период клетки мембрана ядра исчезает и вновь образуется в новых клетках. Мембранам св-нна полупроницаемость. Ядро сост. из хромосом, сока ядра, ядрышка, РНК и др. частей, сохраняющих наследственную инф-ию и св-ва живого организма.

*Защитная ф-я



Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-1.jpg" alt=">Строение и функции органоидов клетки. ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-2.jpg" alt=">Органоиды – постоянные клеточные структуры, имеющие определенное строение, химический состав и выполняющие специфические функции.">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-3.jpg" alt=">Включения цитоплазмы - это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности"> Включения цитоплазмы - это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы. ГРУППЫ: ТРОФИЧЕСКИЕ ЭКСКРЕТЫ И ДР. СЕКРЕТЫ СПЕЦИАЛЬНЫЕ ВКЛЮЧЕНИЯ (ГЕМОГЛОБИН) ИНКРЕТЫ ПИГМЕНТЫ

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-4.jpg" alt=">Растительная клетка ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-5.jpg" alt=">Роль ядра в жизни клетки Между ядром и окружающей его цитоплазмой происходит постоянный обмен"> Роль ядра в жизни клетки Между ядром и окружающей его цитоплазмой происходит постоянный обмен веществ. Это хорошо видно на примере взаимодействия ДНК и РНК ядра и цитоплазмы. Ядро играет огромную роль в жизни клетки. Его роль очень велика не только процессах созидания живой материи, но и во всех других проявлениях жизнедеятельности клетки.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-6.jpg" alt=">Животная клетка ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-7.jpg" alt=">Сравнение ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-8.jpg" alt=">Органоиды клетки ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-9.jpg" alt="> Органоиды клетки Органоиды общего Специальные назначения органоиды "> Органоиды клетки Органоиды общего Специальные назначения органоиды Характерные для специализированных клеток Присутствующие во многоклеточного всех клетках эукариот организма или клеток одноклеточного организма Пластиды, митохондрии, Реснички, жгутики и т. д. лизосомы и т. д.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-10.jpg" alt="> Классификация органоидов Органоиды Немембранные Мембранные"> Классификация органоидов Органоиды Немембранные Мембранные Рибосомы Одномембранные Двухмембранные Клеточный центр Микротрубочки ЭПС Митохондрии Микрофиламенты Комплекс пластиды Хромосомы Гольджи Лизосомы Вакуоли

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-12.jpg" alt="> Нуклеиновых кислот нет. Метаболизм"> Нуклеиновых кислот нет. Метаболизм липидов Синтез белка на ШЭР

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-13.jpg" alt=">ЭПС (эндоплазматическая сеть) - непрерывная трехмерная сеть канальцев и цистерн. Начинается как выпячивание внешней"> ЭПС (эндоплазматическая сеть) - непрерывная трехмерная сеть канальцев и цистерн. Начинается как выпячивание внешней мембраны ядра и заканчивается у цитоплазматической мембраны. Различают гладкий и шероховатый ретикулум. На шероховатом находятся рибосомы. Это место синтеза большинства белков и липидов клетки. Гладкий используется для перемещения синтезированных веществ.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-14.jpg" alt=">Участвует в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и"> Участвует в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами. Одна из главных функций комплекса Гольджи - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза. Важнейшими для клетки функциями комплекса Гольджи также являются обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки. Комплекс Гольджи считается источником образования первичных лизосом, хотя их ферменты синтезируются и в гранулярной сети.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-15.jpg" alt=">Митохондрии Митохондрия - симбиотический организм. Предшественницей была "> Митохондрии Митохондрия - симбиотический организм. Предшественницей была бактерия. Имеется собственные ДНК, рибосомы, двойная мембрана. Внутренняя мембрана имеет большое количество впячиваний - крист. Осуществляет процесс дыхания в клетке. Синтезирует АТФ из АДФ и обеспечивает таким образом клетку энергией.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-16.jpg" alt=">Лизосомы Лизосома - небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические"> Лизосомы Лизосома - небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические ферменты, способные расщепить все биополимеры. Основная функция - автолиз - то есть расщепление отдельных органоидов, участков цитоплазмы клетки.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-17.jpg" alt=">Пероксисомы Пероксисомы- или микротельца. Округлой формы. Содержат одну "> Пероксисомы Пероксисомы- или микротельца. Округлой формы. Содержат одну мембрану, не содержат ДНК и рибосом. Утилизируют кислород в клетке. (кислород очень вреден для клетки. Кислородом отбеливают)

