Микробиология. Морфологическая характеристика основных групп микроорганизмов

30.11.2023

Микроорганизмов.

Форма и размеры микроорганизмов весьма разнообразны.

По форме выделяют следующие основные группы микроорганизмов.

1.Шаровидные или кокки (с греч.- зерно).

2.Палочковидные.

3.Извитые.

Кокковидные бактерии (кокки) по характеру взаиморасположения после деления подразделяются на ряд вариантов.

1.Микрококки . Клетки расположены в одиночку. Входят в состав нормальной микрофлоры, находятся во внешней среде. Заболеваний у людей не вызывают.

2.Диплококки. Деление этих микроорганизмов происходит в одной плоскости, образуются пары клеток. Среди диплококков много патогенных микроорганизмов - гонококк, менингококк, пневмококк.

3.Стрептококки. Деление осуществляется в одной плоскости, размножающиеся клетки сохраняют связь (не расходятся), образуя цепочки. Много патогенных микроорганизмов - возбудители ангин , скарлатины, гнойных воспалительных процессов.

4.Тетракокки . Деление в двух взаимоперпендикулярных плоскостях с образованием тетрад (т. е. по четыре клетки). Медицинского значения не имеют.

5.Сарцины . Деление в трех взаимоперпендикулярных плоскостях, образуя тюки (пакеты) из 8, 16 и большего количества клеток. Часто обнаруживают в воздухе.

6.Стафилококки (от лат.- гроздь винограда). Делятся беспорядочно в различных плоскостях, образуя скопления, напоминающие грозди винограда. Вызывают многочисленные болезни, прежде всего гнойно-воспалительные.

Палочковидные формы микроорганизмов.

1.Бактерии - палочки, не образующие спор.

2.Бациллы - аэробные спорообразующие микробы. Диаметр споры обычно не превышает размера (“ширины”) клетки (эндоспоры).

3.Клостридии - анаэробные спорообразующие микробы. Диаметр споры больше поперечника (диаметра) вегетативной клетки, в связи с чем клетка напоминает веретено или теннисную ракетку.

Необходимо иметь в виду, что термин “бактерия” часто используют для обозначения всех микробов-прокариот. В более узком (морфологическом) значении бактерии - палочковидные формы прокариот, не имеющих спор.

Извитые формы микроорганизмов.

1.Спириллы - имеют 2- 3 завитка.

2.Спирохеты - имеют различное число завитков, аксостиль - совокупность фибрилл, специфический для различных представителей характер движения и особенности строения (особенно концевых участков). Из большого числа спирохет наибольшее медицинское значение имеют представители трех родов - Borrelia, Treponema, Leptospira.

Строение бактериальной клетки.

Обязательными органоидами являются : нуклеоид, цитоплазма, цитоплазматическая мембрана.

Необязательными (второстепенными) структурными элементами являются : включения, капсула, споры, пили, жгутики.

1.В центре бактериальной клетки находится нуклеоид - ядерное образование, представленное чаще всего одной хромосомой кольцевидной формы. Состоит из двухцепочечной нити ДНК. Нуклеоид не отделен от цитоплазмы ядерной мембраной.

Основные свойства вирусов , по которым они отличаются от остального живого мира.

1.Ультрамикроскопические размеры (измеряются в нанометрах). Крупные вирусы (вирус оспы) могут достигать размеров 300 нм, мелкие - от 20 до 40 нм. 1мм=1000мкм, 1мкм=1000нм.

3.Вирусы не способны к росту и бинарному делению.

4.Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

6.Средой обитания вирусов являются живые клетки - бактерии (это вирусы бактерий или бактериофаги), клетки растений, животных и человека.

Все вирусы существуют в двух качественно разных формах: внеклеточной - вирион и внутриклеточной - вирус. Таксономия этих представителей микромира основана на характеристике вирионов - конечной фазы развития вирусов.

Строение (морфология) вирусов.

1.Геном вирусов образуют нуклеиновые кислоты, представленные одноцепочечными молекулами РНК (у большинства РНК-вирусов) или двухцепочечными молекулами ДНК (у большинства ДНК- вирусов).

2.Капсид - белковая оболочка, в которую упакована геномная нуклеиновая кислота. Капсид состоит из идентичных белковых субъединиц - капсомеров. Существуют два способа упаковки капсомеров в капсид - спиральный (спиральные вирусы) и кубический (сферические вирусы).

При спиральной симметрии белковые субъединицы располагаются по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота (нитевидные вирусы). При кубическом типе симметрии вирионы могут быть в виде многогранников, чаще всего - двадцатигранники - икосаэдры.

3.Просто устроенные вирусы имеют только нуклеокапсид , т. е. комплекс генома с капсидом и называются “голыми”.

4. У других вирусов поверх капсида есть дополнительная мембраноподобная оболочка, приобретаемая вирусом в момент выхода из клетки хозяина - суперкапсид. Такие вирусы называют “одетыми”.

Кроме вирусов, имеются еще более просто устроенные формы способных передаваться агентов - плазмиды, вироиды и прионы.

Морфология риккетсий

Риккетсии не имеют спор, капсул, неподвижны. Грамотрицательны. По Романовскому-Гимзе и по способу Здродовского окрашиваются в красный цвет. Строение клеточной стенки сходно со строением стенки грамотрицательных бактерий.

Являются возбудителями сыпного тифа, болезни Брила.

Морфологическая характеристика грибов.

Грибы и простейшие имеют четко ограниченное ядро и относятся к эукариотам. Грибы крупнее бактерий, в эволюционном плане близки к растениям (наличие клеточной стенки, содержащей хитин или целлюлозу, вакуолей с клеточным соком, неспособность к перемещению, видимое движение цитоплазмы). Ядерный материал грибов отделен от цитоплазмы ядерной мембраной. Дрожжевые грибы образуют отдельные овальные клетки. Плесневые грибы формируют клеточные нитеподобные структуры - гифы . Мицелий - переплетение гиф - основная морфологическая структура. У низших грибов мицелий одноклеточный, не имеет внутренних перегородок (септ ). Грибы размножаются половым и бесполым (вегетативным) способом. При вегетативном размножении образуются специализированные репродуктивные структуры – споры - конидии . Они могут располагаться в специализированных вместилищах - спорангиях (эндоспоры) или отшнуровываться от плодоносящих гиф (экзоспоры).

Конидиоспоры - зрелые наружные споры, возникающие на дифференцированных конидиофорах (конидионосцах), отличающихся от других нитей мицелия по форме и размерам (у аспергилла, пеницилла) или располагающиеся по бокам и на концах любой ветви мицелия, прикрепляясь к ней непосредственно или тонкой ножкой.

К эндоспорам совершенных грибов относятся спорангиоспоры мукоровых грибов, развивающихся в специальных органах (спорангиях), располагающихся на вершине спорангиеносца. Споры освобождаются при разрыве стенки спорангия.

Основное функциональное отличие спор у бактерий и грибов: у бактерий споры обеспечивают переживание в неблагоприятных условиях окружающей среды, у грибов образование спор - способ размножения.

Морфологическая характеристика актиномицетов (лучистых грибов по старым классификациям). Актиномицеты - формы бактерий, имеющие истинный, не имеющий перегородок мицелий. Мицелиальный (в виде ветвящихся нитей) рост этих грамположительных бактерий придает им внешнее сходство с грибами. Это сходство усиливается вследствие наличия у высших форм актиномицетов наружных неполовых спор, которые называются конидиями.

