Что такое фокус линзы в физике. Линзы

08.04.2019

Прозрачные тела, у которых хотя бы одна поверхность искривлена, называются линзами. Чаще всего бывают линзы, симметричные относительно оптической оси. Оптические особенности линзы зависят от радиуса и вида искривления.

Собирающая линза

У выпуклых, или собирающих, линз середина толще, чем края. Параллельный пучок света, например, солнечный луч, падает на выпуклую линзу. Линза собирает пучок света в фокусе F. Расстояние от средней плоскости до фокуса называется фокусным расстоянием линзы f. Чем оно короче, тем больше оптическая сила линзы. Эта сила измеряется в диоптриях.

Возьмем линзу с фокусным расстоянием 0.5 метра. Тогда оптическая сила линзы равна единице, деленной на фокусное расстояние: 1/0.5 м = 2 диоптрии.

Рассеивающая линза

Вогнутые или рассеивающие линзы - это такие линзы, у которых толщина краев больше, чем толщина посередине.

В этом случае, параллельный пучок света будет рассеиваться. При этом будет казаться, что луч света выходит из одной точки, которая называется мнимым фокусом. Фокусное расстояние в данном случае будет отрицательно и соответственно оптическая сила рассеивающей линзы тоже будет отрицательна.

Возьмем линзу с фокусным расстоянием -0.25 метра. Тогда оптическая сила будет равна: 1/-0.25 = -4 диоптрии.


Принцип построения изображения собирающей линзой

Собирающая линза дает действительное изображение. Только оно будет перевернуто вверх ногами.

Если мы хотим получить более точное изображение, то, зная длину фокуса, мы можем построить это изображение. Для этого нам необходимы три луча.

Луч, распространяющийся параллельно оптической оси, преломляющийся в линзе и проходящий через фокус, называется параллельным лучом.

Луч, проходящий через центр линзы, называется основным лучом. Он не преломляется.

Луч, который проходит перед линзой через фокус и затем распространяется параллельно оптической оси, называется фокусным лучом. В той точке, где пересекаются все три луча, будет наиболее четкое изображение.

Если расстояние от предмета до линзы очень велико, то расстояние от изображения этого предмета до линзы будет намного меньше, т.е. изображение будет уменьшенным.

Если расстояние от предмета в два раза больше фокусного расстояния, то изображение будет такого же размера, как и сам предмет, и находится оно будет на двойном фокусном расстоянии за линзой.

Если приблизить предмет к фокусу, то мы получим увеличенное изображение, находящееся на большом расстоянии по другую сторону линзы.

Если предмет находится прямо в фокусе или еще ближе к линзе, то мы получим нечеткое изображение.

ЛИНЗА

(нем. Linse, от лат. lens - чечевица), прозрачное тело, ограниченное двумя поверхностями, преломляющими световые лучи, способное формировать оптич. изображения предметов, светящихся собственным или отражённым светом. Л. явл. одним из осн. элементов оптич. систем. Наиболее употребительны Л., обе поверхности к-рых обладают общей осью симметрии, а из них - Л. со сферич. поверхностями, изготовление к-рых наиболее просто. Менее распространены Л. с двумя взаимно перпендикулярными плоскостями симметрии; их поверхности цилиндрич. или тороидальные. Таковы Л. в очках, предписываемых при астигматизме глаза, Л. для анаморфотных насадок и т. д.

Материалом для Л. обычно служит оптич. и органич. стекло. Спец. Л., предназначенные для работы в УФ области спектра, изготовляют из кристаллов кварца, флюорита, фтористого лития и др., в ИК - из особых сортов стекла, кремния, германия, флюорита, фтористого лития, йодистого цезия и др.

Описывая оптич. св-ва осесимметричной Л., чаще всего рассматривают лучи, падающие на неё под малым углом к оси, т. н. параксиальный пучок лучен.