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-18.jpg" alt=">Рибосомы - мельчайшие органоиды. Находятся в ЭПР, цитоплазме, хлоропластах, митохондриях. Синтезируют белки,"> Рибосомы - мельчайшие органоиды. Находятся в ЭПР, цитоплазме, хлоропластах, митохондриях. Синтезируют белки, необходимые клетке, отдельным органоидам. К мембранам эндоплазматической сети прикреплено большое число рибосом - мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм и состоящих из РНК и белка. На рибосомах и происходит синтез белков. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. В цитоплазме клетки есть и свободные, не прикрепленные к мембранам эндоплазматической сети рибосомы. Как правило, они располагаются группами, на них тоже синтезируются белки, используемые самой клеткой.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-19.jpg" alt="> Цитоскелет - трехмерная сеть нитей, которая пронизывает клетку. Поддерживает"> Цитоскелет - трехмерная сеть нитей, которая пронизывает клетку. Поддерживает форму клетки, не позволяет органоидам перемещаться, защищает их от повреждения, является амортизатором. Состоит из микротрубочек и более мелких микрофиламентов. Микротрубочки построены из белка тубулина, микрофиламенты - из актина. Могут собираться и разбираться.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-20.jpg" alt=">Клеточная стенка Клеточная стенка- твердая оболочка растительной клетки. Придает"> Клеточная стенка Клеточная стенка- твердая оболочка растительной клетки. Придает форму клетке. Защищает от повреждений. Она прозрачна, пропускает солнечный свет и воду. В ней есть поры, которые обеспечивают взаимосвязь клеток. Состоит из целлюлозы и матрикса. В матриксе содержится гемицеллюлоза и пектиновые вещества.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-21.jpg" alt=">Вакуоль - органоид, отделенный от цитоплазмы. Вакуоль заполнена клеточным"> Вакуоль - органоид, отделенный от цитоплазмы. Вакуоль заполнена клеточным соком. Вакуоль обеспечивает хранение различных веществ - ионов, пигментов, органических кислот; лизис веществ, защита от травоядных, т. к. в ней может находится большое количество токсичных веществ; обеспечивает пигментацию - пигменты находятся в вакуоли; изолирование токсичных веществ.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-22.jpg" alt=">Пластиды- найдены только в клетках высших растений и водорослей. Предшественницей была"> Пластиды- найдены только в клетках высших растений и водорослей. Предшественницей была цианобактерия, которая стала симбиотическим организмом. Имеет двойную мембрану. Внутри находится кольцевая молекула ДНК, рибосомы. Выделяют: 1)хлоропласты- зеленые пластиды, в которых осуществляется фотосинтез. 2) Хромопласты - желтые, оранжевые и красные пластиды. Образуются при разрушении хлорофилла (листья осенью, помидоры, морковь)

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-23.jpg" alt=">3)Амилопласты 3) Амилопласты - неокрашенные пластиды. Заполнены крахмалом. "> 3)Амилопласты 3) Амилопласты - неокрашенные пластиды. Заполнены крахмалом. Выполняют запасающую функцию. (клубень картофеля). 4) Этиопласты - развиваются у растений, находящихся в темноте. Под воздействием света превращаются в хлоропласты Новые пластиды образуются за счет деления уже имеющихся пластид. При мутации нескольких пластид образуются химеры. У химер один лист может быть белым, а другой - зеленым или только часть листа будет белой.

Любой человек знает ещё со школы, что все живые организмы, как растения, так и животные, состоят из клеток. Но вот из чего состоят они сами – это известно отнюдь не каждому, а если всё-таки и известно, то не всегда хорошо. В данной статье мы рассмотрим строение растительных и животных клеток, разберёмся в их отличиях и сходствах.

Но сначала давайте разберёмся, что же вообще такое органоид.

Органоид – это орган клетки, осуществляющий какую-либо свою, индивидуальную функцию в ней, обеспечивая при этом её жизнеспособность, ведь без исключения каждый процесс, происходящий в системе, очень для этой системы важен. А все органоиды составляют систему . Органоиды ещё называют органеллами.

Растительные органеллы

Итак, рассмотрим, какие же органоиды имеются в растениях и какие именно функции они выполняют.

Ядро (ядерный аппарат) – один из самых важных органоидов. Оно отвечает за передачу наследственной информации – ДНК (дезоксирибонуклеиновую кислоту). Ядро – органелла округлой формы. У него есть подобие скелета – ядерный матрикс. Именно матрикс отвечает за морфологию ядра , его форму и размеры. Внутри ядра содержится ядерный сок, или кариоплазма. Она представляет собой достаточно вязкую, густую жидкость, в которой находятся маленькое ядрышко, формирующее белки и ДНК, а также хроматин, который реализует накопленный генетический материал.

Сам ядерный аппарат вместе с другими органоидами находится в цитоплазме – жидкой среде. Цитоплазма состоит из белков, углеводов, нуклеиновых кислот и прочих веществ, являющихся результатами производства других органоидов. Главная функция цитоплазмы – передача веществ между органоидами для поддержания жизни. Так как цитоплазма – это жидкость, то внутри клетки происходит незначительное движение органелл.

Мембранная оболочка

Мембранная оболочка, или плазмалемма, выполняет защитную функцию, оберегая органеллы от каких-либо повреждений. Мембранная оболочка представляет собой плёнку . Она не сплошная – оболочка имеет поры, через которые одни вещества входят в цитоплазму, а другие выходят. Складки и выросты мембраны обеспечивают прочное соединение клеток между собой. Защищена оболочка клеточной стенкой, это наружный скелет, придающий клетке особую форму.

Вакуоли

Вакуоли – это специальные резервуары для хранения клеточного сока. Он содержит в себе питательные вещества и продукты жизнедеятельности. Вакуоли накапливают его в процессе всей жизни клетки, подобные запасы необходимы в случае повреждений (редко) или же нехватки питательных веществ.

Аппарат, лизосомы и митохондрии

Хлоропласты, лейкопласты и хромопласты

Пластиды – двумембранные органоиды клетки , делящиеся на три вида – хлоропласты, лейкопласты и хромопласты:

  • Хлоропласты придают растениям зелёный цвет, они имеют округлую форму и содержат особое вещество – пигмент хлорофилл, участвующий в процессе фотосинтеза .
  • Лейкопласты – органеллы прозрачного цвета, отвечающие за переработку глюкозы в крахмал.
  • Хромопластами называют пластиды красного, оранжевого или жёлтого цвета. Они могут развиваться из хлоропластов, когда те теряют хлорофилл и крахмал. Мы можем наблюдать этот процесс, когда желтеют листья или созревают плоды. Хромопласты могут превратиться обратно в хлоропласты при определённых условиях.

