С какой скоростью кровь движется по артериям. Особенности движения крови по сосудам

26.04.2019

в отдельных капиллярах определяют с помощью биомикроскопии, дополненной кинотелевизионным и другими методами. Среднее время прохождения эритроцита через капилляр большого круга кровообращения составляет у человека 2,5 с, в малом круге - 0,3-1 с.

Движение крови по венам

Венозная система принципиально отличается от артериальной .

Давление крови в венах

Значительно ниже, чем в артериях, и может быть ниже атмосферного (в венах, расположенных в грудной полости , - во время вдоха; в венах черепа - при вертикальном положении тела); венозные сосуды имеют более тонкие стенки, и при физиологических изменениях внутрисосудистого давления меняется их ёмкость (особенно в начальном отделе венозной системы), во многих венах имеются клапаны, препятствующие обратному току крови. Давление в посткапиллярных венулах равно 10-20 мм рт.ст., в полых венах вблизи сердца оно колеблется в соответствии с фазами дыхания от +5 до -5 мм рт.ст. - следовательно, движущая сила (ΔР) составляет в венах около 10-20 мм рт.ст., что в 5-10 раз меньше движущей силы в артериальном русле. При кашле и натуживании центральное венозное давление может возрастать до 100 мм рт.ст., что препятствует движению венозной крови с периферии. Давление в других крупных венах также имеет пульсирующий характер, но волны давления распространяются по ним ретроградно - от устья полых вен к периферии. Причиной появления этих волн являются сокращения правого предсердия и правого желудочка . Амплитуда волн по мере удаления от сердца уменьшается. Скорость распространения волны давления составляет 0,5-3,0 м/с. Измерение давления и объёма крови в венах, расположенных вблизи сердца, у человека чаще проводят с помощью флебографии яремной вены . На флебограмме выделяют несколько последовательных волн давления и кровотока, возникающих в результате затруднения притока крови к сердцу из полых вен во время систолы правых предсердия и желудочка. Флебография используется в диагностике, например, при недостаточности трехстворчатого клапана, а также при расчетах величины давления крови в малом круге кровообращения .

Причины движения крови по венам

Основная движущая сила - разность давлений в начальном и конечном отделах вен, создаваемой работой сердца. Имеется ряд вспомогательных факторов, влияющих на возврат венозной крови к сердцу.

1. Перемещение тела и его частей в гравитационном поле

В растяжимой венозной системе большое влияние на возврат венозной крови к сердцу оказывает гидростатический фактор. Так, в венах, расположенных ниже сердца, гидростатическое давление столба крови суммируется с давлением крови, создаваемым сердцем. В таких венах давление возрастает, а в расположенных выше сердца - падает пропорционально расстоянию от сердца. У лежащего человека давление в венах на уровне стопы равно примерно 5 мм рт.ст. Если человека перевести в вертикальное положение с помощью поворотного стола, то давление в венах стопы повысится до 90 мм рт.ст. При этом венозные клапаны предотвращают обратный ток крови, но венозная система постепенно наполняется кровью за счёт притока из артериального русла, где давление в вертикальном положении возрастает на ту же величину. Ёмкость венозной системы при этом увеличивается из-за растягивающего действия гидростатического фактора, и в венах дополнительно накапливается 400-600 мл притекающей из микрососудов крови; соответственно на эту же величину снижается венозный возврат к сердцу. Одновременно в венах, расположенных выше уровня сердца, венозное давление уменьшается на величину гидростатического давления и может стать ниже атмосферного . Так, в венах черепа оно ниже атмосферного на 10 мм рт.ст., но вены не спадаются, так как фиксированы к костям черепа. В венах лица и шеи давление равно нулю, и вены находятся в спавшемся состоянии. Отток осуществляется через многочисленные анастомозы системы наружной яремной вены с другими венозными сплетениями головы. В верхней полой вене и устье яремных вен давление в положении стоя равно нулю, но вены не спадаются из-за отрицательного давления в грудной полости. Аналогичные изменения гидростатического давления, венозной ёмкости и скорости кровотока происходят также при изменениях положения (поднимании и опускании) руки относительно сердца.

2. Мышечный насос и венозные клапаны

При сокращении мышц сдавливаются вены, проходящие в их толще. При этом кровь выдавливается по направлению к сердцу (обратному току препятствуют венозные клапаны). При каждом мышечном сокращении кровоток ускоряется, объём крови в венах уменьшается, а давление крови в венах снижается. Например, в венах стопы при ходьбе давление равно 15-30 мм рт.ст., а у стоящего человека - 90 мм рт.ст. Мышечный насос уменьшает фильтрационное давление и предупреждает накопление жидкости в интерстициальном пространстве тканей ног. У людей, стоящих длительное время, гидростатическое давление в венах нижних конечностей обычно выше, и эти сосуды растянуты сильнее, чем у тех, кто попеременно напрягает мышцы голени , как при ходьбе, для профилактики венозного застоя. При неполноценности венозных клапанов сокращения мышц голени не столь эффективны. Мышечный насос усиливает также отток лимфы по лимфатической системе .

3. Движению крови по венам к сердцу

способствует также пульсация артерий, ведущая к ритмичному сдавлению вен. Наличие клапанного аппарата в венах предотвращает обратный ток крови в венах при их сдавливании.

4. Дыхательный насос

Во время вдоха давление в грудной клетке уменьшается, внутригрудные вены расширяются, давление в них снижается до -5 мм рт.ст., происходит засасывание крови, что способствует возврату крови к сердцу, особенно по верхней полой вене. Улучшению возврата крови по нижней полой вене способствует одновременное небольшое увеличение внутрибрюшного давления, увеличивающее локальный градиент давления. Однако во время выдоха приток крови по венам к сердцу, напротив, уменьшается, что нивелирует возрастающий эффект.