Действие Л. на эти лучи определяется положением её кардинальных точек - т. н, главных точек Н и Н", в к-рых пересекаются с осью главные плоскости Л., а также переднего и заднего главных фокусов F и F" (рис. 1). Отрезки HF=f и H"F"=f наз. фокусными расстояниями Л. (если среды, с к-рыми граничит Л., обладают одинаковыми показателями преломления, всегда f=f"); точки пересечения О и О" поверхностей Л. с осью наз. её вершинами, а расстояния между вершинами - толщиной Л. d.

Если направления фокусного расстояния совпадают с направлением лучей света, то его считают положительным, так, напр., на рис. 1 лучи проходят через Л. направо и так же ориентирован отрезок Н"F". Поэтому здесь f">0, а f

Л. изменяют направления падающих на неё лучей. Если Л. преобразует параллельный пучок в сходящийся, её называют собирающей; если параллельный пучок превращается в расходящийся, Л. называют рассеивающей. В главном фокусе F" собирающей Л. пересекаются лучи, к-рые до преломления были параллельны её оси. Для такой Л. f" всегда положительно. В рассеивающей Л. F" - точка пересечения не самих лучей, а их воображаемых продолжений в сторону, противоположную направлению распространения света. Поэтому для них всегда f"

Мерой преломляющего действия Л. служит её Ф - величина, обратная фокусному расстоянию (Ф=1/f") и измеряемая в диоптриях (м-1). У собирающих Л. Ф>0, поэтому их ещё именуют положительными, рассеивающие Л. (Ф фокусное расстояние равно бесконечности). Они не собирают и не рассеивают лучей, но создают аберрации (см. АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ) и применяются в зеркально-линзовых (а иногда и в линзовых) объективах как компенсаторы аберраций.

Все параметры, определяющие оптич. св-ва Л., ограниченной сферич. поверхностями, могут быть выражены через радиусы кривизны r1 и r2 её поверхностей, толщину Л. по оси d и n её материала. Напр., оптич. и фокусное расстояние Л. задаются соотношением (верным лишь для параксиальных лучей) :

Радиусы r1 и r2 считаются положительными, если направление от вершин Л. до центра соответствующей поверхности совпадает с направлением лучей (на рис. 1 r1=OF">0, r2=O"F

Первые три - положительны, последние три - отрицательны. Л. наз. тонкой, если её толщина d мала по сравнению с r1 и r2. Достаточно точное выражение для оптич. силы такой Л. получают и без учёта второго члена в (1).

Положение гл. плоскостей Л. относительно её вершин (расстояния ОН и О"Н") тоже можно определить, зная r1, r2, n и d. Расстояние между главными плоскостями мало зависит от формы и оптич. силы Л. и приблизительно равно d(n-1)/n. В случае тонкой Л. это расстояние мало и практически можно считать, что главные плоскости совпадают.

Когда положение кардинальных точек известно, положение оптич. изображения точки, даваемого Л. (рис. 1), определяется ф-лами:

где V - линейное увеличение Л. (см. УВЕЛИЧЕНИЕ ОПТИЧЕСКОЕ); l и l" - расстояния от точки и её изображения до оси (положительные, если они расположены выше оси); х - расстояние от переднего фокуса до точки; х" - расстояние от заднего фокуса до изображения. Если t и t" - расстояния от главных точек до плоскостей и изображения соответственно, то

т. к. x=t-f, x"=t"-f")

f"/t"+f/t=1 или 1/t"-1/t=1/f". (3)

В тонких Л. t и t" можно отсчитывать от соответствующих поверхностей Л.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЛИНЗА

(нем. Linse, от лат. lens - чечевица) - простейший оптич. элемент, изготавливаемый из прозрачного материала, ограниченный двумя преломляющими поверхностями, имеющими общую ось либо две взаимно перпендикулярные плоскости симметрии. При изготовлении Л. для видимой области применяют оптическое стекло или органическое стекло (массовое тиражирование непрецизионных деталей), в УФ-диапазоне - , флюорит и др., в ИК-диапазоне - спец. сорта стёкол, германий, ряд солей и т. д.