Эндоплазматическая сеть

Эндоплазматическая сеть состоит из рибосом и полирибосом. Рибосомы синтезируются в ядрышке, они выполняют функцию биосинтеза белка. Рибосомные комплексы состоят из двух частей – большой и малой. Количество рибосом в пространстве цитоплазмы преобладающее .

Полирибосома – это множество рибосом, транслирующих одну большую молекулу вещества.

Органоиды животной клетки

Некоторые из органелл полностью совпадают с органоидами растительной, а некоторых растительных вообще нет в животных. Ниже приведена таблица сравнения особенностей строения.

Разберёмся с последними двумя:

Можно сказать, что строение животной и растительной клеток различно потому, что растения и животные имеют различные формы жизни. Так, органоиды растительной клетки лучше защищены, потому что растения недвижимы – они не могут убежать от опасности. Пластиды имеются в растительной клетке, обеспечивая растению ещё один вид питания – фотосинтез. Животным же в силу их особенностей питание посредством переработки солнечного света совершенно ни к чему. А потому и ни одного из трёх видов пластидов в животной клетке быть не может.

Органоиды - это постоянные компоненты клетки, выполняющие определенные функции.

В зависимости от особенностей строения их делят на мембранные и немембранные. Мембран­ные органоиды, в свою очередь, относят к одномембранным (эндоплазматическая сеть, комплекс Гольджи и лизосомы) или двумембранным (митохондрии, пластиды и ядро). Немембранными органоидами являются рибосомы, микротрубочки, микрофиламенты и клеточный центр. Прока­риотам из перечисленных органоидов присущи только рибосомы.

Строение и функции ядра. Ядро - крупный двумембранный органоид, лежащий в центре клетки или на ее периферии. Размеры ядра могут колебаться в пределах 3-35 мкм. Форма ядра чаще сферическая или эллипсоидная, однако имеются также палочковидные, веретеновидные, бобовидные, лопастные и даже сегментированные ядра. Некоторые исследователи считают, что форма ядра соответствует форме самой клетки.

Большинство клеток имеет одно ядро, но, например, в клетках печени и сердца Их может быть два, а в ряде нейронов - до 15. Волокна скелетных мышц содержат обычно много ядер, однако они не являются клетками в полном смысле этого слова, поскольку образуются в результате сли­яния нескольких клеток.

Ядро окружено ядерной оболочкой, а его внутреннее пространство заполнено ядерным соком, или нуклеоплазмой (кариоплазмой ), в которую погружены хроматин и ядрышко. Ядро выполня­ет такие важнейшие функции, как хранение и передача наследственной информации, а также контроль жизнедеятельности клетки (рис. 2.30).

Роль ядра в передаче наследственной информации была убедительно доказана в экспериментах с зеленой водорослью ацетабулярией. В единственной гигантской клетке, достигающей в длину 5 см, различают шляпку, ножку и ризоид. При этом она содержит только одно ядро, расположен­ное в ризоиде. В 1930-е годы И. Хеммерлинг пересадил ядро одного вида ацетабулярии с зеленой окраской в ризоид другого вида, с коричневой окраской, у которого ядро было удалено (рис. 2.31). Через некоторое время у растения с пересаженным ядром выросла новая шляпка, как у водорос- ли-донора ядра. В то же время отделенные от ризоида шляпка или ножка, не содержащие ядра, через некоторое время погибали.

Ядерная оболочка образована двумя мембранами - наружной и внутренней, между которыми есть пространство. Межмембранное пространство сообщается с полостью шероховатой эндоплаз- матической сети, а наружная мембрана ядра может нести рибосомы. Ядерная оболочка прониза­на многочисленными порами, окантованными специальными белками. Через поры происходит транспорт веществ: в ядро попадают необходимые белки (в т. ч. ферменты), ионы, нуклеотиды и другие вещества, и покидают его молекулы РНК, отработанные белки, субъединицы рибосом.

Таким образом, функциями ядерной оболочки являются отделение содержимого ядра от цитоплазмы, а также регуляция обмена веществ между ядром и цитоплазмой.

Нуклеоплазмой называют содержимое ядра, в которое погружены хроматин и ядрышко. Она представляет собой коллоидный раствор, по химическому составу напоминающий цитоплазму. Ферменты нуклеоплазмы катализируют обмен аминокислот, нуклеотидов, белков и др. Нуклео-плазма связана с гиалоплазмой через ядерные поры. Функции нуклеоплазмы, как и гиалоплаз-мы, состоят в обеспечении взаимосвязи всех структурных компонентов ядра и осуществлении ряда ферментных реакций.

Хроматином называют совокупность тонких нитей и гранул, погруженных в нуклеоплазму. Выявить его можно только при окрашивании, так как коэффициенты преломления хроматина и нуклеоплазмы приблизительно одинаковы. Нитчатый компонент хроматина называют эухро-матином, а гранулярный - гетерохроматином. Эухроматин слабо уплотнен, поскольку с него считывается наследственная информация, тогда как более спирализованный гетерохроматин является генетически неактивным.

Хроматин представляет собой структурное видоизменение хромосом в неделящемся ядре. Таким образом, хромосомы постоянно присутствуют в ядре, изменяется лишь их состояние в зависимости от функции, которую ядро выполняет в данный момент.

В состав хроматина в основном входят белки-нуклеопротеины (дезоксирибонуклеопротеины и рибонуклеопротеины), а также ферменты, важнейшие из которых связаны с синтезом нуклеиновых кислот, и некоторые другие вещества.