5. Присасывающее действие сердца

способствует кровотоку в полых венах в систоле (фаза изгнания) и в фазе быстрого наполнения. Во время периода изгнания атриовентрикулярная перегородка смещается вниз, увеличивая объём предсердий, вследствие чего давление в правом предсердии и прилегающих отделах полых вен снижается. Кровоток увеличивается из-за возросшей разницы давления (присасывающий эффект атриовентрикулярной перегородки). В момент открытия атриовентрикулярных клапанов давление в полых венах снижается, и кровоток по ним в начальном периоде диастолы желудочков возрастает в результате быстрого поступления крови из правого предсердия и полых вен в правый желудочек (присасывающий эффект диастолы желудочков). Эти два пика венозного кровотока можно наблюдать на кривой объёмной скорости кровотока верхней и нижней полых вен.

Кровообращением называется движение крови по сосудистой системе. Оно обеспечивает газообмен между организмом и внешней средой, обмен веществ между всеми органами и тканями, гуморальную регуляцию различных функций организма и перенос образующегося в организме тепла. Кровообращение является процессом, необходимым для нормальной деятельности всех систем организма, в первую очередь — центральной нервной системы. Раздел физиологии, посвященный закономерностям течения крови по сосудам, называется гемодинамикой, основные законы гемодинамики основаны на законах гидродинамики, т.е. учения о движении жидкости в трубках.

Законы гидродинамики приложимы к системе кровообращения только в известных пределах и только с приблизительной точностью. Гемодинамика – это раздел физиологии о физических принципах, лежащих в основе движения крови по сосудам. Движущей силой кровотока является разница давления между отдельными участками сосудистого русла . кровь течет от области с бόльшим давлением к области с меньшим давлением. Этот градиентдавления служит источником силы, преодолевающей гидродинамическое сопротивление. Гидродинамическое соп­ротивление зависит от размеров сосудов и вязкости крови.

Основные гемодинамические показатели .

1. Объемная скорость движения крови . Кровоток, т.е. объем крови, проходящей за единицу времени через кровеносные сосуды в каком-нибудь отделе кровеносного русла, равен отношению разности средних давлений в артериальной и венозной частях этого отдела (или в любых других частях) к гидродинамическому сопротивлению. Объемная скорость кровотока отражает кровоснабжение какого-либо органа или ткани.

В гемодинамике этому гидродинамическому показателю соответствует объемная скорость крови, т.е. количество крови, протекающее через кровеносную систему в единицу времени, другими словами — минутный объем кровотока. Поскольку кровеносная система замкнутая, то через любое поперечное сечение ее в единицу времени проходит одно и то же количество крови. Кровеносная система состоит из системы ветвящихся сосудов, поэтому суммарный просвет растет, хотя просвет каждого разветвления постепенно уменьшается. Через аорту, также как через все артерии, все капилляры, все вены в минуту проходит один и тот же объем крови.

2. Второй гемодинамический показатель — линейная скорость движения крови .

Вы знаете, что скорость истечения жидкости прямо пропорциональна давлению и обратно пропорциональна сопротивлению. Следовательно, в трубках различного диаметра скорость течения крови тем больше, чем меньше сечение трубки. В кровеносной системе самым узким местом является аорта, наиболее широким капилляры (напомним, что мы имеем дело с суммарным просветом сосудов). Соответственно этому кровь в аорте движется гораздо быстрее — 500 мм/сек, чем в капиллярах — 0,5 мм/сек. В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте (рис.).

Линейная скорость различна для частиц крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудистой стенки. В центре сосуда линейная скорость максимальна, около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Результирующая всех линейных скоростей в различных частях сосудистой системы выражается временем кругооборота крови . Она у здорового человека в покое равна 20 секундам. Это значит, что одна и та же частица крови проходит через сердце каждую минуту 3 раза. При напряженной мышечной работе время кругооборота крови может уменьшаться до 9 секунд.

3. Сопротивление сосудистой системы — третий гемодинамический показатель. Протекая по трубке, жидкость преодолевает сопротивление, которое возникает вследствие внутреннего трения частиц жидкости между собой и о стенку трубки. Это трение будет тем больше, чем больше вязкость жидкости, чем уже ее диаметр и чем больше скорость течения.

Под вязкостью обычно понимают внутреннее трение, т. е. силы, влияющие на течение жидкости.

Однако следует учитывать, что существует механизм, препятствующий значительному повышению сопротивления в капиллярах. Он обусловлен тем, что в наиболее мелких сосудах (диаметром меньше 1 мм), эритроциты выстраиваются в так называемые монетные столбики и по­добно змее двигаются по капилляру в оболочке из плазмы, почти не контактируя со стенками капилляра. В результате этого условия кровотока улучшаются, и этот механизм частично препятст­вует значительному повышению сопротивления.

Гидродинамическое сопротивление зависит и от размеров сосудов от их длины и поперечного сечения. В суммарном виде уравнение, описывающее сосудистое сопротивление представляет следующее (формула Пуазейля):

R = 8ŋL/πr 4

где ŋ — вязкость, L — длина, π = 3,14 (число пи), r — радиус сосуда.

Кровеносные сосуды оказывают значительное сопротивление току крови, и сердцу приходится большую часть своей работы тратить на преодоление этого сопротивления. Основное сопротивление сосудистой системы сосредоточено в той ее части, где происходит разветвление артериальных стволов на мельчайшие сосуды. Однако максимальное сопротивление представляют самые мельчайшие артериолы. Причина заключается в том, что артериолы, имея почти такой же диаметр, как и капилляры, в общем длиннее и скорость течения крови в них выше. При этом величина внутреннего трения возрастает. Кроме того, артериолы способны к спазмированию. Общее сопротивление сосудистой системы все время увеличивается по мере удаления от основания аорты.

Давление крови в сосудах . Это — четвертый, и самый важный гемодинамический показатель, так как его легко измерить.

Если ввести в крупную артерию животного датчик манометра, то прибор обнаружит давление, колеблющееся в ритме сердечных сокращений около средней величины, равной примерно 100 мм рт ст. Существующее внутри сосудов давление создается работой сердца, нагнетающего кровь в артериальную систему в период систолы. Однако, и во время диастолы, когда сердце расслаблено и работы не производит, давление в артериях не падает до нуля, а лишь немного западает, сменяясь новым подъемом во время следующей систолы. Таким образом, давление обеспечивает непрерывный ток крови, несмотря на прерывистую работу сердца. Причина — в эластичности артерий.