В отличие от грибов, актиномицеты имеют прокариотическое строение клетки, не содержат в клеточной стенке хитина или целлюлозы, размножаются только бесполым путем. У низших актиномицетов мицелий фрагментируется на типичные одноклеточные бактерии.

Обычным местом обитания для большинства из них является почва. Однако ряд видов актиномицет могут инфицировать раны и вызывать образование абсцессов . С некоторыми актиномицетами (например, стрептомицетами) связана способность выработки антибиотиков.

а) Кокки . В процессе деления новые молодые клетки могут образовывать специфические скопления. По взаимному расположению клеток после деления кокки подразделяются на следующие морфологические группы (рис. 2.1):

1 – монококки – клетки располагающиеся по одной, изолированно друг от друга (Micrococcus roseus);

2 – диплококки, или парные кокки, – клетки, располагающиеся попарно или в коротких (4-6) цепочках (Leuconostoc mesenterioides, Neisseria gonorrhoeae);

3 – стрептококки – соединение отдельных кокков в виде цепочек (Streptococcus lactis);

4 – сарцины - группа кокков, клетки которых образуют плотно упакованные угловатые скопления, напоминающие кубики или перевязанные тюки (Sarcina flava, Sarcina ureae);

5 – стафилококки - неоформленные скопления кокков, (Staphilococcus aureus, Staph. epidermidis).

Однако среди кокков встречаются такие, которые не имеют форму правильных шаров. Так, возбудитель гонорреи имеет бобовидную форму, возбудитель скисания пива – Leuconostoc mesenterioides – вытянутую форму. Кроме того, необходимо отметить, что форма клеток многих бактерий может меняться в зависимости от их физиологического состояния.


Рис. 2.1. Бактерии. Шаровидные формы.

1 - микрококки; 2 - диплококки; 3 - стрептококки; 4 - сарцины;

5 - стафилококки.

б) Палочки. К. этой группе относятся микробы, имеющие форму цилиндрических клеток. Некоторые из них образуют эндоспоры (p. Bacillus, p. Clostridium ) и иногда в обиходе называются бациллами, не образующие эндоспор (p. Salmonella, p. Pseudomonas и др.) – бактериями. Палочки, подобно коккам, могут давать различные сочетания:


Рис. 2.2. Бактнрии палочктвидной формы.

Палочки, соединенные по две, носят название диплобацилл, или диплобактерий;

Палочки, соединенные в цепочку, образуют стрептобациллы, или

Стрептобактерии (рис.2.2).

У одних палочек концы закругленные, у других– прямые, у третьих –заостренные.

в) К третьей группе относятся бактерии, извитые в виде спирали. Среди них различают палочки, слегка изогнутые в виде запятой - вибрионы; спирально извитые микроорганизмы -спириллы и спирохеты (рис.2.3).


Рис. 2.3. Извитые формы.

1 - вибрион; 2 - спирилла; 3 - спирохеты

Размеры клеток

Размеры клетки определяют под микроскопом c помощью окулярной линейки (микрометра). У кокков измеряют диаметр, у других форм - длину и ширину клетки. Результаты измерений выражают в микрометрах (мкм). Для измерения лучше использовать живые, а не фиксированные клетки, так как фиксация и окраска может несколько изменить их размеры. Если клетки подвижны, препарат слегка подогревают или к капле исследуемой суспензии добавляют каплю 0,1%-ного водного раствора агар-агара.

В окуляр микроскопа вставляют окулярную линейку. Для этого вывинчивают глазную линзу окуляра, помещают на его диафрагму окулярную линейку и завинчивают линзу вновь. На столик микроскопа кладут препарат, фокусируют объект и определяют, скольким делениям линейки соответствует длина и ширина клетки при данном увеличении микроскопа. Чтобы результат был достоверным, измеряют не менее 10-20 клеток. Результаты вносят в таблицу.

Однако делениями окуляр-микрометра нельзя непосредственно измерить клетку, так как цена деления окулярной линейки зависит от используемого в каждом случае объектива. Поэтому необходимо определить цену деления окулярного микрометра для данного увеличения микроскопа и выразить ее в микрометрах. Это делают с помощью объективного микрометра.

Объективный микрометр (рис.) представляет собой металлическую пластинку с отверстием в центре, в которое вставлено стекло. На стекло нанесена линейка длиной 1 мм, которая разделена точно на 100 частей, так что одно деление ее соответствует 0,01 мм или 10 мкм.

Для определения цены деления окулярной линейки на столик микроскопа вместо препарата помещают объективный микрометр и вначале при малом увеличении фокусируют изображение линейки. Затем перемещают линейку объект-микрометра в центр поля зрения и только после этого меняют объектив на тот, при котором измеряли клетки. Перемещая столик микроскопа и поворачивая окуляр, устанавливают микрометры так, чтобы их шкалы были параллельны и одна перекрывала другую. Совмещают одно из делений шкалы окулярного и объективного микрометров и находят следующее их совмещение. Устанавливают, какую часть деления объективного микрометра составляет одно деление окулярной линейки, и умножают полученное число на 10. Таким образом, получают цену деления окулярного микрометра в микрометрах для данного увеличения микроскопа. Например, в два деления объективного микрометра, т. е. в 20 мкм, укладывается 9 делений окулярного микрометра, следовательно, одно деление окуляр-микрометра при данном увеличении микроскопа соответствует 2,22 мкм (рис. 2.4).

Зная, скольким делениям окулярной линейки соответствует длина и ширина изучаемого объекта, умножают цену деления окуляр-микрометра на эти числа. Полученные числа (длину и ширину клетки в мкм) вносят в таблицу.



Рис. 2.4. Объект-микрометр – а. Совмещение шкал окулярной линейки и шкалы объект-микрометра.

При сложных методах окраски микробов на один и тот же препарат воздействуют несколькими растворами. К сложным методам относится окраска по Граму, Циль-Нильсену, по Нейссеру и т. д. Используя такие методы окраски можно выявлять различные свойства бактерий. Окраска методом Грама позволяет дифференцировать бактерии с разным строением клеточной стенки.

ТЕМА: «Введение. Классификация и морфологические свойства микроорганизмов. Физиология микроорганизмов и распространение их во внешней среде»

План изложения:

1. Микробиология и её отрасли

2. Задачи медицинской микробиологии

3. Основоположники микробиологии

4. Классификация микроорганизмов

5. Отличительные особенности эукариот, прокариот, вирусов

6. Морфология бактерий

7. Питание микроорганизмов

8. Особенности метаболизма микробных клеток

9. Типы дыхания микроорганизмов

10. Рост и размножение микроорганизмов

11. Распространение микроорганизмов в природе

12. Нормальная микрофлора человека и её значение

Микробиология (mikros – малый, bios – жизнь, logos – учение) – наука о микроорганизмах, их строении и жизнедеятельности, наследственности и изменчивости, значении в природе и народном хозяйстве.

По целевой направленности и решению практических задач различают общую, техническую (промышленную), медицинскую, ветеринарную, санитарную, радиационную и космическую микробиологию. При этом общая микробиология изучает систематику, структурную организацию, химический состав, ферментные системы, культивирование и генетику микроорганизмов; техническая – использование микроорганизмов в производстве антибиотиков, ферментов, витаминов, стероидов, аминокислот и прочих биологически активных веществ, молочных и других продуктов, чая, кофе, какао, обработке каучука, хлопка, шелка, дублении кож и др.; медицинская и ветеринарная – закономерности жизнедеятельности патогенных для человека и животных микроорганизмов, механизмы инфекции и иммунитета, методы специфической профилактики и терапии инфекционных заболеваний; санитарная – микробную обсемененность окружающей среды, в частности выживаемость на различных объектах санитарно-показательных и патогенных микробов, их влияние на здоровье человека и естественные процессы; радиационная и космическая – влияние ионизирующих излучений и космических частиц на микроорганизмы.