Рабочие поверхности Л. обычно имеют сферич. форму, реже - цилиндрическую, тороидальную, конусообразную или с заданными небольшими отступлениями от сферы (асферическую). Л. со сферич. поверхностями наиб. просты в изготовлении и являются осн. элементами большинства оптич. систем.

В параксиальном приближении (углы между лучами и оптич. осью столь малы, что можно заменить sinи на свойства Л. со сферич. поверхностями могут быть однозначно охарактеризованы положением главных плоскостей и оптической силой Ф, представляющей собой выражаемую в диоптриях величину, обратную фокусному расстоянию (в м). Связь этих характеристик с геом. параметрами Л. ясны из рис., в к-ром для наглядности углы наклона лучей изображены преувеличенно большими. Расстояния от первой по ходу лучей поверхности линзы до первой гл. плоскости Я и от второй поверхности до второй гл. плоскости H " равны соответственно

S 1, 2

Фокусное расстояние от H до переднего фокуса (F)f = -1/Ф, от до заднего фокуса I оптич. сила Л., являющаяся мерой её преломляющего действия, равна

Здесь п - показатель преломления вещества Л. (или отношение этого показателя к показателю преломления окружающей среды, если последний 1), d - измеренная вдоль оси толщина Л., r 1 и r 2 - радиусы кривизны её поверхностей (считаются положительными, если центры кривизны расположены дальше по ходу лучей; так, у изображённой на рис. двояковыпуклой Л. r 1 >0, r 2 <0), расстояния отсчитываются вдоль направления распространения света.

Способ построения и расчёта траекторий проходящих через Л. меридиональных (лежащих в осевой плоскости) лучей с использованием гл. плоскостей ясен из рис. После прохождения Л. кажется исходящим из точки на удалённой от оси на то же расстояние h, что и точка пересечения исходного луча с Я. Угол между лучом и осью изменяется на Для нахождения траектории произвольного немеридионального луча последний проецируется на две взаимно перпендикулярные осевые плоскости. Каждая проекция является по существу меридиональным лучом и ведёт себя указанным выше образом.

Положение даваемого Л. изображения точки определяется ф-лами

где l и - расстояния от гл. плоскостей до плоскостей предмета и изображения соответственно (рис.), b и - расстояния точки и её изображения от оси (отсчитываемые вверх).


Если Л. наз. положительной или собирающей, при - отрицательной или рассеивающей; линзы с Ф=0 наз. афокальными и используются гл. обр. для исправления аберраций др. оптич. элементов. Положительные Л. дают действительные изображения всех действительных объектов, находящихся до переднего фокуса (на рис.- левее F), и всех мнимых объектов, находящихся за Л. Рассеивающие Л. дают расположенное между Л. и передним фокусом прямое, мнимое, уменьшенное изображение действит. объектов.

Расстояние между гл. плоскостями Л. почти не зависит от её оптич. силы и формы и примерно равно d (1-1/n ). Когда пренебрежимо мало по сравнению с Л. наз. тонкой. У тонких Л. знак оптич. силы Ф совпадает со знаком разности 1/r 1 -1/r 2 ; при этом толщина собирающих Л. по мере удаления от оси уменьшается, а рассеивающих - возрастает. Обе гл. плоскости тонких Л. можно считать совпадающими с плоскостью Л. и отсчитывать введённые выше расстояния /,l, прямо от последней. Чёткой границы между толстыми Л. (когда нельзя пренебречь) и тонкими не существует - всё зависит от конкретных применений.