Функции хроматина состоят, во-первых, в синтезе специфических для данного организма нуклеиновых кислот, которые направляют синтез специфических белков, во-вторых, в передаче наследственных свойств от материнской клетки дочерним, для чего хроматиновые нити в процессе деления упаковываются в хромосомы.

Ядрышко - сферическое, хорошо заметное под микроскопом тельце диаметром 1-3 мкм. Оно формируется на участках хроматина, в которых закодирована информация о структуре рРНК и белках рибосом. Ядрышко в ядре часто одно, однако в тех клетках, где происходят интенсивные процессы жизнедеятельности, ядрышек может быть два и более. Функции ядрышек - синтез рРНК и сборка субъединиц рибосом путем объединения рРНК с белками, поступающими из цитоплазмы.

Митохондрии - двумембранные органоиды округлой, овальной или палочковидной формы, хотя встречаются и спиралевидные (в сперматозоидах). Диаметр митохондрий составляет до 1 мкм, а длина - до 7 мкм. Пространство внутри митохондрий заполнено матриксом. Матрикс - это основное вещество митохондрий. В него погружены кольцевая молекула ДНК и рибосомы. Наружная мембрана митохондрий гладкая, она непроницаема для многих веществ. Внутренняя мембрана имеет выросты - кристы, увеличивающие площадь поверхности мембран для протекания химических реакций (рис. 2.32). На поверхности мембраны расположены многочисленные белковые комплексы, составляющие так называемую дыхательную цепь, а также грибовидные ферменты АТФ-синтетазы. В митохондриях протекает аэробный этап дыхания, в ходе которого происходит синтез АТФ.

Пластиды - крупные двумембранные органоиды, характерные только для растительных клеток. Внутреннее пространство пластид заполнено стромой, или матриксом. В строме находится более или менее развитая система мембранных пузырьков - тилакоидов, которые собраны в стопки - граны, а также собственная кольцевая молекула ДНК и рибосомы. Различают четыре основных типа пластид: хлоропласты, хромопласты, лейкопласты и пропластиды.

Хлоропласты - это зеленые пластиды диаметром 3-10 мкм, хорошо различимые под микроскопом (рис. 2.33). Они содержатся только в зеленых частях растений - листьях, молодых стеблях, цветках и плодах. Хлоропласты в основном имеют овальную или эллипсоидную формы, но могут быть также чашевидными, спиралевидными и даже лопастными. Количество хлоропластов в клетке в среднем составляет от 10 до 100 штук.

Однако, например, у некоторых водорослей он может быть один, иметь значительные размеры и сложную форму - тогда его называют хрома- тофором. В других случаях количество хлоропластов может достигать нескольких сотен, при этом их размеры невелики. Окраска хлоропластов обусловлена основным пигментом фотосинте­за - хлорофиллом, хотя в них содержатся и дополнительные пигменты - каротиноиды. Кароти- ноиды становятся заметными только осенью, когда хлорофилл в ста­реющих листьях разрушается. Основной функцией хлоропластов является фотосинтез. Световые реакции фотосинтеза протекают на мембранах тилакоидов, на которых закреплены молекулы хлорофил­ла, а темновые реакции - в строме, где содержатся многочисленные ферменты.

Хромопласты. - это желтые, оранжевые и красные пластиды, содержащие пигменты каротиноиды. Форма хромопластов может также существенно варьировать: они бывают трубчатыми, сфериче­скими, кристаллическими и др. Хромопласты придают окраску цвет­кам и плодам растений, привлекая опылителей и распространителей семян и плодов.

Лейкопласты - это белые или бесцветные пластиды в основном округлой или овальной фор­мы. Они распространены в нефотосинтезирующих частях растений, например в кожице листа, клубнях картофеля и т. д. В них откладываются в запас питательные вещества, чаще всего крах­мал, но у некоторых растений это могут быть белки или масло.

Пластиды образуются в растительных клетках из пропластид, которые имеются уже в клетках образовательной ткани и представляют собой небольшие двумембранные тельца. На ранних эта­пах развития разные виды пластид способны превращаться друг в друга: при попадании на свет лейкопласты клубня картофеля и хромопласты корнеплода моркови зеленеют.

Пластиды и митохондрии называют полуавтономными органоидами клетки, так как они име­ют собственные молекулы ДНК и рибосомы, осуществляют синтез белка и делятся независимо от деления клеток. Эти особенности объясняются происхождением от одноклеточных прокариотических организмов. Однако «самостоя­тельность» митохондрий и пластид является ограниченной, так как их ДНК содержит слишком мало генов для свободного существова­ния, остальная же информация закодирована в хромосомах ядра, что позволяет ему контролировать данные органоиды.

Эндоплазматическая сеть (ЭПС), или эндоплазматический ре тикулум (ЭР) - это одномембранный органоид, представляющий собой сеть мембранных полостей и канальцев, занимающих до 30% содержимого цитоплазмы. Диаметр канальцев ЭПС составляет около 25-30 нм. Различают два вида ЭПС - шероховатую и гладкую. Ше­роховатая ЭПС несет рибосомы, на ней происходит синтез белков (рис. 2.34).

Гладкая ЭПС лишена рибосом. Ее функция - синтез липидов и углеводов, образование лизосом, а также транспорт, за­пасание и обезвреживание токсических веществ. Она особенно раз­вита в тех клетках, где происходят интенсивные процессы обмена веществ, например в клетках печени - гепатоцитах - и волокнах скелетных мышц. Вещества, синтезированные в ЭПС, транспортиру­ются в аппарат Гольджи. В ЭПС происходит также сборка мембран клетки, однако их формирование завершается в аппарате Гольджи.