В становлении микробиологии как науки выделяют два этапа –описательный (морфологический) и физиологический .

Морфологический период берет начало от первых наблюдений голландского естествоиспытателя Антония ван Левенгука (1632-1723), который, изготовив микроскоп, увеличивающий объекты до 200 раз, сумел увидеть и описать все основные формы бактерий и простейших.

Разрозненные факты описательного периода микробиологии были обобщены и приумножены основателем научной микробиологии Луи Пастером (1822-1895), с именем которого связано развитие второго, физиологического периода микробиологии и эпохальные открытия сущности брожения (1857), невозможности самопроизвольного зарождения (1860), природы порчи пива и вина (1865), болезней шелковичных червей (1868), микробной обусловленности и заразности инфекционных болезней (1881), методов изготовления вакцин и способов предохранения от куриной холеры, сибирской язвы и бешенства (1882-1885).

Большую роль в истории развития микробиологии сыграли труды Роберта Коха (1843-1910), который разработал метод выделения чистых культур микроорганизмов на плотных питательных средах, в частности ввел в практику агар-агар, желатин, свернутую сыворотку, кусочки овощей, предложил методы окраски бактерий анилиновыми красителями, усовершенствовал микроскоп, использовал микрофотографию. Благодаря усовершенствованию техники и методики микробиологических исследований Кох установил природу сибирской язвы, туберкулеза, холеры.

Основоположником современной вирусологии является русский ученый, профессор ботаники Д.И. Ивановский (1864-1920), установивший в 1892 г., что мозаичная болезнь табака (МБТ) вызывается инфекционным агентом, фильтрующимся через фарфоровые свечи Шамберлана с такими мелкими порами, которые задерживали известные в то время микроорганизмы.

Основоположниками иммунологии, зародившейся в недрах микробиологии, являются лауреаты Нобелевской премии И.И. Мечников (1845-1916) и П. Эрлих (1854-1915), разработавшие клеточную и гуморальную теории иммунитета.

Главные задачи медицинской микробиологии – профилактика и лечение инфекционных болезней. Выдающиеся открытия в микробиологии позволили за полстолетия повсеместно ликвидировать натуральную оспу, снизить до спорадических (единичных) случаев широко распространенные ранее чуму, туляремию, сыпной и возвратные тифы, мягкий шанкр, дифтерию, коклюш, полиомиелит, трахому, бешенство, столбняк, корь, лейшманиоз городского типа. Большие успехи достигнуты в профилактике клещевого энцефалита, клещевого возвратного тифа, бруцеллеза, но по-прежнему трудна борьба с заболеваемостью острыми кишечными инфекциями, гриппом, туберкулезом, другими острыми инфекциями дыхательных путей, вирусными гепатитами. Разработаны эффективные меры пресечения экзотических (завозных) и карантинных инфекций, в частности желтой лихорадки. Проводятся интенсивные поиски вакцинопрофилактики и способов лечения СПИДа.

Современная систематика, или таксономия (taxis – расположение, порядок + nomos – закон) микроорганизмов построена на общепринятой в биологии иерархической схеме, объединяющей в единое целое филогенетически родственные соподчиненные группы или таксономические категории, высшими из которых являются царства, подцарства, отделы (типы) → классы → отряды → семейства →трибы (группы) → роды →виды.

Основным таксономом является вид.

Вид – совокупность происходящей от одного предка скрещивающейся популяции, обладающей общим генофондом, экологическим единством и, если исключить некоторое виды бактерий, – репродуктивной изоляцией, т.е. между особями одного вида происходит свободный обмен генами, а между особями разных видов обмен ими невозможен или затруднен.

Клон – генетически однородная чистая культура микроорганизмов, происходящая из одной клетки.

Штамм – культура определенного вида микроорганизмов, выделенная из окружающей среды, патологического материала, музея.

В зависимости от штаммовых особенностей морфологии микроба, культуральных, биохимических, серологических (антигенных) свойств, его чувствительности к фагу и антибиотикам, степени патогенности различают несколько инфраподвидовых категорий: морфовары, культивары (биовары), хемовары, серовары, фаговары, резистенсвары, патовары и подвиды, отличающиеся друг от друга двумя-тремя особо важными признаками.

Каждый вид микроорганизмов, исключая вирусы, в соответсвии с правилами биноминальной (двойной, бинарной) номенклатуры обозначается двумя латинскими словами, например Mycobacterium tuberculosis, Mycoplasma pneumoniae. Первое слово, начинающееся с заглавной буквы, указывает на родовую принадлежность вида, второе – конкретно определяет вид.

Эукариоты , т.е. клетки с подлинными ядрами, подобны клеткам растений и животных. Они имеют поверхностную мембрану и внутриклеточную систему элементарных мембран, составляющих эндоплазматический ретикулум и комплекс Гольджи. В цитоплазме эукариот содержатся оформленное ядро (ядра), митохондрии, рибосомы и ряд других органелл. Клеточная стенка эукариот имеет разный характер строения и степень выраженности, которые нередко зависят от стадии или фазы развития. Размножаются простые эукариоты половым и бесполым путем.

Прокариоты – клетки, не имеющие отграниченного ядра, внутриклеточных систем элементарных мембран и митохондрий, а некоторые – лишены также клеточной стенки. Размножаются амитотически: простым поперечным делением или почкованием.

Виды прокариот идентифицируют по определению Д. Берги, изданному в 1994 г., в котором по структуре клеточной оболочки и отношению к окраске по методу Грама выделено четыре основных отдела (главных таксона): 1 – Gracilicutes (тонкостенные, окрашивающиеся грамотрицательно в розовый цвет), 2 – Firmicutes (толстостенные, окрашивающиеся грамположительно в фиолетовый цвет), 3 – Tenericutes (лишенные оболочек) и 4 – Mendosicutes (с дефектными оболочками), как правило, окрашивающиеся грамотрицательно.

Морфология бактерий

Бактерии – это одноклеточные организмы растительной природы лишенные хлорофилла и размножающиеся простым делением. К морфологическим свойствам бактерий относят форму, размеры, расположение, подвижность, споро- и капсулообразование. Размеры микроорганизмов колеблются от 0,4 до 10 мкм. Различают 3 формы микроорганизмов:

1 – шаровидные – кокки. В зависимости от плоскости деления и расположения клеток после деления кокки делят на: а – микрококки – деление и расположение беспорядочно; б – диплококки – деление в одной плоскости, расположение по 2; в – стрептококки – деление в одной плоскости, расположение цепочкой; г – тетракокки – деление в двух взаимноперпендикулярных плоскостях, расположение по 4; д – сарцины – деление в трех взаимноперпендикулярных плоскостях, расположение в виде пакетов по 8-16 штук; е – стафилококки – располагаются в виде гроздьев винограда.