Для преобразования высококогерентных световых пучков (обычно лазерного происхождения) используются преим. тонкие Л. Их часто наз. квадратичными фазовыми корректорами: при прохождении когерентного пучка через тонкую Л. к распределению фазы по его сечению добавляется величина где k = - волновой вектор, = ( п- 1) - вносимая Л. дополнит. , являющаяся квадратичной ф-цией удаления r от оси. Распределение комплексной амплитуды поля в фокальной плоскости Л. с точностью до фазового множителя является фурье-образом распределения амплитуды поля перед Л., вычисленным для пространственных частот (х, у - поперечные координаты на фокальной плоскости). Распределение интенсивности в той же плоскости подобно угл. распределению излучения с коэф. Поэтому Л. широко применяются в системах пространственной фильтрации излучения, обычно представляющих собой комбинацию Л. с установленными в их фокальных плоскостях диафрагмами, растрами, и в устройствах для измерения угл. излучения.

Л. обладают всеми аберрациями, присущими цент-риров. оптич. системам (см. Аберрации оптических систем ). Проблема аберраций особенно важна при использовании широкополосных и обладающих большими угл. апертурами световых пучков обычных (некогерентных) источников. Сферич. и хроматич. аберрации, а также могут быть в значит. степени исправлены путём комбинирования двух Л. разл. формы и из материалов с разл. дисперсией. Такие двухлинзовые системы широко используются в качестве объективов для зрительных труб и т. п. Иногда сферич. аберрации уничтожаются с помощью Л. с асферической, в частности параболоидальной, формой поверхности.

Для коррекции разл. дефектов глаза применяются Л. не только со сферическими, но также с цилиндрич. и торич. поверхностями. Цилиндрич. Л. сравнительно часто используются в тех случаях, когда изображение точечного источника должно быть "растянуто" в полосу или линию (напр., в спектральных приборах).

Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Гудмен Д ж., Введение в Фурье-оптику, пер. с англ.. М.. 1970. Ю. А . Ананьев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

    На рисунке приведены элементы двояковыпуклой линзы. C1 и C2 - центры ограничивающих сферических поверхностей, называемые центрами кривизны ; R1 и R2 - радиусы сферических поверхностей, называемые радиусами кривизны . Прямая, соединяющая центры кривизны C1 и C2, называется главной оптической осью . Для плоско-выпуклой или плоско-вогнутой линзы главной оптической осью является прямая, проходящая через центр кривизны перпендикулярно к плоской поверхности линзы. Точки пересечения главной оптической оси с поверхностью А и Б называются вершинами линзы . Расстояние между вершинами АБ называется осевой толщиной .

    Свойства линз

    Наиважнейшей особенностью положительных линз является способность давать изображение предметов. Действие положительных линз состоит в том, что они собирают падающие лучи, поэтому их называют собирательными .

    Это свойство объясняется тем, что собирательная линза представляет собой совокупность множества трехгранных призм, расположенных по кругу и обращенных к центру круга своими основаниями. Поскольку такие призмы отклоняют падающие на них лучи к своим основаниям, пучок лучей, падающий на всю поверхность собирательной линзы, собирается в направлении к оси круга, т.е. к оптической оси.

    Если из светящейся точки S, лежащей на оптической оси собирательной линзы, направить пучок расходящихся лучей света, то расходящийся пучок превратится в сходящийся, и в точке схода лучей образуется действительное изображение S` светящейся точки S. Поместив в точке S` какой-либо экран, можно увидеть на нем изображение светящейся точки S. Его называют действительным изображением.

    Образование действительного изображения светящейся точки. S` - действительное изображение точки S

    Отрицательные линзы, в противоположность положительным, рассеивают падающие на них лучи. Поэтому они называются рассеивающими .

    Если такой же пучок расходящихся лучей направить на рассеивающую линзу, то, пройдя сквозь нее, лучи отклоняются в стороны от оптической оси. Вследствие этого рассеивающие линзы не дают действительного изображения. В оптических системах, дающих действительное изображение, и, в частности, в фотообъективах рассеивающие линзы применяются только совместно с собирательными.