Величина артериального давления определяется двумя факторами: количество крови, нагнетаемой сердцем, и сопротивлением, существующим в системе:

Ясно, что кривая распределения давления в сосудистой системе должна явиться зеркальным отражением кривой сопротивления. Так, в подключичной артерии собаки Р = 123 мм рт. ст. в плечевой — 118 мм, в капиллярах мышц 10 мм, лицевой вене 5 мм, яремной — 0,4 мм, в верхней полой вене -2,8 мм рт ст.

Среди этих данных обращает на себя внимание отрицательная величина давления в верхней полой вене. Она означает, что в непосредственно прилегающих к предсердию крупных венозных стволах давление меньше атмосферного. Создается оно присасывающим действием грудной клетки и самого сердца во время диастолы и способствует движению крови к сердцу.

Основные принципы гемодинамики

Другое с раздела: ▼

Учение о движении крови в сосудах основывается на законах гидродинамики-учение о движении жидкостей. Движение жидкости по трубам зависит: а) от давления в начале и конце трубы б) от сопротивления в этой трубе. Первый из этих факторов способствует, а второй — препятствует движению жидкости. Количество жидкости, текущей трубой, прямо пропорциональна разности давления в начале и в конце ее и обратно пропорциональна сопротивлению.

В системе кровообращения объем крови, которая течет сосудами, тоже зависит от величины давления в начале системы сосудов (в аорте — Р1) и в конце (в венах, впадающих в сердце, — Р2), а также от сопротивления сосудов.

Объем крови, текущей через каждый отдел сосудистого русла в единицу времени, одинаковый. Это означает, что за 1 мин через аорту, или легочные артерии, или суммарный поперечное сечение, проведенное на любом уровне всех артерий, капилляров, вен, протекает одинаковое количество крови. Это и есть МОК. Объем крови, текущей через сосуды, выражают в миллилитрах за 1 мин.

Сопротивление сосуда зависит, согласно формуле Пуазейля, от длины сосуда (l), вязкости крови (n) и радиуса сосуда (r).

Согласно уравнению, максимальное сопротивление движению крови должен быть в тончайших кровеносных сосудах — артериолах и капиллярах, а именно: около 50% общего периферического сопротивления приходится на артериолы и 25% на капилляры. Меньшее сопротивление в капиллярах объясняется тем, что они намного короче артериол.

На сопротивление влияет также вязкость крови, которая определяется прежде форменными элементами и в меньшей степени белками. У человека она составляет «С-5. Форменные элементы локализуются у стенок сосудов, перемещаются вследствие трения между собой и стенкой с меньшей скоростью, чем те, которые концентрируются в центре. Они и играют определенную роль в развитии сопротивления и давления крови.

Гидродинамическое сопротивление всей сосудистой системы непосредственно измерить невозможно. Однако его легко можно вычислить по формуле, помня, что P1 в аорте составляет 100 мм рт. ст. (13,3 кПа), а Р2 в полых венах — около 0.

Основные принципы гемодинамики. Классификация сосудов

Гемодинамика - раздел науки, изучающий механизмы дви­жения крови в сердечно-сосудистой системе. Он является частью гидродинамики раздела физики, изучающего движение жидкостей.

Согласно законам гидродинамики, количество жидкости (Q), про­текающее через любую трубу, прямо пропорционально разности давлений в начале (Р1) и в конце (P2) трубы и обратно пропорци­онально сопротивлению (P2) току жидкости:

Если применить это уравнение к сосудистой системе, то следует иметь в виду, что давление в конце данной системы, т. е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:

где Q - количество крови, изгнанное сердцем в минуту; Р - величина среднего давления в аорте, R - величина сосудистого сопротивления.

Из этого уравнения следует, что Р = Q*R, т. е. давление (Р) в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q) и величине периферического со­противления (R). Давление в аорте (P) и минутный объем крови (Q) можно измерить непосредственно. Зная эти величины, вычис­ляют периферическое сопротивление - важнейший показатель со­стояния сосудистой системы.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой (R) определяется по формуле Пуазейля:

где l - длина трубки; η- вязкость протекающей в ней жидкости; π- отношение окружности к диаметру; r- радиус трубки.

Сосудистая система состоит из множества отдельных трубок, соединенных параллельно и последовательно. При последовательном соединении трубок их суммарное сопротивление равно сумме сопротивлений каждой трубки:

R=R1+R2+R3+. +Rn

При параллельном соединении трубок их суммарное сопротив­ление вычисляют по формуле:

R=1/(1/R1+1/R2+1/R3+. +1/Rn)

Точно определить сопротивление сосудов по этим формулам невозможно, так как геометрия сосудов изменяется вследствие со­кращения сосудистых мышц. Вязкость крови также не является величиной постоянной. Например, если кровь протекает через сосуды диаметром меньше 1 мм, вязкость крови значительно уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нем крови. Это связано с тем, что в крови наряду с плазмой имеются форменные элементы, которые располагаются в центре потока. При­стеночный слой представляет собой плазму, вязкость которой на­много меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть площади его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Теоретический расчет сопротивления капилляров невозмо­жен, так как в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.

Из приведенных уравнений видно, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого 5- 7 мкм. Однако вследствие того что огромное количество капилляров включено в сосудистую сеть, по которой осуществляется ток крови, параллельно, их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления, или резистивными сосудами.

Артериолы представляют собой тонкие сосуды (диаметром 15- 70 мкм). Стенка этих сосудов содержит толстый слой циркулярно расположенных гладких мышечных клеток, при сокращении кото­рого просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол. Изменение сопротивле­ния артериол меняет уровень давления крови в артериях. В случае увеличения сопротивления артериол отток крови из артерий умень­шается и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления. Наибольшим сопротивлением среди всех участков сосудистой системы обладают именно артериолы, поэтому изменение их просвета является главным регулятором уровня общего артериального давления. Артериолы - «краны сердечно-сосудистой системы» (И. М. Сеченов). Открытие этих «кранов» увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны.

Итак, артериолы играют двоякую роль: участвуют в поддержании необходимого организму уровня общего артериального давления и в регуляции величины местного кровотока через тот или иной орган или ткань. Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем рабочей активности органа.

