Составить функцию распределения этой случайной величины. Случайной величины

15.03.2022

Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

Каждая случайная величина полностью определяется своей функцией распределения .

Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

Функция распределения любой случайной величины обладает следующими свойствами:

Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

x 1 x 2 x i
p 1 p 2 p i

называется распределением дискретной случайной величины .

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

Содержание статьи

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ – плотность вероятности распределения частиц макроскопической системы по координатам, импульсам или квантовым состояниям. Функция распределения является основной характеристикой самых разнообразных (не только физических) систем, которым свойственно случайное поведение, т.е. случайное изменение состояния системы и, соответственно, ее параметров. Даже в стационарных внешних условиях само состояние системы может быть таким, что результат измерения некоторого его параметра является случайной величиной. Функция распределения в подавляющем большинстве случаев содержит в себе всю возможную и потому исчерпывающую информацию о свойствах таких систем.

В математической теории вероятностей и математической статистике функция распределения и плотность вероятности отличаются друг от друга, но однозначно связаны между собой. Ниже речь пойдет почти исключительно о плотности вероятности, которую (согласно принятой в физике давней традиции) называют плотностью распределения вероятности или функцией распределения, ставя знак равенства между этими двумя терминами.

Случайное поведение в той или иной мере характерно для всех квантовомеханических систем: элементарные частицы, атомы молекулы и т.п. Однако случайное поведение – это не специфическая черта только квантовомеханических систем, многие чисто классические системы обладают этим свойством.

Примеры.

При бросании монеты на твердую горизонтальную поверхность, неясно, как она ляжет: цифрой вверх или гербом. Известно, что вероятности этих событий, при определенных условиях, равны 1/2. При бросании игральной кости нельзя с уверенностью сказать, какая из шести цифр окажется на верхней грани. Вероятность выпадения каждой из цифр при определенных предположениях (кость – однородный куб без сколотых ребер и вершин падает на твердую, гладкую горизонтальную поверхность) равна 1/6.

Хаотичность движения молекул в наибольшей степени проявляется в газе. Даже в стационарных внешних условиях, флуктуируют (меняются случайным образом) точные значения макроскопических параметров, и только их средние значения при этом постоянны. Описание макроскопических систем на языке средних значений макропараметров и составляет суть термодинамического описания ().

Пусть есть идеальный одноатомный газ и три его (еще не усредненных) макроскопических параметра: N – число атомов, движущихся внутри сосуда, занятого газом; P –давление газа на стенку сосуда и – внутренняя энергия газа. Газ идеальный и одноатомный, поэтому его внутренняя энергия есть просто сумма кинетических энергий поступательного движения атомов газа.

Число N флуктуирует, по крайней мере, из-за процесса сорбции (прилипания к стенке сосуда при соударении с ней) и десорбции (процесса отлипания, когда молекула отрывается от стенки сама по себе или в результате удара по ней другой молекулы), наконец, процесса образования кластеров – короткоживущих комплексов из нескольких молекул. Если бы Можно было измерять N мгновенно и точно, то полученная зависимость N (t ) была бы похожей на изображенную на рисунке.

Размах флуктуаций на рисунке для наглядности сильно завышен, но при небольшом среднем значении (бN с ~ 10 2) числа частиц в газе он примерно таким и будет.

Если выбрать маленькую площадку на стенке сосуда измерять силу, действующую на эту площадку в результате ударов молекул газа, находящегося в сосуде, то отношение среднего значения нормальной к площадке компоненты этой силы к площади площадки и принято называть давлением. В разные моменты времени к площадке будет подлетать разное количество молекул, причем с разными скоростями. В результате, если бы можно было измерять эту силу мгновенно и точно, была бы картина, подобная изображенной на рисунке, нужно только изменить обозначения по вертикальной оси:

N (t ) Ю P (t ) и бN (t )с Ю бP (t )с.