    Фокус и фокусное расстояние

    Если из точки, лежащей в бесконечности на главной оптической оси, направить на линзу пучок света (такие лучи можно считать практически параллельными), то лучи соберутся в одной точке F, лежащей также на главной оптической оси. Эта точка называется главным фокусом , расстояние f от линзы до этой точки - главным фокусным расстоянием , а плоскость MN, проходящая через главный фокус перпендикулярно оптической оси линзы, - главной фокальной плоскостью .

    Главный фокус F и главное фокусное расстояние f линзы

    Фокусное расстояние линзы зависит от кривизны ее выпуклых поверхностей. Чем меньше радиусы кривизны, т.е. чем выпуклее стекло, тем короче ее фокусное расстояние.

    Оптическая сила линзы

    Оптической силой линзы называется ее преломляющая способность (способность сильнее или слабее отклонять лучи света). Чем больше фокусное расстояние, тем меньше преломляющая способность. Оптическая сила линзы обратно пропорциональна фокусному расстоянию.

    Единицей измерения оптической силы является диоптрия , обозначаемая буквой D. Выражение оптической силы в диоптриях удобно тем, что, во-первых, оно позволяет по знаку определить, с какой линзой (собирательной или рассеивающей) имеют дело и, во-вторых, тем, что позволяет легко определить оптическую силу системы из двух и большего числа линз.

    Образование картинки

    Падая на предмет, лучи света отражаются от каждой точки его поверхности во всех возможных направлениях. Если перед освещенным предметом поместить собирательную линзу, то от каждой точки предмета на линзу упадет конический пучок лучей.

    Пройдя через линзу, лучи снова соберутся в одну точку, и в месте схода лучей возникнет действительное изображение взятой точки предмета, а совокупность изображений всех точек предмета образует изображение всего предмета. Рисунок позволяет также легко уяснить причину того, почему изображение предметов всегда получается перевернутым.

    Подобным же образом возникает изображение предметов в фотоаппарате при помощи фотографического объектива, который представляет собой собирательную оптическую систему и действует подобно положительной линзе.

    Пространство, которое находится перед объективом и в котором расположены фотографируемые предметы, называется предметным пространством, а расположенное за объективом пространство, в котором визуализируются предметы, называется пространством изображений.

Виды линз

Отражение и преломление света используют для того, чтобы изменять направление лучей или, как говорят, управлять световыми пучками. На этом основано создание специальных оптических приборов, таких, например, как лупа, телескоп, микроскоп, фотоаппарат и другие. Главной частью большинства из них является линза. Например, очки - это линзы, заключенные в оправу. Уже этот пример показывает, какое значение имеет для человека применение линз.

Например на первом рисунка колба такая, какой мы её видим в жизни,

а на второй, если будем смотреть на неё через лупу (та же линза).

В оптике чаще всего используют сферические линзы. Такие линзы представляют собой тела, изготовленные из оптического или органического стекла, ограниченные двумя сферическими поверхностями.

Линзами называют прозрачные тела, ограниченные с двух сторон кривыми поверхностями (выпуклыми или вогнутыми). Прямая АВ, проходящая через цетры С1 и С2 сферических поверхностей, ограничивающих линзу, называется оптической осью.

На этом рисунке изображены сечения двух линз с центрами в точке О. Первая линза, изображенная на рисунке, называется выпукло, вторая - вогнутой. Точку О, лежащую на оптической оси в центе указанных линз, называют оптическим центром линзы.

Одна из двух ограничивающих поверхностей может быть и плоской.

Слева линзы – выпуклые,

справа - вогнутые.

Мы будем рассматривать только сферические линзы, то есть линзы, ограниченные двумя шаровыми (сферическими) поверхностями.
Линзы, ограниченные двумя выпуклыми поверхностями, называются двояковыпуклыми; линзы, ограниченные двумя вогнутыми поверхностями, называются двояковогнутыми.