В работающем органе тонус артериол уменьшается, что обеспечи­вает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается. Суммарная величина общего периферического со­противления и общий уровень артериального давления остаются при­мерно постоянными, несмотря на непрерывное перераспределение крови между работающими и неработающими органами.

О сопротивлении в различных сосудах можно судить по разности давления крови в начале и в конце сосуда: чем выше сопротивление току крови, тем большая сила затрачивается на ее продвижение по сосуду и, следовательно, тем значительнее падение давления на протяжении данного сосуда. Как показывают прямые измерения давления крови в разных сосудах, давление на протяжении крупных и средних артерий падает всего на 10%, а в артериолах и капил­лярах - на 85%. Это означает, что 10% энергии, затрачиваемой желудочками на изгнание крови, расходуется на продвижение крови в крупных и средних артериях, а 85% - на продвижение крови в артериолах и капиллярах.

Зная объемную скорость кровотока (количество крови, протека­ющее через поперечное сечение сосуда), измеряемую в миллилитрах в секунду, можно рассчитать линейную скорость кровотока, которая выражается в сантиметрах в секунду. Линейная скорость (V) отра­жает скорость продвижения частиц крови вдоль сосуда и равна объемной (Q), деленной на площадь сечения кровеносного сосуда:

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности линейная скорость различна для частиц крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудистой стенки. В центре сосуда линейная скорость максимальна, около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Объем крови, протекающей в 1 мин через аорту или полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекший в 1 мин через всю артериальную и всю венозную систему большого и малого круга кровообращения, оди­наков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это следует из уравнения, выражающего соотношение линейной и объемной скорости: чем больше общая площадь сечения сосудов, тем меньше линейная скорость кровотока. В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то, что каждая ветвь сосуда уже той, от которой она произошла, наблюдается увеличение сум­марного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярной сети: сумма просветов всех капилляров примерно в 500-600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500-600 раз медленнее, чем в аорте.

В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте.

В связи с тем что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желу­дочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В пре­вращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки.

Непрерывный ток крови по всей сосудистой системе обусловли­вают выраженные упругие свойства аорты и крупных артерий.

В сердечно-сосудистой системе часть кинетической энергии, раз­виваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетиче­ская энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спасаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

С позиций функциональной значимости для системы кровообра­щения сосуды подразделяются на следующие группы:

1. Упруго-растяжимые - аорта с крупными артериями в большом круге кровообращения, легочная артерия с ее ветвями - в малом круге, т. е. сосуды эластического типа.

2. Сосуды сопротивления (резистивные сосуды) - артериолы, в том числе и прекапиллярные сфинктеры, т. е. сосуды с хорошо выраженным мышечным слоем.

3. Обменные (капилляры) - сосуды, обеспечивающие обмен газами и другими веществами между кровью и тканевой жидкостью.

4. Шунтирующие (артериовенозные анастомозы) - сосуды, обес­печивающие «сброс» крови из артериальной в венозную систему сосудов, минуя капилляры.

5. Емкостные - вены, обладающие высокой растяжимостью. Благодаря этому в венах содержится 75-80% крови.

Процессы, протекающие в последовательно соединенных сосудах, обеспечивающие циркуляцию (кругооборот) крови, называют сис­темной гемодинамикой. Процессы, протекающие в параллельно подключенных к аорте и полым венам сосудистых руслах, обеспе­чивая кровоснабжение органов, называют регионарной, или орган­ной, гемодинамикой.

На лучевой артерии, можно видеть, что пульсовая волна почти не «отстает» от удара сердца. Неужели кровь так быстро движется?

Конечно, нет. Как всякая жидкость, кровь просто передает оказываемое на нее давление. При систоле она передает во все стороны возросшее давление, и от аорты по упругим стенкам артерий бежит волна пульсового расширения. Бежит она в среднем со скоростью порядка 9 метров в секунду. При поражении сосудов атеросклерозом эта скорость возрастает, и исследование ее представляет собой одно из важных диагностических измерений в современной медицине.

Сама кровь движется гораздо медленнее, причем скорость эта в разных частях сосудистой системы совершенно различна. От чего же зависит различная скорость движения крови в артериях, капиллярах и венах? На первый взгляд может показаться, что она должна зависеть от уровня давления в соответствующих сосудах. Однако это неверно.

Представим себе реку, которая то суживается, то расширяется. Мы прекрасно знаем, что в узких местах ее течение будет быстрее, а в широких - медленнее. Это и понятно: ведь мимо каждой точки берега за одно и то же время протекает одно и то же количество воды. Поэтому там, где река уже, вода течет быстрее, а в широких местах течение замедляется. То же самое относится и к . Скорость течения крови в разных ее отделах определяется суммарной шириной русла этих отделов.

В самом деле, за секунду через правый желудочек проходит в среднем столько же крови, сколько через левый; столько же крови проходит в среднем через любую точку сосудистой системы. Если мы говорим, что у спортсмена при одной систоле может выбрасывать в аорту более 150 см 3 крови, это значит, что такое же количество при той же систоле выбрасывается из правого желудочка в легочную артерию. Это значит также, что во время систолы предсердий, которая на 0,1 секунды предшествует систоле желудочков, указанное количество крови также «в один прием» перешло из предсердий в желудочки. Иными словами, если в аорту может выбрасываться сразу 150 см 3 крови, отсюда следует, что не только левый желудочек, но и каждая из трех других камер сердца может вмещать и разом выбрасывать около стакана крови.