2 – цилиндрическая или палочковидная форма – по способности образовывать споры палочковидные микроорганизмы делят на бациллы (образующие споры) и бактерии (не образующие споры). В зависимости от плоскости деления и расположения клеток после деления палочковидные микроорганизмы делят на: а – диплобактерии и диплобациллы – делятся в одной плоскости и располагаются по 2; б – стрептобактерии и стрептобациллы – делятся в одной плоскости и располагаются цепочкой; в – большинство палочковидных форм делятся хаотично и располагается по одному.

3 – извитые . Делят на: а – вибрионы – напоминают запятую или полумесяц; б – спириллы и спирохеты – имеют винтообразное строение.

Строение бактериальной клетки

Бактериальная клетка имеет оболочку, состоящую из трех слоев: слизистый слой, клеточная стенка, цитоплазматическая мембрана. Если слизистый слой достаточно толст, прочен и концентрируется вокруг микробной клетки, то он называется капсулой. Микрокапсула имеется у большинства микроорганизмов, а макрокапсула – только у пневмококка, клебсиелл и возбудителей сибирской язвы. При культивировании на питательных средах способность образовывать капсулу обычно утрачивается (кроме клебсиелл), капсула защищает микроорганизм в макроорганизме от действия фагоцитоза и гуморальных факторов.

Функции оболочки: формообразующая (за счет клеточной стенки), обеспечивает прочность, эластичность, гибкость, предохраняет от осмотического лизиса (цитоплазматическая мембрана), за счет избирательной проницаемости обеспечивает питание и выделение продуктов обмена, является местом биосинтеза некоторых составных частей клетки, участвует в делении.

Цитоплазма представляет собой прозрачное, слегка вязкое вещество жидкой консистенции, коллоидное состояние обеспечивается за счет содержания воды, белков, жиров, углеводов, минеральных веществ.

Аналогом ядра в бактериальной клетке является нуклеотид, у которого отсутствует дифференцированная ядерная мембрана.

В цитоплазме располагаются рибосомы, ответственные за синтез белка, и мезосомы, в которых протекают окислительно-восстановительные процессы. Включения представлены глыбками крахмала, гликогена, зернами серы, волютина, капельками жира и выполняют роль запаса питательных веществ.

Подвижные бактерии имеют органеллы движения – жгутики, начинающиеся от базального тельца и состоящие из белка флагеллина способного к самосокращению. По количеству и месту нахождения жгутиков подвижные бактерии делят на:

1. Монотрихи – один жгутик расположен на одном полюсе

2. Амфитрихи – по пучку жгутиков или по одному жгутику на 2 полюсах

3. Лофотрихи – пучок жгутиков на 1 полюсе

4. Перитрихи – жгутики расположены по всей поверхности

Для палочковидных микроорганизмов характерно спорообразование. Споры у микроорганизмов – это способ сохранения вида, и образуются они при попадании микроорганизмов в неблагоприятные условия внешней среды. Процесс спорообразования начинается с уплотнения цитоплазмы вокруг нуклеотида, после чего вокруг проспоры образуется многослойная оболочка и обменные процессы идут на самом низком уровне. В таком состоянии микроорганизмы сохраняют жизнеспособность в течение 40-50 лет. Наступление благоприятных условий способствует прорастанию спор в вегетативные формы, вызывающие заболевание при попадании в организм человека.

Физиология микроорганизмов

Питание – процесс, в ходе которого бактериальная клетка получает из окружающей среды компоненты, необходимые для построения ее биополимеров.

По источнику получения углерода:

a) Аутотрофы (питающийся сам) или литотрофы – единственный источник углерода – CO 2 , они способны из простых неорганических соединений синтезировать сложные органические

b) Гетеротрофы (питающийся за счет других) или органотрофы – добывают углерод из глюкозы, многоатомных спиртов, реже углеводородов, аминокислот, органических кислот, они нуждаются в поступлении готовых органических соединений

Метаболизм микроорганизмов состоит из:

– Ассимиляции (анаболизм) – увеличивает сложность соединений, т.е. обеспечивает синтез веществ с затратой энергии

– Диссимиляция (катаболизм) – расщепление сложных соединений на простые, которые потом используются для последующего синтеза, а часть выделяется во внешнюю среду

Особенности метаболизма бактерий:

1. Преобладание процессов диссимиляции над процессами ассимиляции

2. Высокая интенсивность метаболизма

3. Очень широкий спектр потребляемых бактериями веществ

4. Очень широкий набор ферментов

Дыхание – биологический процесс окисления различных органических веществ, при котором происходит перенос протонов и электронов от субстрата (донора) к кислороду (акцептору) и образование молекул АТФ.

Органеллы дыхания у бактерий – мезосомы, содержащие специальные дыхательные ферменты типа цитохромоксидаз.

По типу дыхания бактерии делят на:

Облигатные аэробы – они способны получать энергию только путем дыхания и нуждаются в О 2 как акцепторе протонов и электронов в окислительно-восстановительных процессах.

Облигатные анаэробы – способны расти только в среде, лишенной О 2 (для них О 2 токсичен). Для них как тип окислительно-восстановительных процессов характерна ферментация, при которой происходит перенос протонов и электронов от субстрата-донора к субстрату-акцептору.

Факультативные анаэробы – способны расти как при наличии О 2 , так и в отсутствии его.

Среди них различают:

a) Аэротолерантные – могут расти в присутствии атмосферного О 2, но не способные его использовать, т.к. получают энергию исключительно с помощью брожения (молочнокислые)

b) Факультативно-анаэробные – которые в отсутствие О 2 способны перестраиваться на брожение (энтеробактерии)

Рост – увеличение размеров отдельной особи (растут несколько минут)

Размножение – повышение числа особей популяции, способность к самовоспроизведению. Чаще всего бактерии размножаются путем простого поперечного деления и почкования: удваивается ДНК и каждая дочерняя клетка получает копию материнской ДНК, после чего между ними образуется перегородка. Процесс размножения микробных клеток идет довольно интенсивно. Деление бывает: изоморфное – дочерние клетки одинаковой величины; гетероморфное – дочерние клетки разной величины.

Распространение микроорганизмов в природе

Почва – является основной средой обитания многих микроорганизмов. Содержание микроорганизмов в почве – миллионы и миллиарды в 1 грамме. Состав и количество микроорганизмов зависят от влажности, температуры, содержания питательных веществ, кислотности почвы.

Плодородные почвы содержат больше микроорганизмов, чем глинистые и почвы пустынь. Верхний слой почвы (1-2 мм) содержит меньше микроорганизмов, т.к. солнечные лучи и высыхание вызывают их гибель, а на глубине 10-20 см – микроорганизмов больше всего. Чем глубже, тем количество микроорганизмов в почве меньше. Наиболее богаты микробами 15 см верхнего слоя почвы.

Видовой состав почвенной микрофлоры прежде всего зависит от вида почвы. В песчаных почвах преобладают аэробные микроорганизмы, а в глинистых – анаэробные. В их составе, как правило, обнаруживаются сапрофитические виды спорообразующих бацилл и клостридий, актиномицеты, грибы, микоплазмы, сине-зеленые водоросли, простейшие.

Микроорганизмы почвы осуществляют разложение трупов человека, животных и растительных остатков, самоочищение почвы от нечистот и отбросов, биологический круговорот веществ, изменяют структуру и химический состав почвы. Патогенные микроорганизмы попадают в почву с выделениями человека и животных.