Направив на выпуклую линзу пучок лучей, параллельных главной оптической оси линзы, мы увидим, что после преломления в линзе эти лучи собирается в точке, которая называется главным фокусом линзы

- точка F. Главных фокусов у линзы два, с обоих сторон на одинаковом расстоянии от оптического центра. Если источник света находится в фокусе, то после преломления в линзе лучи будут параллельны главной оптической оси. У всякой линзы два фокуса - по одному с каждой стороны линзы. Расстояние от линзы до её фокуса называется фокусным расстоянием линзы.
Направим на выпуклую линзу пучок расходящихся лучей от точечного источника, лежащего на оптической оси. Если расстояние от источника до линзы больше фокусного, то лучи после преломления в линзе пересекут оптическую ось линзы в одной точке. Следовательно, выпуклая линза собирает лучи, идущие от источников, находящихся от линзы на расстоянии, большем её фокусного расстояния. Поэтому выпуклая линза иначе называется собирающей.
При прохождении лучей через вогнутую линзу наблюдается другая картина.
Пустим пучок лучей, параллельных оптической оси, на двояковогнутую линзу. Мы заметим, что из линзы лучи выйдут расходящимся пучком. Если этот расходящийся пучок лучей попадёт в глаз, то наблюдателю будет казаться, что лучи выходят из точки F. Эта точка называется мнимым фокусом двояковогнутой линзы. Такую линзу можно назвать рассеивающей.

Рисунок 63 поясняет действие, собирающих и рассеивающих линз. Линзы можно представить в виде большого числа призм. Поскольку призмы отклоняют лучи, как показано на рисунках, то понятно, что линзы с утолщением по середине собирают лучи, а линзы с утолщением по краям рассеивают их. Середина линзы действует, как плоскопараллельная пластинка: она не отклоняет лучи ни в собирающей, ни в рассеивающей линзе

На чертежах собирающие линзы обозначают так, как показано на рисунке слева, а рассеивающие - на рисунке справа.

Среди выпуклых линз различают: двояковыпуклые, плосковыпуклые и вогнуто-выпуклые (соответственно на рис.). У всех выпуклых линз середина разреза шире, чем края. Эти линзы называют собирающими. Среди вогнутых линз есть двояковогнутые, плоско- вогнутые и выпукло-вогнутые (соответственно на рис.). У всех вогнутых линз середина сечения уже, чем края. Эти линзы называют рассеивающими.

Свет - это электромагнитное излучение, воспринимаемое глазом по зрительному ощущению.

  • Закон прямолинейного распространения света: свет в однородной среде распространяется прямолинейно
  • Источник света, размеры которого малы по сравнению с расстоянием до экрана, называют точечным источником света.
  • Луч падающий и луч отраженный лежат в одной плоскости с перпендикуляром, восстановленным к отражающей поверхности в точке падения. Угол падения равен углу отражения.
  • Если точечный объект и его отражение поменять местами, от ход лучей при этом не изменится, изменится лишь их направление.
    Зевкально отражающая поверхность называется плоским зеркалом, если падающий на неё пучек параллельных лучей после отражения остаётся параллельным.
  • Линза, толщина которой намного меньше радиусов кривизны её поверхностей, называется тонкой линзой.
  • Линза, которая преобразует пучек параллельных лучей в сходящийся и собирает его в одну точку, называется собирающей линзой.
  • Линза, которая преобразует пучек параллельных лучей в расходящийся - рассеивающей.

Для собирающей линзы

Для рассеивающей линзы:

    При всех положениях предмета линза даёт уменьшенное, мнимое, прямое изображение, лежащее по ту же сторону линзы, что и предмет.