Если через каждую точку сосудистой системы проходит в единицу времени одинаковый объем крови, то в связи с разным суммарным просветом русла артерий, капилляров и вен скорость перемещения отдельных частиц крови, ее линейная скорость будет совершенно различна. Быстрее всего кровь течет в аорте. Здесь скорость тока крови составляет 0,5 метра в секунду. Хотя аорта - самый большой сосуд тела, она представляет собой самое узкое место сосудистой системы. Каждая из артерии, на которые распадается аорта, в десятки раз меньше ее. Однако число артерий измеряется сотнями, и потому в сумме их просвет много шире просвета аорты. Когда же кровь доходит до капилляров, она совсем замедляет свое течение. Капилляр во много миллионов раз меньше, чем аорта, однако число капилляров измеряется многими миллиардами. Поэтому кровь в них течет в тысячу раз медленнее, чем в аорте. Ее скорость в капиллярах составляет около 0,5 мм в секунду. Это имеет колоссальное значение, ибо, если бы кровь быстро проносилась через капилляры, она не успевала бы отдать тканям кислород. Поскольку же она течет медленно, причем движутся в один ряд, «гуськом», это создает наилучшие условия для контакта крови с тканями.

Полный оборот через оба круга кровообращения кровь совершает у человека и млекопитающих в среднем за 27 систол, для человека это 21-22 секунды.

Кровообращение — это движение крови по сосудистой системе, обеспечивающее газообмен между организмом и внешней средой, обмен веществ между органами и тканями и гуморальную регуляцию различных функций организма.

Система кровообращения включает сердце и — аорту, артерии, артериолы, капилляры, венулы, вены и . Кровь движется по сосудам благодаря сокращению сердечной мышцы.

Кровообращение совершается по замкнутой системе, состоящей из малого и большого кругов:

  • Большой круг кровообращения обеспечивает все органы и ткани кровью с содержащимися в ней питательными веществами.
  • Малый, или легочный, круг кровообращения предназначен для обогащения крови кислородом.

Круги кровообращения впервые были описаны английским ученым Уильямом Гарвеем в 1628 г. в труде «Анатомические исследования о движении сердца и сосудов».

Малый круг кровообращения начинается из правого желудочка, при сокращении которого венозная кровь попадает в легочный ствол и, протекая через легкие, отдает диоксид углерода и насыщается кислородом. Обогащенная кислородом кровь из легких по легочным венам поступает в левое предсердие, где заканчивается малый круг.

Большой круг кровообращения начинается из левого желудочка, при сокращении которого кровь, обогащенная кислородом, нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венулам и венам притекает в правое предсердие, где и заканчивается большой круг.

Самым крупным сосудом большого круга кровообращения является аорта, которая выходит из левого желудочка сердца. Аорта образует дугу, от которой ответвляются артерии, несущие кровь к голове (сонные артерии) и к верхним конечностям (позвоночные артерии). Аорта проходит вниз вдоль позвоночника, где от нее отходят ветви, несущие кровь к органам брюшной полости, к мышцам туловища и нижним конечностям.

Артериальная кровь, богатая кислородом, проходит по всему телу, доставляя клеткам органов и тканей необходимые для их деятельности питательные вещества и кислород, и в капиллярной системе превращается в кровь венозную. Венозная кровь, насыщенная углекислым газом и продуктами клеточного обмена, возвращается в сердце и из него поступает в легкие для газообмена. Наиболее крупными венами большого круга кровообращения являются верхняя и нижняя полые вены, впадающие в правое предсердие.

Рис. Схема малого и большого кругов кровообращения

Следует обратить внимание, как в большой круг кровообращения включены системы кровообращения печени и почек. Вся кровь из капилляров и вен желудка, кишечника, поджелудочной железы и селезенки поступает в воротную вену и проходит через печень. В печени воротная вена разветвляется на мелкие вены и капилляры, которые затем вновь соединяются в общий ствол печеночной вены, впадающей в нижнюю полую вену. Вся кровь органов брюшной полости до поступления в большой круг кровообращения протекает через две капиллярные сети: капилляры этих органов и капилляры печени. Воротная система печени играет большую роль. Она обеспечивает обезвреживание ядовитых веществ, которые образуются в толстом кишечнике при расщеплении невсосавшихся в тонком кишечнике аминокислот и всасываются слизистой толстой кишки в кровь. Печень, подобно всем остальным органам, получает и артериальную кровь через печеночную артерию, отходящую от брюшной артерии.

В почках также имеются две капиллярные сети: капиллярная сеть есть в каждом мальпигиевом клубочке, затем эти капилляры соединяются в артериальный сосуд, который вновь распадается на капилляры, оплетающие извитые канальцы.

Рис. Схема кровообращения

Особенностью кровообращения в печени и почках является замедление тока крови, обусловливающейся функцией этих органов.

Таблица 1. Отличие тока крови в большом и малом кругах кровообращения

Ток крови в организме

Большой круг кровообращения

Малый круг кровообращения

В каком отделе сердца начинается круг?

В левом желудочке

В правом желудочке

В каком отделе сердца заканчивается круг?

В правом предсердии

В левом предсердии

Где происходит газообмен?

В капиллярах, находящихся в органах грудной и брюшной полостей, головном мозге, верхних и нижних конечностях

В капиллярах, находящихся в альвеолах легких

Какая кровь движется по артериям?

Артериальная

Венозная

Какая кровь движется по венам?

Венозная

Артериальная

Время движения крови по кругу

Функция круга

Снабжение органов и тканей кислородом и перенос углекислого газа

Насыщение крови кислородом и удаление из организма углекислого газа

Время кругооборота крови - время однократного прохождения частицы крови по большому и малому кругам сосудистой системы. Подробнее следующем разделе статьи.

Закономерности движения крови по сосудам

Основные принципы гемодинамики

Гемодинамика — это раздел физиологии, изучающий закономерности и механизмы движения крови по сосудам организма человека. При ее изучении используется терминология и учитываются законы гидродинамики — науки о движении жидкостей.

Скорость, с которой движется кровь но сосудам, зависит от двух факторов:

  • от разности давления крови в начале и конце сосуда;
  • от сопротивления, которое встречает жидкость на своем пути.

Разность давлений способствует движению жидкости: чем она больше, тем интенсивнее это движение. Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов:

  • длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление);
  • вязкости крови (она в 5 раз больше вязкости воды);
  • трения частиц крови о стенки сосудов и между собой.

Показатели гемодинамики

Скорость кровотока в сосудах осуществляется по законам гемодинамики, общим с законами гидродинамики. Скорость кровотока характеризуется тремя показателями: объемной скоростью кровотока, линейной скоростью кровотока и временем кругооборота крови.