Существует 3 группы микроорганизмов, для которых:

I. Почва – место обитания: возбудитель ботулизма, грибы.

II. Почва – вторичный резервуар, где они сохраняются длительное время: это чаще всего споровые бациллы – возбудитель сибирской язвы

III. Почва – среда, где микроорганизмы сохраняются от нескольких часов до нескольких месяцев: опасность передачи этих заболеваний невелика, но она увеличивается в военное время – возбудители столбняка и газовой гангрены

Воздух . Количество постоянно находящихся микрооргаизмов атмосферного воздуха сравнительно невелико. Больше всего их содержиться в околоземных слоях атмосферы. По мере удаления от земной поверхности в экологически благоприятных регионах воздух становится чище.

Количество микроорганизмов зависит от высоты и отдаленности от населенных пунктов. Здесь они только сохраняются некоторое время, а затем происходит их гибель за счет солнечной радиации, температурного воздействия, отсутствия питательных веществ.

Зимой количество микроорганизмов в воздухе открытых пространств меньше, чем летом. В воздухе закрытых помещений количество микроорганизмов зимой больше, чем летом. Микроорганизмы попадают в воздух от больных через дыхательные пути, с пылью, от загрязненных предметов, почвы.

В атмосферном воздухе видовой состав микрофлоры непрерывно меняется. В воздухе могут быть: стафилакокки, стрептококки, возбудители дифтерии, туберкулеза, вирусы кори, гриппа. Поэтому возможен воздушно-капельный и воздушно-пылевой пути передачи заразного начала. И для их предотвращения используют маски, проветривание, влажную уборку.

Вода. Вода – естественная среда обитания многих микроорганизмов. Количественные соотношения водных микроорганизмов в открытых водоемах колеблются в широких пределах, что зависит от типа водоема, сезона, степени его загрязнения. Особенно много микроорганизмов вблизи населенных пунктов, где вода загрязняется стоками хозяйственных нечистот. Чистая вода – артезианские скважины и родники. Для воды характерно ее самоочищение: гибель под действием солнечного света, разбавление чистой водой, за счет антагонизма микроорганизмов и других факторов.

Видовой состав микрофлоры воды мало чем отличается от почвенной. Известны водные эпидемии: при холере, брюшном тиф, дизентерии, туляремии, лептоспирозах.

Нормальная микрофлора тела человека. Микрофлора, выделенная от здорового человека, отличается видовым разнообразием. При этом одни виды микроорганизмов обитают в организме человека постоянно и составляют нормальную группу микрофлоры, другие – обнаруживаются периодически, попадая в организм человека от случая к случаю.

Дыхательные пути : постоянная микрофлора содержится только в полости носа, носоглотки и зева. В ее составе обнаруживаются грамотрицательные катаральные микрококки и фарингиальные диплококки, дифтероиды, капсульные грамотрицательные палочки, актиномицеты, стафилококки, пептококки, протей, аденовирусы. Конечные ветви бронхов и легочные альвеолы стерильны.

Рот : специфические виды микроорганизмов в полости рта ребенка появляются через 207 суток. Среди них 30-60% составляют стрептококки. Также заселяется полость рта микоплазмами, дрожжеподобными грибами, сапрофитическими видами трепонем, боррелий и лептоспир, энтамеб, трихомонад.

ЖКТ : тонкий кишечник не содержит специфических видов микробов, а случайные – редки и немногочислены. Толстый кишечник заселяется транзиторными микроорганизмами с первого дня жизни. Превалируют в нем облигатные анаэробы, в частности – бифидобактерии, лактобациллы, бактероиды и эубактерии – 90-95%. 5-10% – факультативные анаэробные бактерии: кишечные палочки и молочнокислые стрептококки. Десятые-сотые доли процента кишечного биоценоза приходятся на остаточную микрофлору: клостридии, энтерококки, протей, кандида и пр.

Микрофлора кожных покровов и конъюнктивы глаза : на коже и конъюнктиве глаза обитают микро- и макрококки, коринеформы, плесневые дрожжи и дрожжеподобные организмы, микоплазмы, условно-патогенные стафилококки. Другие виды микробов, актиномицеты, грибы, клостридии, эшерихии, золотистые стафилококки, обсеменяют кожу и конъюнктиву в условиях сильной запыленности воздуха помещений, загрязнения предметов обихода, прямого контакта с почвой. При этом на коже количество микроорганизмов во много раз больше, чем на площади глаза, что объясняется высоким содержанием в секрете конъюнктивы микробоцидных веществ.

Микрофлора мочеполовых путей : мочевыводящие пути здоровых людей стерильны, и лишь в передней части мочеиспускательного канала встречаются грамотрицательные непатогенные бактерии, коринеформы, микрококки, стафилококки и другие. На наружных половых органах обитают микобактерии смегмы и микоплазмы. Влагалище со 2-5 дня жизни новорожденного на многие годы заселяется непатогенной кокковой микрофлорой, которая при половом созревании заменяется молочнокислыми бактериями.

Вопросы для самоконтроля:

1. Что является предметом изучения микробиологии?

2. Что означает дословный перевод с греческого термина «микробиология»?

3. Какие отрасли микробиологии Вы знаете?

4. Изучением каких вопросов занимается общая микробиология?

5. Какие группы микроорганизмов изучает ветеринарная микробиология?

6. Какие группы микроорганизмов изучает производственная микробиология?

7. Что изучает медицинская микробиология и каковы ее задачи?

8. Какие основные этапы развития микробиологии Вы знаете?

9. Кто является основоположником морфологического периода микробиологии?

10. Основоположником какого периода развития микробиологии является Луи Пастер?

11. Каков вклад Луи Пастера в развитие микробиологии?

12. Какой ученый положил начало развитию иммунологического периода микробиологии?

13. Каковы современные принципы классификации микроорганизмов?

14. Назовите микроорганизмы, относящиеся к эукариотам.

15. Какие микроорганизмы относят к прокариотам?

16. Перечислите основные признаки, отличающие строение бактериальной клетки от строения клетки животных и растений.

17. Какие 3 формы микроорганизмов Вы знаете?

18. Из каких слоев состоит оболочка микробной клетки?

19. Какова функция жгутиков у микроорганизмов?

20. Какую функцию выполняют ворсинки?

21. В чем отличие спорообразования у грибов и бактерий?

22. Как могут располагаться споры у бактерий?

23. Какова форма спор?

24. На какие 2 группы делят микроорганизмы по типу питания?

25. На какие 2 группы делят гетеротрофы в зависимости от источника получения готовых органических соединений?

26. Что такое анаболизм?

27. Что такое катаболизм?

28. Как классифицируются микроорганизмы по типу дыхания?

29. Что такое рост микроорганизмов?

30. Что такое размножение микроорганизмов?

31. Какие микроорганизмы содержатся в почве?

32. Каков видовой состав микрофлоры атмосферного воздуха?

33. Какими микроорганизмами представлена микрофлора воды?

34. Какова нормальная микрофлора тела человека и её роль?

ЗАНЯТИЕ № 1

ТЕМА: ОСНОВНЫЕ МОРФОЛОГИЧЕСКИЕ ГРУППЫ МИКРООРГАНИЗМОВ. МОРФОЛОГИЯ И УЛЬТРАСТРУКТУРА БАКТЕРИАЛЬНОЙ КЛЕТКИ.

ПЕРЕЧЕНЬ КОНТРОЛЬНЫХ ВОПРОСОВ

    Формы и размеры истинных бактерий. Характеристика шарообразных, палочковидных и извитых форм истинных бактерий.

    Структура бактерий. Основные отличия прокариотной клетки от эукариотной.