Практически все то же справедливо и для внутренней энергии газа , только процессы, приводящие к случайным изменениям данной суммы другие. Например, подлетая к стенке сосуда, молекула газа сталкивается не с абстрактной абсолютно упруго и зеркально отражающей стенкой, а с одной из частиц, составляющих материал этой стенки. Пусть стенка стальная, тогда это ионы железа, колеблющиеся около положений равновесия – узлов кристаллической решетки. Если молекула газа подлетает к стенке на той фазе колебаний иона, когда он движется ей навстречу, то в результате соударения молекула отлетит от стенки со скоростью большей чем подлетала. Вместе с энергией этой молекулы увеличится и внутренняя энергия газа E . Если молекула сталкивается с ионом, движущемся в том же направлении, что и она, то отлетит эта молекула со скоростью меньшей, чем та, с которой она полетала. Наконец, молекула может попасть в междуузелье (пустое место между соседними узлами кристаллической решетки) и застрять там, так, что даже сильным нагревом ее не извлечь оттуда. В последних двух случаях внутренняя энергия газа E уменьшится. Следовательно, E (t ) – также случайная функция времени и – среднее значение этой функции.

Броуновское движение.

Определив положение броуновской частицы в некоторый момент времени t 1, можно точно предсказать только то, что ее положение в последующий момент времени t 2 не превышает (t 2 – t 1)·c , где c – скорость света в вакууме.

Различают случаи дискретного и непрерывного спектра состояний и, соответственно, переменной x . Под спектром значений некоторой переменной понимается вся совокупность возможных ее значений.

В случае дискретного спектрасостояний для задания распределения вероятностей нужно, во-первых, указать полный набор возможных значений случайной переменной

x 1, x 2, x 3,… x k,… (1)

и, во-вторых, их вероятности:

W 1, W 2, W 3,… W k,… (2)

Сумма вероятностей всех возможных событий должна быть равна единице (условие нормировки)

Описание распределения вероятностей соотношениями (1) – (3) невозможно в случае непрерывного спектра состояний и, соответственно, непрерывного спектра возможных значений переменной x . Пусть x принимает все возможные действительные значения в интервале

x О [a , b ] (4)

где a и b необязательно конечны. Например, для модуля вектора скорости молекулы газа V О , лежащему внутри всего интервала возможных значений, т.е. x О [x , x + Dx ] О [a , b ] (5)

Тогда вероятность DW (x , Dx ) попадания x в интервал (5) равна

Здесь N – полное число измерений x , а Dn (x , Dx ) – число результатов, попавших в интервал (5).

Вероятность DW естественно зависит от двух аргументов: x – положения интервала внутри [a , b ] и Dx – его длины (предполагается, хотя это совершенно необязательно, что Dx > 0). Например, вероятность получения точного значения x , другими словами, вероятность попадания x в интервал нулевой длины есть вероятность невозможного события и потому равна нулю: DW (x , 0) = 0

С другой стороны, вероятность получить значение x где-то (все равно где) внутри всего интервала [a , b ] есть вероятность достоверного события (уж что-нибудь всегда получается) и потому равна единице (принимается, что b > a ): DW (a , b a ) = 1.

Пусть Dx мало. Критерий достаточной малости зависит от конкретных свойств системы, которую описывает распределение вероятностей DW (x , Dx ). Если Dx мало, то функцию DW (x , Dx ) можно разложить в ряд по степеням Dx :

Если нарисовать график зависимости DW (x , Dx ) от второго аргумента Dx , то замена точной зависимости приближенным выражением (7) означает замену (на небольшом участке) точной кривой куском параболы (7).

В (7) первое слагаемое равно нулю точно, третье и последующие слагаемые при достаточной малости Dx можно опустить. Введение обозначения

дает важный результат DW (x , Dx ) » r(x )·Dx (8)

Соотношение (8), выполняемое тем точнее, чем меньше Dx означает, что при малой длине интервала, вероятность попадания в этот интервал пропорциональна его длине.

Можно еще перейти от малого, но конечного Dx к формально бесконечно малому dx , с одновременной заменой DW (x , Dx ) на dW (x ). Тогда приближенное равенство (8) превращается в точное dW (x ) = r(x dx (9)

Коэффициент пропорциональности r(x ) имеет простой смысл. Как видно из (8) и (9), r(x ) численно равно вероятности попадания x в интервал единичной длины. Поэтому одно из названий функции r(x ) – плотность распределения вероятностей для переменной x .

Функция r(x ) содержит в себе всю информацию о том, как вероятность dW (x ) попадания x в интервал заданной длины dx зависит от местоположения этого интервала, т.е. она показывает, как вероятность распределена по x . Поэтому функцию r(x ) принято называть функцией распределения для переменной x и, тем самым, функцией распределения для той физической системы, ради описания спектра состояний которой была введена переменная x . Термины «плотность распределения вероятностей» и «функция распределения» в статистической физике используются как эквивалентные.