Объемная скорость кровотока - количество крови, протекающее через поперечное сечение всех сосудов данного калибра за единицу времени.

Линейная скорость кровотока - скорость движения отдельной частицы крови вдоль сосуда за единицу времени. В центре сосуда линейная скорость максимальна, а около стенки сосуда минимальна вследствие повышенного трения.

Время кругооборота крови - время, в течение которого кровь проходит по большому и малому кругам кровообращения.В норме составляет 17-25 с. На прохождение через малый круг затрачивается около 1/5, а на прохождение через большой — 4/5 этого времени

Движущей силой кровотока но системе сосудов каждого из кругов кровообращения является разность давления крови (ΔР ) в начальном участке артериального русла (аорта для большого круга) и конечном участке венозного русла (полые вены и правое предсердие). Разность давления крови (ΔР ) в начале сосуда (Р1 ) и в конце его (Р2 ) является движущей силой тока крови через любой сосуд кровеносной системы. Сила градиента давления крови расходуется на преодоление сопротивления кровотоку (R ) в системе сосудов и в каждом отдельном сосуде. Чем выше градиент давления крови в кругу кровообращения или в отдельном сосуде, тем больше в них объемный кровоток.

Важнейшим показателем движения крови по сосудам является объемная скорость кровотока , или объемный кровоток (Q ), под которым понимают объем крови, протекающей через суммарное поперечное сечение сосудистого русла или сечение отдельного сосуда в единицу времени. Объемную скорость кровотока выражают в литрах на минуту (л/мин) или миллилитрах на минуту (мл/мин). Для оценки объемного кровотока через аорту или суммарное поперечное сечение любого другого уровня сосудов большого круга кровообращения используют понятие объемный системный кровоток. Поскольку за единицу времени (минуту) через аорту и другие сосуды большого круга кровообращения протекает весь объем крови, выброшенной левым желудочком за это время, синонимом понятия системный объемный кровоток является понятие (МОК). МОК взрослого человека в покое составляет 4-5 л/мин.

Различают также объемный кровоток в органе. В этом случае имеют в виду суммарный кровоток, протекающий за единицу времени через все приносящие артериальные или выносящие венозные сосуды органа.

Таким образом, объемный кровоток Q = (P1 — Р2) / R.

В этой формуле выражена суть основного закона гемодинамики, утверждающего, что количество крови, протекающей через суммарное поперечное сечение сосудистой системы или отдельного сосуда в единицу времени, прямо пропорционально разности давления крови в начале и в конце сосудистой системы (или сосуда) и обратно пропорционально сопротивлению току крови.

Суммарный (системный) минутный кровоток в большом круге рассчитывается с учетом величин среднего гидродинамического давления крови в начале аорты P1 , и в устье полых вен Р2. Поскольку в этом участке вен давление крови близко к 0 , то в выражение для расчетаQ или МОК подставляется значение Р , равное среднему гидродинамическому артериальному давлению крови в начале аорты:Q (МОК)= P / R .

Одно из следствий основного закона гемодинамики — движущая сила тока крови в сосудистой системе — обусловлено давлением крови, создаваемым работой сердца. Подтверждением решающего значения величины давления крови для кровотока является пульсирующий характер тока крови на протяжении сердечного цикла. Во время систолы сердца, когда давление крови достигает максимального уровня, кровоток увеличивается, а во время диастолы, когда давление крови минимально, кровоток ослабляется.

По мере продвижения крови по сосудам от аорты к венам давление крови уменьшается и скорость его уменьшения пропорциональна сопротивлению кровотоку в сосудах. Особенно быстро снижается давление в артериолах и капиллярах, так как они обладают большим сопротивлением кровотоку, имея малый радиус, большую суммарную длину и многочисленные ветвления, создающие дополнительное препятствие кровотоку.

Сопротивление кровотоку, создаваемое во всем сосудистом русле большого круга кровообращения, называют общим периферическим сопротивлением (ОПС). Следовательно, в формуле для расчета объемного кровотока символR можно заменить его аналогом — ОПС:

Q = P/ОПС.

Из этого выражения выводится ряд важных следствий, необходимых для понимания процессов кровообращения в организме, оценки результатов измерения кровяного давления и его отклонений. Факторы, влияющие на сопротивление сосуда, для тока жидкости, описываются законом Пуазейля, в соответствии с которым

гдеR — сопротивление;L — длина сосуда; η — вязкость крови; Π — число 3,14; r — радиус сосуда.

Из приведенного выражения вытекает, что поскольку числа 8 и Π являются постоянными,L у взрослого человека изменяется мало, то величина периферического сопротивления кровотоку определяется изменяющимися значениями радиуса сосудов r и вязкости крови η ).

Уже упоминалось о том, что радиус сосудов мышечного типа может быстро изменяться и оказывать существенное влияние на величину сопротивления кровотоку (отсюда их название — резистивные сосуды) и величину кровотока через органы и ткани. Поскольку сопротивление зависит от величины радиуса в 4-й степени, то даже небольшие колебания радиуса сосудов сильно сказываются на величинах сопротивления току крови и кровотока. Так, например, если радиус сосуда уменьшится с 2 до 1 мм, то сопротивление его увеличится в 16 раз и при неизменном градиенте давления кровоток в этом сосуде также уменьшится в 16 раз. Обратные изменения сопротивления будут наблюдаться при увеличении радиуса сосуда в 2 раза. При неизменном среднем гемодинамическом давлении кровоток в одном органе может увеличиваться, в другом — уменьшаться в зависимости от сокращения или расслабления гладкой мускулатуры приносящих артериальных сосудов и вен этого органа.

Вязкость крови зависит от содержания в крови числа эритроцитов (гематокрита), белка, липопротеинов в плазме крови, а также от агрегатного состояния крови. В нормальных условиях вязкость крови не изменяется столь быстро, как просвет сосудов. После кровопотери, при эритропении, гипопротеинемии вязкость крови понижается. При значительном эритроцитозе, лейкозах, повышенной агрегации эритроцитов и гиперкоагуляции вязкость крови способна существенно возрастать, что влечет за собой повышение сопротивления кровотоку, увеличение нагрузки на миокард и может сопровождаться нарушением кровотока в сосудах микроциркуляторного русла.