    Клеточная стенка грамположительных и грамотрицательных бактерий.

    Типы микроскопических препаратов. Техника приготовления фиксированных препаратов.

    Техника микроскопии в световом микроскопе. Изучение морфологии микроорганизмов в электронном микроскопе.

    Тинкториальные свойства микробов. Красители. Простые способы окраски фиксированных препаратов.

    Принципы классификации патогенных прокариот (Берджи, 2001).

ЛАБОРАТОРНАЯ РАБОТА

1 Ознакомиться с организацией работы кафедры, оснащением и режимом работы бактериологической лаборатории.

2 Приготовить препараты-мазки стафилококка со скошенного агара, зафиксировать, окрасить водно-спиртовым раствором метиленового синего.

3 Изучить правила и технику иммерсионной микроскопии.

4 Приготовить мазки из смеси бульонных культур кишечной палочки, антракоида, сарцин, зафиксировать, окрасить водным раствором фуксина.

5 В демонстрационных препаратах изучить морфологию микроорганизмов :

Стрептококки

в чистой культуре

Пневмококки

в органах белых мышей

Гонококки

в гное уретры

Вибрионы

в чистой культуре

Боррелии

в мазке крови

Окраска по Граму х1000

Окраска по Граму х1000

Окраска по Граму х1000

Окраска по Граму х1000

х1000 Окраска по Романовскому -Гимзе

Грам+кокки расположены цепочкой

Грам+кокки расположены парами (диплококки) окружены слизистой капсулой,

Грам- кокки бобовидной формы расположены парами (диплококки)

Грам- подвижные палочки слегка изогнутой формы формы расположены беспорядочно

Подвижные изогнутые (3-8 завитков), сине-фиолетового цвета располагаются беспорядочно

(указать методы окраски микроскопических препаратов и особенности морфологии микроорганизмов – форму и расположение в препарате)

    Формы и размеры истинных бактерий. Характеристика шарообразных, палочковидных и извитых форм истинных бактерий.

Микробиология – (от греч. micros-малый, bios-жизнь, logos-учение) – наука, изучающая строение, жизнедеятельность и экологию микроорганизмов – мельчайших форм живых организмов, которые невозможно увидеть невооруженным глазом. Микробиология изучает всех представителей микромира (бактерии, грибы, простейшие, вирусы). Микроорганизмы в зависимости от молекулярно-биологической организации подразделяют на прокариотов и эукариотов. Прокариоты (от греч. karion-ядро) – доядерные простейшие одноклеточные формы жизни, не имеющие ядерной мембраны и высокоорганизованных органелл. К ним относятся бактерии, актиномицеты и сине-зеленные водоросли. К эукариотам, имеющим оформленное ядро и высокоорганизованные органеллы относятся одноклеточные и многоклеточные организмы – простейшие, грибы, водоросли (кроме сине-зеленных).

Структура бактерий. Основные отличия прокариотной клетки от эукариотной.

По форме клеток собственно бактерии подразделяются на шаровидные, палочковидные и извитые. Шаровидные бактерии-кокки, имеют сферическую форму. Одни располагаются беспорядочно (микрококки), другие парами (диплококки), третьи – цепочками (стрептококки), четвертые в виде пакетов, состоящих из четырех (тетракокки) или восьми (сарцины) кокков. Кокки располагающиеся скоплениями напоминающими виноградную гроздь называют стафилококками. Палочковидные бактерии, имеющие цилиндрическую форму, различаются по форме клеток, размером. Извитые формы бактерии представлены изогнутыми палочками изгибы, которых имеют один или несколько оборотов спирали.

Клетка – универсальная структурная единица живой материи . Организация бактериальной клетки такова, что она позволяет ей координировать все процессы жизнедеятельности, за определенный срок удваивать свою биомассу и размножаться путем бинарного деления. В составе бактериальной (прокариотической) клетки можно выделить различные структуры:клеточная стенка (по химической структуре которых, различают грамположительные и грамотрицательные бактерии), периплазматическое пространство, цитоплазматическая мембрана, цитоплазма, нуклеоид (генетический материал), мезосома (у эукариотов митохондрии), включения, рибосомы, у некоторых бактерии – капсула, микрокапсула, жгутик, плазмида, донорная ворсинка, фимбрии (реснички), спора.

Клеточная стенка – прочная, упругая, структура, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мембраной, сдерживающая высокое осмотическое давление в клетке. Они участвуют в процессе деления и транспорте метаболитов. Клеточная стенка грамположительных бактерии имеет однородную структуру, пластичный слой, слой тонкий и ковалентно связан с ригидным слоем. Она значительно толще, чем у грамотрицательных – ее толщина 20-60 нм. Основную массу стенки составляет пептидогликан. Он представлен не 1-2 слоями, как у грамотрицательных бактерий, а 5-6. С пептидогликаном ковалентно связаны тейхоевые кислоты (от греч. teichos-стенка). Особенностью пептидогликанов грамположительных бактерии является то, что в них часто нет диаминопимелиновой кислоты. В клеточной стенке грамположительных бактерии содержится небольшое количество липидов, полисахаридов и белков. Клеточная стенка грамотрицательных бактерий значительно тоньше, толщина составляет 14-18 нм. Основная особенность в том, что ригидный слой тонкий, представлен 1-2 слоями пептидогликана, в котором почти всегда имеется диаминопимелиновая кислота. В составе клеточной стенки содержится много липопротеинов, фосфолипидов, липополисахарид, больше белка, и, как правило, отсутствует тейхоевые кислоты. Пластичный слой клеточной стенки представляет сложную мозаику, образованную из липопротеинов, липополисахаридов и наружной мембраны. Нарушение синтеза, клеточной стенки лежит в основе L-трансформации бактерий. Она может быть обратимой и необратимой. Факторами, индуцирующими ее, являются различные антибиотики, угнетающие биосинтез клеточной стенки (пенициллин, циклосерин), ферменты (лизоцим, амидаза), антимикробные антитела, высокие концентрации некоторых аминокислот, особенно глицина и фенилаланина. L-трансформация является частной причиной перехода острых форм заболеваний в хронические и их обострений, и является одной из форм приспособления к неблагоприятным условиям существования. Протопласты – полное лишение клеточной, а частичное лишение – сферопласты.

Характеристика структурных элементов бактериальной клетки: цитоплазматической мембраны, капсулы, жгутиков, донорных ворсинок, фимбрий, или ресничек, спор – их химическая структура, биологическое значение для бактериальной клетки.

Цитоплазматическая мембрана (ЦМ) является исключительно полифункциональной структурой: воспринимает всю химическую информацию, поступающую в клетку из внешней среды, является основным осмотическим барьером: участвует в регуляции роста и клеточного деления бактерии, в процессах транспорта питательных веществ в клетку, участвует в синтезе компонентов клеточной стенки и др. На долю ЦМ приходится 10% сухого веса бактерий. Она содержит 25-40% фосфолипидов, образующих два слоя, 20-75% белков и до 6% углеводов. Цитоплазма бактерий представляет собой сложную коллоидную систему в ней нет эндоплазматического ретикулума и других цитоплазматических органелл, свойственных эукариотам, она не подвижна. В ней находятся нуклеоид, плазмиды, рибосомы, мезосомы, включения, гранулы гликогена, волютина. У разных биологических групп бактерий могут быть и другие внутрицитоплазматические включения метаболического происхождения. Между ЦМ и внутренним слоем пептидогликана находятся периплазматическое пространство, которое играет существенную роль во взаимодействии ЦМ и клеточной стенки, в нем содержится различные ферменты: по преимуществу фосфатазы, связывающие белки, олигосахариды и др. вещества.