Свойства глаза:

  • аккомодация (достигается изменением формы хрусталиков);
  • адаптация (приспособление к различным условиям освещенности);
  • острота зрения (способность раздельно различать две близкие точки);
  • поле зрения (пространство, наблюдаемое при движении глаз, но неподвижной голове)

Недостатки зрения

    близорукость (коррекция - рассеивающая линза);

дальнозоркость (коррекция - собирающая линза).

Тонкая линза представляет простейшую оптическую систему. Простые тонкие линзы применяются главным образом в виде стекол для очков. Кроме того, общеизвестно применение линзы в качестве увеличительного стекла.

Действие многих оптических приборов – проекционного фонаря, фотоаппарата и других приборов - может быть схематически уподоблено действию тонких линз. Однако тонкая линза дает хорошее изображение только в том сравнительно редком случае, когда можно ограничиться узким одноцветным пучком, идущим от источника вдоль главной оптической оси или под большим углом к ней. В большинстве же практических задач, где эти условия не выполняются, изображение, даваемое тонкой линзой, довольно не совершенно.
Поэтому в большинстве случаев прибегают к построению более сложных оптических систем, имеющих большое число преломляющих поверхностей и не ограниченных требованием близости этих поверхностей (требование, которому удовлетворяет тонкая линза). [ 4 ]

4.2 Фотографический аппарат. Оптические приборы.

Все оптические приборы можно разделить на две группы:

1) приборы, при помощи которых получают оптические изображения на экране. К ним относятся проекционные аппараты, фотоаппараты, киноаппараты и др.

2) приборы, которые действуют только совместно с человеческими глазами и не образуют изображений на экране. К ним относится лупа, микроскоп и различные приборы системы телескопов. Такие приборы называются визуальными.

Фотоаппарат.

Современные фотоаппараты имеют сложное и разнообразное строение, мы же рассмотрим из каких основных элементов состоит фотоаппарат и как они работают.

Линзы. Оптические приборы

Линзой называется прозрачное тело, которое ограничено двумя криволинейными поверхностями.

Линза называется тонкой , если ее толщина значительно меньше радиусов кривизны ее поверхностей.

Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью линзы. Если одна из поверхностей линзы является плоскостью, то оптическая ось проходит перпендикулярно к ней (рис.1).


Рис.1.

Точка тонкой линзы, через которую лучи проходят без изменения своего направления, называется оптическим центром линзы. Главная оптическая ось проходит через оптический центр.

Любая другая прямая, проходящая через оптический центр линзы, называется побочной осью линзы. Точка, в которой сходятся лучи света, идущие параллельно главной оптической оси, называется фокусом .

Плоскость, проходящая через фокус перпендикулярно к главной оптической оси, называется фокальной плоскостью .

Формула тонкой линзы (рис.2):

В формуле (1) величины a 1 , a 2 , r 1 и r 2 считаются положительными, если направления отсчета их от оптического центра линзы совпадают с направлением распространения света; в противном случае эти величины считаются отрицательными.

Линзы являются основным элементом многих оптических приборов.

Глаз, например, представляет собой оптический прибор, где роль линз выполняют роговица и хрусталик, а изображение предмета получается на сетчатке глаза.

Углом зрения называется угол, образованный лучами, которые проходят от крайних точек предмета или его изображения через оптический центр хрусталика глаза.

Многие оптические приборы предназначены для получения изображений предметов на экранах, на светочувствительных пленках или в глазу.

Видимое увеличение оптического прибора:

Линза в оптическом приборе, обращенная к предмету (объекту), называется объективом; линза, обращенная к глазу, называется окуляром. В технических приборах объектив и окуляр состоят из нескольких линз. Этим частично устраняются погрешности в изображениях.

Увеличение лупы (рис.3):

Величина, обратная фокусному расстоянию, называется оптической силой линзы: В = 1/f . За единицу оптической силы линзы принята диоптрия (D ), равная оптической силе линзы с фокусным расстоянием 1 м.

Оптическая сила двух тонких линз, сложенных вместе, равна сумме их оптических сил.



Похожие статьи