В устоявшемся режиме кровообращения объем крови, изгнанный левым желудочком и протекающий через поперечное сечение аорты, равен объему крови, протекающей через суммарное поперечное сечение сосудов любого другого участка большого круга кровообращения. Этот объем крови возвращается в правое предсердие и поступает в правый желудочек. Из него кровь изгоняется в малый круг кровообращения и затем через легочные вены возвращается в левое сердце. Поскольку МОК левого и правого желудочков одинаковы, а большой и малый круги кровообращения соединены последовательно, то объемная скорость кровотока в сосудистой системе остается одинаковой.

Однако во время изменения условий кровотока, например при переходе из горизонтального в вертикальное положение, когда сила тяжести вызывает временное накопление крови в венах нижней части туловища и ног, на короткое время МОК левого и правого желудочков могут стать различными. Вскоре внутрисердечные и экстракардиальные механизмы регуляции работы сердца выравнивают объемы кровотока через малый и большой круги кровообращения.

При резком уменьшении венозного возврата крови к сердцу, вызывающем уменьшение ударного объема, может понизиться артериальное давление крови. При выраженном его снижении может уменьшиться приток крови к головному мозгу. Этим объясняется ощущение головокружения, которое может наступить при резком переходе человека из горизонтального в вертикальное положение.

Объем и линейная скорость токи крови в сосудах

Общий объем крови в сосудистой системе является важным гомеостатическим показателем. Средняя величина его составляет для женщин 6-7%, для мужчин 7-8% от массы тела и находится в пределах 4-6 л; 80-85% крови из этого объема — в сосудах большого круга кровообращения, около 10% — в сосудах малого круга кровообращения и около 7% — в полостях сердца.

Больше всего крови содержится в венах (около 75%) — это указывает на их роль в депонировании крови как в большом, так и в малом кругу кровообращения.

Движение крови в сосудах характеризуется не только объемной, но и линейной скоростью кровотока. Под ней понимают расстояние, на которое перемещается частичка крови за единицу времени.

Между объемной и линейной скоростью кровотока существует взаимосвязь, описываемая следующим выражением:

V = Q/Пr 2

где V - линейная скорость кровотока, мм/с, см/с;Q - объемная скорость кровотока; П — число, равное 3,14; r — радиус сосуда. Величина Пr 2 отражает площадь поперечного сечения сосуда.

Рис. 1. Изменения давления крови, линейной скорости кровотока и площади поперечного сечения в различных участках сосудистой системы

Рис. 2. Гидродинамические характеристики сосудистого русла

Из выражения зависимости величины линейной скорости от объемной в сосудах кровеносной системы видно, что линейная скорость кровотока (рис. 1.) пропорциональна объемному кровотоку через сосуд(ы) и обратно пропорциональна площади поперечного сечения этого сосуда(ов). Например, в аорте, имеющей наименьшую площадь поперечного сечения в большом круге кровообращения (3-4 см 2), линейная скорость движения крови наибольшая и составляет в покое около 20- 30 см/с . При физической нагрузке она может возрасти в 4-5 раз.

По направлению к капиллярам суммарный поперечный просвет сосудов увеличивается и, следовательно, линейная скорость кровотока в артериях и артериолах уменьшается. В капиллярных сосудах, суммарная площадь поперечного сечения которых больше, чем в любом другом отделе сосудов большого круга (в 500-600 раз больше поперечного сечения аорты), линейная скорость кровотока становится минимальной (менее 1 мм/с). Медленный ток крови в капиллярах создает наилучшие условия для протекания обменных процессов между кровью и тканями. В венах линейная скорость кровотока увеличивается в связи с уменьшением площади их суммарного поперечного сечения по мере приближения к сердцу. В устье полых вен она составляет 10-20 см/с, а при нагрузках возрастает до 50 см/с.

Линейная скорость движения плазмы и зависит не только от типа сосуда, но и от их расположения в потоке крови. Различают ламинарный тип течения крови, при котором ноток крови можно условно разделить на слои. При этом линейная скорость движения слоев крови (преимущественно плазмы), близких или прилежащих к стенке сосуда, — наименьшая, а слоев в центре потока — наибольшая. Между эндотелием сосудов и пристеночными слоями крови возникают силы трения, создающие на эндотелии сосудов сдвиговые напряжения. Эти напряжения играют роль в выработке эндотелием сосудоактивных факторов, регулирующих просвет сосудов и скорость кровотока.

Эритроциты в сосудах (за исключением капилляров) располагаются преимущественно в центральной части потока крови и движутся в нем с относительно высокой скоростью. Лейкоциты, наоборот, располагаются преимущественно в пристеночных слоях потока крови и совершают катящиеся движения с небольшой скоростью. Это позволяет им связываться с рецепторами адгезии в местах механического или воспалительного повреждения эндотелия, прилипать к стенке сосуда и мигрировать в ткани для выполнения защитных функций.

При существенном увеличении линейной скорости движения крови в суженной части сосудов, в местах отхождения от сосуда его ветвей ламинарный характер движения крови может сменяться на турбулентный. При этом в потоке крови может нарушиться послойность перемещения ее частиц, между стенкой сосуда и кровью могут возникать большие силы трения и сдвиговых напряжений, чем при ламинарном движении. Развиваются вихревые потоки крови, возрастает вероятность повреждения эндотелия и отложения холестерина и других веществ в интиму стенки сосуда. Это способно привести к механическому нарушению структуры сосудистой стенки и инициированию развития пристеночных тромбов.

Время полного кругооборота крови, т.е. возврата частицы крови в левый желудочек после ее выброса и прохождения через большой и малый круги кровообращения, составляет в покос 20-25 с, или примерно через 27 систол желудочков сердца. Приблизительно четверть этого времени затрачивается на перемещение крови по сосудам малого круга и три четверти — по сосудам большого круга кровообращения.