Аппарат Гольджи, или комплекс Гольджи - одномембранный органоид, образованный системой плоских цистерн, канальцев и от- шнуровывающихся от них пузырьков (рис. 2.35).

Структурной еди­ницей аппарата Гольджи является диктиосома - стопка цистерн, наодин полюс которой приходят вещества из ЭПС, а с противоположного полюса, подвергшись опре­деленным превращениям, они упаковываются в пузырьки и направляются в другие части клетки. Диаметр цистерн - порядка 2 мкм, а мелких пузырьков - около 20-30 мкм. Основные функции комплекса Гольджи - синтез некоторых веществ и модификация (изменение) белков, липидов и углеводов, поступающих из ЭПС, окончательное формирование мембран, а также транспорт веществ по клетке, обновление ее структур и образование лизосом. Свое название аппарат Голь­джи получил в честь итальянского ученого Камилло Гольджи, впервые обнаружившего данный органоид (1898).

Лизосомы - небольшие одномембранные органоиды до 1 мкм в диаметре, в которых содер­жатся гидролитические ферменты, участвующие во внутриклеточном пищеварении. Мембраны лизосом слабопроницаемы для этих ферментов, поэтому выполнение лизосомами своих функций происходит очень точно и адресно. Так, они принимают активное участие в процессе фагоцитоза, образуя пищеварительные вакуоли, а в случае голодания или повреждения определенных частей клетки переваривают их, не затрагивая иных. Недавно была открыта роль лизосом в процессах клеточной гибели.

Вакуоль - это полость в цитоплазме растительных и животных клеток, ограниченная мембра­ной и заполненная жидкостью. В клетках простейших обнаруживаются пищеварительные и со­кратительные вакуоли. Первые принимают участие в процессе фагоцитоза, так как в них про­исходит расщепление питательных веществ. Вторые обеспечивают поддержание водно-солевого баланса за счет осморегуляции. У многоклеточных животных в основном встречаются пищевари­тельные вакуоли.

В растительных клетках вакуоли присутствуют всегда, они окружены специальной мембраной и заполнены клеточным соком. Мембрана, окружающая вакуоль, по химическому составу, строе­нию и выполняемым функциям близка к плазматической мембране. Клеточный сок представляет собой водный раствор различных неорганических и органических веществ, в том числе мине­ральных солей, органических кислот, углеводов, белков, гликозидов, алкалоидов и др. Вакуоль может занимать до 90 % объема клетки и оттеснять ядро на периферию. Эта часть клетки вы­полняет запасающую, выделительную, осмотическую, защитную, лизосомную и другие функции, поскольку в ней накапливаются питательные вещества и отходы жизнедеятельности, она обеспе­чивает поступление воды и поддержание формы и объема клетки, а также содержит ферменты расщепления многих компонентов клетки. К тому же биологически активные вещества вакуолей способны препятствовать поеданию этих растений многими животными. У ряда растений за счет разбухания вакуолей происходит рост клетки растяжением.

Вакуоли имеются также и в клетках некоторых грибов и бактерий, однако у грибов они вы­полняют только функцию осморегуляции, а у цианобактерий поддерживают плавучесть и уча­ствуют в процессах усвоения азота из воздуха.

Рибосомы - небольшие немембранные органоиды диаметром 15-20 мкм, состоящие из двух субъединиц - большой и малой (рис. 2.36).

Субъединицы рибосом эукариот собираются в ядрыш­ке, а затем транспортируются в цитоплазму. Рибосомы прокариот, митохондрий и пластид мень­ше по величине, чем рибосомы эукариот. В состав субъединиц рибосом входят рРНК и белки.

Количество рибосом к клетке может достигать нескольких десятков миллионов: в цитоплазме, митохондриях и пластидах они находятся в свободном состоянии, а на шероховатой ЭПС - в свя­занном. Они принимают участие в синтезе белка, в частности, осуществляют процесс трансля­ции - биосинтеза полипептидной цепи на молекуле иРНК. На свободных рибосомах синтези­руются белки гиалоплазмы, митохондрий, пластид и собственные белки рибосом, тогда как на прикрепленных к шероховатой ЭПС рибосомах осуществляется трансляция белков для выведения из клеток, сборки мембран, образования лизосом и вакуолей.

Рибосомы могут находиться в гиалоплазме поодиночке или собираться в группы при одновре­менном синтезе на одной иРНК сразу нескольких полипептидных цепей. Такие группы рибосом называются полирибосомами, или полисомами (рис. 2.37).

Микротрубочки - это цилиндрические полые немембранные органоиды, которые пронизы­вают всю цитоплазму клетки. Их диаметр составляет около 25 нм, толщина стенки - 6-8 нм. Они образованы многочисленными молекулами белка тубулина, которые сначала формируют 13 нитей, напоминающих бусы, а затем собираются в микротрубочку. Микротрубочки образуют цитоплазматическую сеть, которая придает клетке форму и объем, связывают плазматическую мембрану с другими частями клетки, обеспечивают транспорт веществ по клетке, принимают уча­стие в движении клетки и внутриклеточных компонентов, а также в делении генетического ма­териала. Они входят в состав клеточного центра и органоидов движения - жгутиков и ресничек.

Микрофиламенты, или микронити, также являются немембранными органоидами, однако они имеют нитевидную форму и образованы не тубулином, а актином. Они принимают уча­стие в процессах мембранного транспорта, межклеточном узнавании, делении цитоплазмы клетки и в ее движении. В мышечных клетках взаимодействие актиновых микрофиламентов с миозино- выми нитями обеспечивает сокращение.