У бактерий различают микрокапсулу, капсулу и слизистый слой. Они относятся к факторам патогенности (болезнетворности) бактериальной клетки, так как они сохраняют (защищают) его от защитных факторов организма человека и животных. Микрокапсула выявляется при электронной микроскопии в виде коротких мукополисахаридных фибрилл. Капсула представляет собой слизистый слой и служит внешним покровом бактерий, толщина ее более 0,2 мкм, она четко обнаруживается под микроскопом после окрашивания по способу Бурри-Гинса. В образовании капсулы принимает участие ЦМ.

Совместно с клеточной стенкой и ЦМ они образуют мощную оболочку бактерии, предохраняют от высыхания, несут для них запасные питательные вещества.

У бактерии органом движения являются жгутики, которые представляют собой тонкие длинные нитевидные белковые образования диаметром 12-30 нм и длиной от 6-9 до 80 мкм. Белок, из которого построены жгутики, получили название флагеллина.

По характеру расположение жгутиков и их количеству подвижные бактерии делят на 4 группы:

Монотрихи – один полярно расположенный жгутик.

Лофотрихи – пучок жгутиков на одном конце

Амфитрихи – пучки жгутиков на обоих концах клетки

Перитрихи – множество жгутиков, расположенных вокруг клетки.

Жгутик состоит из трех компонентов – спиральной жгутиковой нити, крючка и базального тельца. У бактерий, являющихся носителями конъюгативных плазмид, имеются длинные нитевидные структуры белковой природы, получившие название донорных ворсинок, или донорных пилей.

Фимбрии – короткие нити, в большом количестве окружающие бактериальную клетку, они прикреплены к клеточной стенке, но значительно короче и тоньше. С их помощью бактерии прикрепляются к чувствительным клеткам.

Некоторые роды бактерий при неблагоприятных для их существования условиях образуют защитные формы – споры. Споры представляют собой своеобразные покоящиеся клетки: у них низкая метаболическая активность, но они обладают высокой устойчивостью к высушиванию, действию повышенной температуры и различных химических веществ. Диаметр споры может не превышать диаметра вегетативной клетки или превышает его. Споры в клетке могут располагаться центрально, 7

субтерминально, терминально. В процессе спорообразования бактериальная клетка подвергается сложной перестройке. Сформировавшаяся эндоспора состоит из протопласта с нуклеоидом, стенки споры, кортекса, оболочки и экзоспория. У многих видов грамотрицательных бактерий, не образующих спор, существует особое приспособительное состояние, физиологически эквивалентное цистам, при котором такие бактерии не размножаются и сохраняют жизнеспособность и получили название некультивируемых форм бактерий (НФБ). НФБ обладают высокой устойчивостью во внешней среде.

    Клеточная стенка грамположительных и грамотрицательных бактерий.

Окраска по методу Грама (модификация Синева). При окраске по Граму в клетках на уровне клеточной стенки идет образование комплекса генцианового фиолетового + йод. Этот комплекс не растворим в воде и слабо растворим в спирте. При обработке этанолом он проходит через клеточную оболочку грамотрицательных микроорганизмов и выводится, клетки становятся бесцветными, при докрашивании фуксином они приобретают красный цвет. Клеточная стенка грамположительных бактерий, благодаря присутствию большого количества пептидогликана и меньшему диаметру спор, способствует удержанию образовавшегося комплекса, и клетки сохраняют сине-фиолетовый цвет. Способность окрашиваться по Граму – достаточно видовой признак, иногда может зависеть от возраста клеток.

    Типы микроскопических препаратов. Техника приготовления фиксированных препаратов.

    Техника микроскопии в световом микроскопе. Изучение морфологии микроорганизмов в электронном микроскопе.

Микроскоп состоит из двух частей – оптической и механической. К оптической части относятся объективы, которые состоят из фронтальной и коррекционных линз, с их помощью достигается увеличение объекта и коррекция его оптического изображения. Объективы подразделяются на сухие и иммерсионные. Предельная разрешающая способность иммерсионного микроскопа 0,2 мкм. Общее увеличение микроскопа определяется произведением увеличения объектива на увеличение окуляра.

Порядок микроскопии препаратов с иммерсионным объективом:

На приготовленный и окрашенный мазок нанести небольшую каплю иммерсионного масла, поместить препарат на предметный столик.

Установить иммерсионный объектив 90.

Осторожно опустить тубус микроскопа до погружения объектива в каплю масла.

Установить ориентировочный фокус при помощи макрометрического винта.

Провести окончательную фокусировку препарата микрометрическим винтом. Нельзя допускать соприкосновение объектива с препаратом, возможна поломка препарата или фронтальной линзы. По окончании работы необходимо тряпочкой тщательно вытереть масло с иммерсионного объектива .

Темнопольная микроскопия основана на использовании эффекта Тиндаля (дифракция света при сильном боковом освещении взвешенных в жидкости мельчайших частиц). Для этого обычный конденсор в микроскопе заменяется на параболоид или кардиоид конденсор. Краевые лучи, выходящие из темнопольного конденсора, проходят в косом направлении, не попадают в объектив, в связи, с чем поле зрения остается темным. В объектив поступают отраженные от объектива лучи, образуя характерное изображение ярко светящихся контуров микробных клеток, находящихся в препарате на темном фоне.

Фазово-контрастная микроскопия основана на превращении изменений по фазе, возникающих при прохождении световой волны через прозрачные (фазовые) объекты, в изменения по амплитуде, в результате чего прозрачные объекты становятся видимыми в микроскоп. При этом достигается высокая контрастность изображения, которая может быть позитивной (темное изображение объекта в светлом поле зрения) или негативной (светлое изображение объекта на темном фоне).

Люминесцентная или флюоресцентная микроскопия основана на явлении фотолюминесценции (свечение объекта под влиянием света). Первичная (собственная) люминесценция наблюдается без предварительного окрашивания объекта, вторичная (наведенная) возникает после окраски препаратов люминесцирующими красителями – флюорохромами. Достоинствами этого метода микроскопии являются возможность исследования живых микроорганизмов и обнаруживания их в исследуемом материале в небольших концентрациях вследствие высокой степени контрастности.

Электронная микроскопия применяется для исследования объектов, размеры которых лежат за пределами разрешающей способности светового микроскопа (вирусов, макромолекулярных структур и др. субмикроскопических структур), а также для изучения тонкого строения различных микроорганизмов. Основана на использовании вместо световых лучей, потока электронов, имеющего длину около 0,005 нм, т.е. почти в 100 000 раз короче волны видимого света. Высокая разрешающая способность электронного микроскопа (0,1-0,2 нм) позволяет получить полезные увеличения до 1 000 000 раз. Кроме приборов "просвечивающего" типа используют сканирующие электронные микроскопы, дающие рельефное изображение поверхности объекта.

    Тинкториальные свойства микробов. Красители. Простые способы окраски фиксированных препаратов.