Скорость циркуляции крови в организме не всегда одинакова. Кровь движется быстро в артериях (в наиболее крупных - со скоростью около 500 мм/сек), несколько медленнее - в венах (в крупных венах - со скоростью около 150 мм/сек) и совсем медленно в капиллярах (менее 1 мм/сек). Различия в скорости зависят от суммарного поперечного сечения сосудов. Если жидкость течет из одной трубки в другую, диаметр которой больше, то скорость течения в широкой трубке будет меньше. Когда кровь течет через последовательный ряд сосудов разного диаметра, соединенных своими концами, скорость ее движения всегда обратно пропорциональна площади поперечного сечения сосуда в данном участке.

Кровеносная система построена таким образом, что одна крупная артерия (аорта) разветвляется на большое число артерий средней величины, которые в свою очередь ветвятся на тысячи мелких артерий (так называемых артериол), распадающихся затем на множество капилляров. Каждая из ветвей, отходящих от аорты, уже самой аорты, но этих ветвей так много, что суммарное поперечное сечение их больше сечения аорты, а поэтому скорость течения крови в них соответственно ниже. По приблизительной оценке, общая площадь поперечного сечения всех капилляров тела примерно в 800 раз больше площади сечения аорты. Следовательно, скорость течения в капиллярах примерно в 800 раз меньше, чем в аорте. На другом конце капиллярной сети капилляры сливаются в мелкие вены (венулы), которые соединяются между собой, образуя все более и более крупные вены. При этом суммарная площадь поперечного сечения постепенно уменьшается, а скорость тока крови возрастает.

Поскольку сердце проталкивает кровь в артерии только во время систолы желудочков, кровь движется в артериях неравномерно: быстро, когда желудочки сокращаются, и медленно - в остальное время. Когда полулунные клапаны закрыты, кровь в ближайшем к сердцу участке аорты неподвижна, но в артериях, более удаленных от сердца, в промежутках между систолами движение крови не прекращается. В артериолах колебания скорости течения крови выражены слабее; в капиллярах скорость течения крови почти постоянна, так что перенос веществ происходит непрерывно. Этот переход от перемежающегося тока крови в артериях к непрерывному течению ее в капиллярах возможен благодаря упругости стенок артерий. Сила сокращения желудочков производит двоякую работу: она, во-первых, проталкивает кровь вперед и, bo-btc^tix, растягивает стенки артерий в ширину и в длину. Во время диастолы растянутые стенки сокращаются (как сокращается растянутая резиновая лента, когда растягивающая сила устранена), выжимая кровь вперед. Кровь не может течь назад, так как полулунные клапаны уже закрыты. Сокращение артериальной стенки непосредственно около сердца приводит к растяжению следующего участка аорты или легочной артерии, который в свою очередь сжимается, растягивая третий участок, и т. д. Это поочередное растяжение и сжатие распространяется вдоль артериальной стенки со скоростью 7- 8 м/сек и представляет собой то, что мы называем пульсом. Кровь внутри артерии течет гораздо медленнее, со скоростью около 50 см/сек.

Двигать кровь по венам сердцу помогают-два других фактора: сокращение скелетных мышц и дыхательные движения. Большинство вен окружено скелетными мышцами, которые, сокращаясь, сжимают вены. Когда мышцы расслабляются, сдавленный участок вены вновь наполняется кровью, которая может прийти только со стороны капилляров. Этот механизм «выжимания» крови из капилляров играет особенно важную роль в возвращении крови к сердцу из ног против действия силы тяжести. Если человек некоторое время стоит неподвижно, тканевая жидкость стремится задержаться в ногах, что приводит к их набуханию (отеку). Во время ходьбы сокращение, мускулатуры ног заставляет кровь двигаться по венам, что уменьшает возможность отека ступней и лодыжек. При дыхании мышцы грудной клетки и диафрагма сокращаются, увеличивая объем грудной полости; давление в ней становится ниже наружного давления, и это заставляет воздух входить в легкие. Поскольку сердце тоже находится в грудной полости, дыхательные движения действуют и на него; во время вдоха давление в венах грудной области понижается. Кровь входит в эти вены и в предсердия по той же причине, по которой воздух входит в легкие.

Эти два фактора играют важную роль в Приспособлении кровеносной системы к повышенным требованиям кровоснабжения тканей во время физической работы. В это время как «выжимающее» действие мышц на вены, так и дыхательные движения значительно усиливаются и в предсердия поступает больше крови. Как говорилось выше, чем больше объем крови, приходящей в сердце, чем сильнее растягивается сердечная мышца, тем сильнее сокращается сердце и тем больший объем крови оно выбрасывает при каждом своем ударе. Поэтому сокращения мышц при возбуждении, сопровождающемся повышенной потребностью в питательных веществах и кислороде, частично помогают кровеносной системе удовлетворить эту возросшую потребность.

Поступление крови в ту или иную часть тела регулируется гладкими мышечными волокнами, находящимися в стенках артерий и артериол. Эта гладкая мускулатура иннервиро-ваяа двумя группами нервов. Увеличение числа импульсов в одной группе нервных волокон заставляет мускулатуру сокращаться и уменьшать диаметр артериол, что ведет к уменьшению кровоснабжения данного органа или данной части тела. Увеличение числа импульсов во второй группе волокон вызывает расслабление мускулатуры и увеличение просвета артериол и притока крови к органу. Обычно эта мускулатура находится в частично сокращенном состоянии, зависящем от баланса между теми и другими нервными импульсами. Этот нервный механизм позволяет артериолам регулировать количество крови, получаемое каждым органом. На гладкую мускулатуру стенок артериол действуют также углекислота и адреналин - вещества, оказывающие влияние и на эффективность работы сердца. При высокой интенсивности в том или ином органе сильно возрастающее количество углекислоты действует непосредственно на гладкую мускулатуру, вызывая ее расслабление и тем самым увеличение притока крови к активной ткани. Адреналин вызывает расслабление стенок артериол, обслуживающих скелетные мышцы, и в то же время сжатие артериол, снабжающих внутренние органы - желудок, кишечник и печень, в результате чего приток крови к скелетной мускулатуре сильно увеличивается. Действие этих веществ осуществляется независимо от нервов, и ему одинаково подвержены как нормальные ар-териолы, так и сосуды с прерванными нервными связями. Ссылки по теме



Похожие статьи