Микротрубочки и микрофиламенты образуют внутренний скелет клетки - цитоскелет. Он представляет собой сложную сеть волокон, обеспечивающих механическую опору для плазмати­ческой мембраны, определяет форму клетки, расположение клеточных органоидов и их переме­щение в процессе деления клетки (рис. 2.38).

Клеточный центр - немембранный органоид, располагающийся в животных клетках вблизи ядра; в растительных клетках он отсутствует (рис. 2.39). Его длина составляет около 0,2-0,3 мкм, а диаметр - 0,1-0,15 мкм. Клеточный центр образован двумя центриолями, лежащими во вза­имно перпендикулярных плоскостях, и лучистой сферой из микротрубочек. Каждая центриоль образована девятью группами микротрубочек, собранных по три, т. е. триплетами. Клеточный центр принимает участие в процессах сборки микротрубочек, делении наследственного материала клетки, а также в образовании жгутиков и ресничек.

Органоиды движения. Жгутики и реснички представляют собой выросты клетки, покрытые плазмалеммой. Основу этих органоидов составляют девять пар микротрубочек, расположенных по периферии, и две свободные микротрубочки в центре (рис. 2.40). Микротрубочки связаны междусобой различными белками, обеспечивающими их согласованное отклонение от оси - колебание. Колебания энергозависимы, то есть на этот процесс тратится энергия макроэргических связей АТФ. Расщепление АТФ является функцией базальных телец, или кинетосом, расположенных в основании жгутиков и ресничек.

Длина ресничек составляет около 10-15 нм, а жгутиков - 20-50 мкм. За счет строго на­правленных движений жгутиков и ресничек осуществляется не только движение одноклеточных животных, сперматозоидов и др., но и происходит очистка дыхательных путей, продвижение яйцеклетки по маточным трубам, поскольку все эти части организма человека выстланы реснит­чатым эпителием.

Самостоятельная биосистема, которая обладает основными свойствами всего живого. Так, она может развиваться, размножаться, двигаться, адаптироваться и изменяться. Кроме этого, любым клеткам присущ обмен веществ, специфическое строение, упорядоченность структур и функций.

Наука, которая занимается изучением клеток, - это цитология. Ее предметом являются структурные единицы многоклеточных животных и растений, одноклеточные организмы - бактерии, простейшие и водоросли, состоящие всего из одной клетки.

Если говорить об общей организации структурных единиц живых организмов, то они состоят из оболочки и ядра с ядрышком. Также в их состав входят органоиды клетки, цитоплазма. На сегодняшний день высокоразвиты разнообразные методы исследования, но ведущее место занимает микроскопия, которая позволяет изучать строение клеток и исследовать ее основные структурные элементы.

Что такое органоид?

Органоиды (их еще называют органеллами) - постоянные составляющие элементы любой клетки, которые делают ее целостной и выполняют определенные функции. Это структуры, которые являются жизненно необходимыми для поддержания ее деятельности.

К органоидам относятся ядро, лизосомы, эндоплазматическая сеть и комплекс Гольджи, вакуоли и везикулы, митохондрии, рибосомы, а также клеточный центр (центросома). Сюда также относят структуры, которые образуют цитоскелет клетки (микротрубочки и микрофиламенты), меланосомы. Отдельно следует выделить органоиды движения. Это реснички, жгутики, миофибриллы и псевдоножки.

Все эти структуры взаимосвязаны и обеспечивают скоординированную деятельность клеток. Именно поэтому на вопрос: «Что такое органоид?» - можно ответить, что это компонент, который можно приравнять к органу многоклеточного организма.

Классификация органоидов

Клетки отличаются размерами и формой, а также своими функциями, но при этом они имеют сходное химическое строение и единый принцип организации. При этом вопрос о том, что такое органоид и какие это структуры, достаточно дискуссионный. Так, например, лизосомы или вакуоли иногда не относят к клеточным органеллам.

Если говорить о классификации данных компонентов клеток, то выделяют немембранные и мембранные органоиды. Немембранные - это клеточный центр и рибосомы. Органоиды движения (микротрубочки и микрофиламенты) также лишены мембран.

В основе строения мембранных органелл лежит наличие биологической мембраны. Одномебранные и двумембранные органоиды имеют оболочку с единой структурой, которая состоит из двойного слоя фосфолипидов и белковых молекул. Она отделяет цитоплазму от внешней среды, помогает клетке сохранять форму. Стоит вспомнить, что в помимо мембраны еще есть и внешняя целлюлозная оболочка, которую называют клеточной стенкой. Она выполняет опорную функцию.

К мембранным органеллам относится ЭПС, лизосомы и митохондрии, а также лизосомы и пластиды. Их мембраны могут отличаться только по набору протеинов.

Если говорить о функциональной способности органелл, то некоторые из них способны синтезировать определенные вещества. Так, важные органоиды синтеза - митохондрии, в которых образуется АТФ. Рибосомы, пластиды (хлоропласты) и шероховатая эндоплазматическая сеть отвечают за синтез белков, гладкая ЭПС - за синтез липидов и углеводов.

Рассмотрим строение и функции органоидов более подробно.

Ядро

Данная органелла чрезвычайно важна, поскольку при ее удалении клетки перестают функционировать и погибают.

Ядро имеет двойную мембрану, в которой есть множество пор. При помощи них оно тесно связывается с эндоплазматической сетью и цитоплазмой. Данный органоид содержит хроматин - хромосомы, которые являются комплексом протеинов и ДНК. Учитывая это, можно сказать, что именно ядро является органеллой, которая отвечает за сохранение основного количества генома.