Можно рассмотреть обобщение определения вероятности (6) и функции распределения (9) на случай, к примеру, трех переменных. Обобщение на случай произвольно большого числа переменных выполняется точно также.

Пусть случайно меняющееся во времени состояние физической системы определяется значениями трех переменных x , y и z с непрерывным спектром:

x О [a , b ]

y О [c , d ]

z О [e , f ] (10)

где a , b ,…, f , как и ранее, не обязательно конечны. Переменные x , y и z могут быть, например, координатами центра масс молекулы газа, компонентами вектора ее скорости x Ю V x , y Ю V y и z Ю V z или импульса и т.д. Под событием понимается одновременное попадание всех трех переменных в интервалы длины Dx , Dy и Dz соответственно, т.е.:

x О [x , x + Dx ]

y О [y , y + Dy ]

z О [z , z + Dz ] (11)

Вероятность события (11) можно определить аналогично (6)

с тем отличием, что теперь Dn – число измерений x , y и z , результаты которых одновременно удовлетворяют соотношениям (11). Использование разложения в ряд, аналогичного (7), дает

dW (x , y , z ) = r(x , y , z dx dy dz (13)

где r(x , y , z ) – функция распределения сразу для трех переменных x , y и z .

В математической теории вероятностей термин «функция распределения» используется для обозначения величины отличающейся от r(x ), а именно: пусть x – некоторое значение случайной переменной x . Функция Ф(x), дающая вероятность того, что x примет значение не большее, чем x и называется функцией распределения. Функции r и Ф имеют разный смысл, но они связаны между собой. Использование теоремы сложения вероятностей дает (здесь а – левый конец интервала возможных значений x (см. ВЕРОЯТНОСТЕЙ ТЕОРИЯ): , (14) откуда

Использование приближенного соотношения (8) дает DW (x , Dx ) » r(x )·Dx .

Сравнение с точным выражением (15) показывает, что использование (8) эквивалентно замене интеграла, входящего в (16), произведением подынтегральной функции r(x ) на длину промежутка интегрирования Dx :

Соотношение (17) будет точным, если r = const , следовательно, ошибка при замене (16) на (17) будет невелика, когда подынтегральная функция слабо меняется на длине промежутка интегрирования Dx .

Можно ввести Dx эфф – длину интервала, на котором функция распределения r(x ) меняется существенно, т.е. на величину порядка самой функции, или величина Drэфф по модулю порядка r. Используя формулу Лагранжа, можно написать:

откуда следует, что Dx эфф для любой функции r

Функцию распределения можно считать «почти постоянной» на некотором промежутке изменения аргумента, если ее приращение |Dr| на этом промежутке по модулю много меньше самой функции в точках этого промежутка. Требование |Dr| эфф| ~ r (функция распределения r і 0) дает

Dx x эфф (20)

длина промежутка интегрирования должна быть мала по сравнению с той, на которой подынтегральная функция меняется существенно. Иллюстрацией служит рис. 1.

Интеграл в левой части (17) равен площади под кривой. Произведение в правой части (17) – площадь заштрихованного на рис. 1 столбика. Критерием малости отличия соответствующих площадей является выполнение неравенства (20). В этом можно убедиться, подставляя в интеграл (17) первые члены разложения функции r(x ) в ряд по степеням

Требование малости поправки (второго слагаемого в правой части (21) по сравнению с первым и дает неравенство (20) с Dx эфф из (19).

Примеры ряда функций распределения, играющих важную роль в статистической физике.

Распределение Максвелла для проекции вектора скорости молекулы на заданное направление (для примера, это направление оси OX ).

Здесь m – масса молекулы газа, T – его температура, k – постоянная Больцмана.

Распределение Максвелла для модуля вектора скорости :

Распределение Максвелла для энергии поступательного движения молекул e = mV 2/2

Распределение Больцмана , точнее, так называемая барометрическая формула, которая определяет распределение концентрации молекул или давления воздуха по высоте h от некоторого «нулевого уровня» в предположении, что температура воздуха от высоты не зависит (модель изотермической атмосферы). В действительности температура в нижних слоях атмосферы заметно падает с ростом высоты.


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.

Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта . Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL .

Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

Генеральная совокупность и случайная величина

Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.

Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.

В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.

Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).

Функция распределения

Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X

F(x) = P(X

Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая - 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

Типичный график Функции распределения для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см. файл примера ):

В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения (Cumulative Distribution Function , CDF ).