Жидкая часть ядра называется кариоплазмой. В ней содержатся продукты жизнедеятельности структур ядра. Наиболее плотная зона - ядрышко, в котором размещаются рибосомы, сложные белки и РНК, а также фосфаты калия, магния, цинка, железа и кальция. Ядрышко исчезает перед и формируется снова на последних этапах данного процесса.

Эндоплазматическая сеть (ретикулум)

ЭПС - одномембранный органоид. Он занимает половину объема клетки и состоит из канальцев и цистерн, которые связаны между собой, а также с цитоплазматической мембраной и внешней оболочкой ядра. Мембрана данного органоида имеет такую же структуру, что и плазмалема. Данная структура целостная и не открывается в цитоплазму.

Эндоплазматический ретикулум бывает гладким и гранулярным (шероховатым). На внутренней оболочке гранулярной ЭПС размещаются рибосомы, в которых проходит синтез протеинов. На поверхности гладкой эндоплазматической сети рибосомы отсутствуют, но здесь проходит синтез углеводов и жиров.

Все вещества, которые образуются в эндоплазматической сети, переносятся по системе канальцев и трубочек к местам назначения, где накапливаются и впоследствии используются в различных биохимических процессах.

Учитывая синтезирующую способность ЭПС, шероховатый ретикулум размещается в клетках, основная функция которых - образование протеинов, а гладкий - в клетках, синтезирующих углеводы и жиры. Кроме этого, в гладком ретикулуме накапливаются ионы кальция, которые нужны для нормального функционирования клеток или организма в целом.

Надо также отметить, что ЭПС является местом образования аппарата Гольджи.

Лизосомы, их функции

Лизосомы - это клеточные органоиды, которые представлены одномембранными мешочками округлой формы с гидролитическими и пищеварительными ферментами (протеазы, липазы и нуклеазы). Для содержимого лизосом характерна кислая среда. Мембраны данных образований изолируют их от цитоплазмы, предупреждая разрушение других структурных компонентов клеток. При высвобождении ферментов лизосомы в цитоплазму происходит саморазрушение клетки - автолиз.

Следует отметить, что ферменты первично синтезируются на шероховатой эндоплазматической сетке, после чего перемещаются в аппарат Гольджи. Здесь они проходят модификацию, упаковываются в мембранные пузырьки и начинают отделяться, становясь самостоятельными компонентами клетки - лизосомами, которые бывают первичными и вторичными.

Первичные лизосомы - структуры, которые отделяются от аппарата Гольджи, а вторичные (пищеварительные вакуоли) - это те, которые образуются вследствие слияния первичных лизосом и эндоцитозных вакуолей.

Учитывая такую структуру и организацию, можно выделить основные функции лизосом:

  • переваривание разных веществ внутри клетки;
  • уничтожение клеточных структур, которые не нужны;
  • участие в процессах реорганизации клеток.

Вакуоли

Вакуоли - это одномембранные органеллы сферической формы, которые являются резервуарами воды и растворенных в ней органических и неорганических соединений. В образовании данных структур участвует аппарат Гольджи и ЭПС.

В животной клетке вакуолей немного. Они мелкие и занимают не более 5% объема. Их основная роль - обеспечение транспорта веществ по всей клетке.

Вакуоли большие и занимают до 90% объема. В зрелой клетке есть только одна вакуоль, которая занимает центральное положение. Ее мембрану называют тонопластом, а содержимое - клеточным соком. Основные функции растительных вакуолей - обеспечение напряжения клеточной оболочки, накопление различных соединений и отходов жизнедеятельности клетки. Кроме того, эти органоиды растительной клетки поставляют воду, необходимую для процесса фотосинтеза.

Если говорить о составе клеточного сока, то в него входят следующие вещества:

  • запасные - органические кислоты, углеводы и протеины, отдельные аминокислоты;
  • соединения, которые образуются в процессе жизнедеятельности клеток и накапливаются в них (алкалоиды, дубильные вещества и фенолы);
  • фитонциды и фитогормоны;
  • пигменты, за счет которых плоды, корнеплоды и лепестки цветов окрашиваются в соответствующий цвет.

Комплекс Гольджи

Строение органоидов под названием «аппарат Гольджи» довольно простое. В клетках растений они выглядят как отдельные тельца с мембраной, в клетках животных они представлены цистернами, канальцами и пузырями. Структурная единица комплекса Гольджи - это диктиосома, которая представлена стопкой из 4-6 «цистерн» и мелких пузырьков, что отделяются от них и являются внутриклеточной транспортной системой, а также могут служить источником лизосом. Число диктиосом может колебаться от одной до нескольких сотен.

Комплекс Гольджи, как правило, размещается около ядра. В животных клетках - возле клеточного центра. Основными функциями этих органелл является следующее:

  • секреция и накопление протеинов, липидов и сахаридов;
  • модификация органических соединений, поступающих в комплекс Гольджи;
  • данный органоид является местом образования лизосом.

Следует отметить, что ЭПС, лизосомы, вакуоли, а также аппарат Гольджи вместе образуют канальцево-вакуолярную систему, которая разделяет клетку на отдельные участки с соответствующими функциями. Кроме того, данная система обеспечивает постоянное обновление мембран.

Митохондрии - энергетические станции клетки

Митохондрии - двумембранные органоиды палочковидной, шаровидной или нитевидной формы, которые синтезируют АТФ. Они имеют внешнюю гладкую поверхность и внутреннюю мембрану с многочисленными складками, которые называются кристами. Следует отметить, что число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, синтезирующие аденозинтрифосфат. Здесь энергия химических связей превращается в АТФ. Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза.

Внутренняя среда данных органелл называется матриксом. Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии - полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно.

Считается, что митохондрии возникли при попадании в клетку-хозяина аэробных прокариотических организмов, что привело к образованию специфического симбиотического комплекса. Так, митохондриальная ДНК имеет такое же строение, как и ДНК современных бактерий, а синтез белков и в митохондриях, и в бактериях ингибируется одинаковыми антибиотиками.

Пластиды - органоиды растительной клетки

Пластиды являются достаточно крупными органеллами. Они присутствуют только в клетках растений и образуются из предшественников - пропластид, содержат ДНК. Эти органоиды играют важную роль в метаболизме и отделены от цитоплазмы двойной мембраной. Кроме этого, в них может образовываться упорядоченная система внутренних мембран.

Пластиды бывают трех типов:

Рибосомы

Что такое органоид под названием называют состоящие из двух фрагментов (малой и большой субъединицы). Их диаметр составляет около 20 нм. Они встречаются в клетках всех типов. Это органоиды животных и растительных клеток, бактерий. Образуются эти структуры в ядре, после чего переходят в цитоплазму, где размещаются свободно или прикрепляются к ЭПС. В зависимости от синтезирующих свойств рибосомы функционируют в одиночку или объединяются в комплексы, образуя полирибосомы. В данном случае эти немембранные органеллы связываются молекулой информационной РНК.

Рибосома содержит 4 молекулы р-РНК, которые составляют ее каркас, а также различные белки. Основная задача данного органоида - сбор полипептидной цепи, что является первой стадией синтеза протеинов. Те белки, которые образуются рибосомами эндоплазматического ретикулума, могут использоваться всем организмом. Протеины для потребностей отдельной клетки синтезируются рибосомами, которые размещаются в цитоплазме. Следует отметить, что рибосомы также встречаются в митохондриях и пластидах.

Цитоскелет клетки

Клеточный цитоскелет образуется микротрубочками и микрофиламентами. Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент - белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина. Микротрубочки располагаются в гиалоплазме и выполняют следующие функции:

  • создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;
  • принимают участие в процессе распределения хромосом клетки;
  • обеспечивают перемещение органелл;
  • содержатся в клеточном центре, а также в жгутиках и ресничках.

Микрофиламенты - нити, которые размещаются под и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр (центросома)

Данная органелла состоит из 2 центриолей и центросферы. Центриоль цилиндрической формы. Ее стенки образуются тремя микротрубочками, которые сливаются между собой посредством поперечных сшивок. Центриоли располагаются парами под прямым углом друг к другу. Следует отметить, что клетки высших растений лишены данных органоидов.

Основная роль клеточного центра - обеспечение равномерного распределения хромосом в ходе клеточного деления. Также он является центром организации цитоскелета.

Органеллы движения

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками. При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами - это органоиды животной клетки. Миофибриллы, как правило, размещаются в миоцитах - клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

Следует отметить, что пучки миофибрилл состоят из темных волокон - это анизотропные диски, а также светлых участков - это изотропные диски. Структурная единица миофибриллы - саркомер. Это участок между анизотропным и изотропным диском, который имеет актиновые и миозиновые нити. При их скольжении происходит сокращение саркомера, что приводит к движению всего мышечного волокна. При этом используется энергия АТФ и ионы кальция.

При помощи жгутиков движутся простейшие и сперматозоиды животных. Реснички являются органом движения инфузории-туфельки. У животных и человека они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Большинство растений не могут перемещаться в пространстве. Их движения заключаются в росте, перемещениях листьев и изменениях потока цитоплазмы клеток.

Заключение

Несмотря на все разнообразие клеток, все они имеют сходную структуру и организацию. Строение и функции органоидов характеризуются идентичными свойствами, обеспечивая нормальное функционирование как отдельной клетки, так и всего организма.

Эту закономерность можно выразить следующим образом.

Таблица «Органоиды клетки эукариот»

Органоид

Растительная клетка

Животная клетка

Основные функции

хранение ДНК, транскрипция РНК и синтез протеинов

эндоплазматическая сетка

синтез протеинов, липидов и углеводов, накопление ионов кальция, образование комплекса Гольджи

митохондрии

синтез АТФ, собственных ферментов и белков

пластиды

участие в фотосинтезе, накопление крахмала, липидов, протеинов, каротиноидов

рибосомы

сбор полипептидной цепи (синтез белков)

микротрубочки и микрофиламенты

позволяют клетке сохранять определенную форму, являются составной частью клеточного центра, ресничек и жгутиков, обеспечивают перемещение органелл

лизосомы

переваривание веществ внутри клетки, уничтожение ее ненужных структур, участие в реорганизации клеток, обусловливают автолиз

большая центральная вакуоль

обеспечивает напряжение клеточной оболочки, накапливает питательные вещества и продукты жизнедеятельности клетки, фитонциды и фитогормоны, а также пигменты, является резервуаром воды

комплекс Гольджи

секретирует и накапливает протеины, липиды и углеводы, модифицирует питательные вещества, которые поступают в клетку, отвечает за образование лизосом

клеточный центр

есть, кроме высших растений

является центром организации цитоскелета, обеспечивает равномерное расхождение хромосом при делении клеток

миофибриллы

обеспечивают сокращение мышечной ткани

Если сделать выводы, то можно сказать, что существуют незначительные различия между животной и растительной клеткой. При этом функциональные особенности и строение органоидов (таблица, указанная выше, подтверждает это) имеет общий принцип организации. Клетка функционирует как слаженная и целостная система. При этом функции органоидов взаимосвязаны и направлены на оптимальную работу и поддержание жизнедеятельности клетки.



Похожие статьи