Приведем некоторые свойства Функции распределения:

  • Функция распределения F(x) изменяется в интервале , т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
  • Функция распределения – неубывающая функция;
  • Вероятность того, что случайная величина приняла значение из некоторого диапазона плотность вероятности равна 1/(0,5-0)=2. А для с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

    Напомним, что плотность распределения является производной от функции распределения , т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что плотность распределения >1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере ).

    Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.

    Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.

    Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).

    Вычисление плотности вероятности с использованием функций MS EXCEL

    Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.

    Найдем плотность вероятности для N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .

    Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

    Вычисление вероятностей с использованием функций MS EXCEL

    1) Найдем вероятность, что случайная величина, распределенная по (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.

    НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.
    Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

    2) Найдем вероятность, что случайная величина, распределенная по , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.

    В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.

    3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .

    Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье функции распределения найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

    В MS EXCEL используйте формулу =НОРМ.СТ.ОБР(0,5) =0.

    Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.

    Обратная функция распределения вычисляет , которые используются, например, при . Т.е. в нашем случае число 0 является 0,5-квантилем нормального распределения . В файле примера можно вычислить и другой квантиль этого распределения. Например, 0,8-квантиль равен 0,84.

    В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).

    Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье .

    Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают .Функция распределения определяет вероятность того, что случайная величина принимает значения, меньшие фиксированного действительного числа, т. е.. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Ее еще называют интегральной функцией распределения.

    Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку оси(рис. 6), которая в результате испытания может занять то или иное положение на этой оси, то функция распределенияесть вероятность того, что случайная точкав результате испытания попадет левее точки.

    Для дискретной случайной величины , которая может принимать значения,, … ,, функция распределения имеет вид

    ,

    где неравенство под знаком суммы означает, что суммирование распространяется на все те значения, которые по своей величине меньше. Из этой формулы следует, что функция распределения дискретной случайной величиныразрывна и возрастает скачками при переходе через точки,, … ,, причем величина скачка равна вероятности соответствующего значения (рис. 7). Сумма всех скачков функции распределения равна единице.

    Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8).

    Рис. 7. Рис. 8.

    Рассмотрим общие свойства функций распределения.

    Свойство 1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей:

    Справедливость этого свойства вытекает из того, что функция распределения определена как вероятность случайного события, состоящего в том, что.

    Свойство 2. Вероятность попадания случайной величины в интервал равна разности значений функции распределения на концах этого интервала, т. е.

    Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

    Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. при .

    Свойство 4. На минус бесконечности функция распределения рана нулю, а на плюс бесконечности функция распределения рана единице, т. е. ,.

    Пример 1. Функция распределения непрерывной случайной величины задана выражением

    Найти коэффициент и построить график. Определить вероятность того, что случайная величинав результате опыта примет значение на интервале.

    Решение. Так как функция распределения непрерывной случайной величины непрерывна, то приполучим:. Отсюда. График функцииизображен на рис. 9.

    Исходя из второго свойства функции распределения, имеем:

    .

    4. Плотность распределения вероятности и ее свойства.

    Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности или дифференциальной функцией распределения случайной величины.

    Плотность распределения равна производной от функции распределения, т. е.

    .

    Смысл плотности распределения состоит в том, что она указывает на то, как часто появляется случайная величинав некоторой окрестности точкипри повторении опытов. Кривая, изображающая плотность распределенияслучайной величины, называетсякривой распределения .

    Рассмотрим свойства плотности распределения.

    Свойство 1. Плотность распределения неотрицательна, т. е.

    Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от до, т. е.

    .

    Свойство 3. Вероятность попадания непрерывной случайной величины на участокравна интегралу от плотности распределения, взятому по этому участку, т. е.

    .

    Свойство 4. Интеграл в бесконечных пределах от плотности распределения равен единице:

    .

    Пример 2. Случайная величина подчинена закону распределения с плотностью

    Определить коэффициент ; построить график плотности распределения; найти вероятность попадания случайной величины на участок отдо; определить функцию распределения и построить ее график.

    Решение. Площадь, ограниченная кривой распределения, численно равна

    .

    Учитывая свойство 4 плотности распределения, находим: . Следовательно, плотность распределения может быть выражена так:

    График плотности распределения изображен на рис. 10. По свойству 3 имеем

    .

    Для определения функции распределения воспользуемся свойством 2:

    .

    Таким образом, имеем

    График функции распределения изображен на рис. 11.



Похожие статьи