Для количественного учета, изучения морфологии, выявления спор, капсул, органоидов, включений мазок необходимо зафиксировать и окрасить. Мазок готовят на обезжиренном стекле, на который наносят небольшое количество воды. В этой капле эмульгируют исследуемый материал, который распределяют тонким слоем на поверхности около 2 см.. Если культура в жидкой среде, то его берут петлей или стерильной пипеткой и каплю наносят непосредственно на стекло (без воды). После этого мазок высушивают на воздухе и фиксируют. В процессе фиксации микробные клетки погибают, этим достигается безопасность работы с ними, что особенно важно для работы с патогенными микроорганизмами. Убитые микроорганизмы лучше воспринимают красители, чем живые. Кроме того, в фиксированном мазке клетки прикрепляются к стеклу и не смываются при последующей обработке.

Методы фиксации. Физический метод – фиксация мазка над пламене горелки или спиртовки в течение нескольких секунд мазком вверх. Химический метод – более мягкий. При этом мазок погружают в фиксатор на определенное время или жидкость наливают на мазок. В качестве фиксаторов используют: 1) этанол – 10-15 мин; 2) ацетон – 5 мин; 3) смесь Никифорова (этанол+эфир – 1:1) – 1015 мин; 4) метанол – 3 мин; 5) формалин (несколько секунд). После фиксации мазок можно окрашивать.

Окраску мазков производят простым или сложными методами . При простых методах мазок окрашивают каким либо одним красителем, используя красители анилинового ряда (кислые). Наливают краситель на фиксированный мазок на определенное время и смывают водой, высушивают и микроскопируют в иммерсионной системе. Сложные методы окраски применяют для изучения структуры клетки и дифференсации микроорганизмов при этом используют несколько красителей, в некоторых случаях спирты, кислоты.

    Принципы классификации патогенных прокариот (Берджи, 2001).

Все микроорганизмы различаются друг от друга по многим признакам, и прежде всего по уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки. В соответствии с этими признаками все известные живые существа делят на 4 царства: Эукариоты, эубактерии, архебактерии, вирусы и плазмиды. К прокариотам, объединяющим эубактерии и архебактерии, относятся бактерии, низкие водоросли, спирохеты, актиномицеты, риккетсии, микоплазмы. Простейшие, дрожжи и нитчатые грибы – эукариоты. Систематика занимается описанием видов организмов, выяснением степени родственных отношений между ними и объединением их в различные классификационные единицы (таксоны). Основной таксономической единицей в биологии является вид. Последующие таксономические единицы: род, семейство, порядок и класс. Это обязательные категории. Подрод, подриба, триба, подсемейство подпорядок, подкласс – дополнительные категории. Согласно определителю Берги, царство прокариот в зависимости от характера их клеточных стенок разделено на 4 большие группы, или отдела.

1) Грациликуты или тонкокожие – к нему относятся грамположительные бактерии.

2) Фирмикуты или толстокожие – к нему относятся грамположительные бактерии.

3) Тенерикуты или нежнокожие – организмы, не имеющие клеточной стенки – микоплазмы.

4) Мендосикуты – бактерии, большинство из которых хотя и имеют клеточную стенку, но она не содержит пептидогликана – сюда относятся архебактерии.

По классификации Берги все прокариоты делятся на 17 частей. Для обозначения видов бактерий используют бинарную номенклатуру, состоящую из названия рода (пишется с заглавной буквы) и вида (пишется всегда со строчной буквы и состоит из одного слова).

Бактериологические, вирусологические лаборатории входят в состав санитарно-эпидемиологических станций (СЭС) и крупных больниц. В лабораториях СЭС выполняются бактериологические, вирусологические, серологические анализы материалов полученных от больных и контактирующих с ними лиц, обследуются бактерионосители и проводятся санитарно-микробиологические исследования воды, воздуха, почвы, пищевых продуктов и пр. В бактериологических и серологических лабораториях больниц проводятся диагностические исследования при кишечных и гнойных инфекциях (дифтерии, туберкулеза и др.), а также исследования по контролю за качеством дезинфекции и стерилизации. Диагностика особо опасных инфекций (чумы, холера, туляремия, бруцеллез, сибирская язва и др.) проводятся в специальных лабораториях. В вирусологических лабораториях проводятся диагностика заболеваний вызванных вирусами (грипп, корь, краснуха, клещевой энцефалит, полиомиелит и др.) хламидиями (орнитоз и др.) и риккетсиями (сыпной тиф, Ку-лихорадка и др.)

В каждой лаборатории предусмотрены следующие помещения:

1) бокс для работы с отдельными группами бактерий или вирусами в асептических условиях;

2) специально оборудованное помещение для стерилизации (автоклавная), для стерилизации питательных сред, посуды, обеззараживания отработанного инфицированного материала;

3) моечная, оборудованная для мытья посуды;

4) оборудованная комната для иммунологических (серологических) исследований;

5) помещение для приготовления питательных сред;

6) помещение для приготовления препаратов и посевов;

7) виварий с боксами для содержания лабораторных животных;

8) регистратура для приема, выдачи анализов.

Лаборатории оснащены следующими оборудованием: биологическими иммерсионными микроскопами, с дополнительными приспособлениями (осветитель, фазово-контрастное устройство, темнопольный конденсор и др.), люминесцентным микроскопом, термостатами, анаэростатами, приборами для стерилизации (автоклав, сушильный шкаф), рН-метрами, дистиллятором, центрифугами, весами аппаратурой для фильтрования, водяными банями, холодильниками, аппаратом для изготовления ватно-марлевых пробок, набором инструментов (бактериологические петли, шпатели, иглы, пинцеты и др.), лабораторной посудой (пробирки, колбы, чашки Петри, флаконы, ампулы, пипетки и др.). Все помещения лаборатории должны быть обеспечены вентиляцией, водопроводом, канализацией, электроэнергией. Стены должны быть окрашены масляной краской или покрыты кафельной плиткой, пол линолеум. В крупных лабораториях имеются термостатные комнаты для массового выращивания микроорганизмов. Каждое рабочее место лаборатории должно быть снабжено газовой горелкой или спиртовкой, банкой с дезинфицирующим раствором. Лабораторные столы оборудуются микроскопом с осветителем, набором красителей и реактивов для окраски препаратов, бактериальными петлями, крючком, иглой, шпателем, Пастеровскими и градуированными пипетками, предметными и покровными стеклами, пинцетами, ванночкой для приготовления и окраски мазков, ватой в стеклянном сосуде, карандашом по стеклу, фильтровальной бумагой.

Учитывая, что работа в микробиологической лаборатории медицинского учреждения проводится с возбудителями инфекционных заболеваний, персонал для предохранения от заражения, должен строго соблюдать правила внутреннего порядка:

1) Входить в лабораторию и работать в ней только в медицинских халатах, шапочках и в сменной обуви. В необходимых случаях персонал надевает на лицо маску из марли. Работа с особо опасными микроорганизмами регламентируется спец. инструкцией и проводится в режимных лабораториях.

2) В лабораториях запрещается принимать пищу, курить.

3) Рабочее место должно содержаться в образцовом порядке, личные вещи сотрудников следует хранить в специально отведенном месте.

4) При случайном попадании инфекционного материала на стол, пол, одежду, обувь это место необходимо обработать дезинфицирующим раствором.

5) Использованные пипетки, предметные стекла, шпатели, ватные тампоны необходимо помещать в сосуд с дезинфицирующим раствором. Пинцеты, бактериальные петли, иглы следует прожигать в пламени горелки.

6) Обработанные культуры, использованный микробный материал, трупы зараженных животных необходимо сдавать для обеззараживания.

7) Хранение, наблюдение за культурами микроорганизмов и их уничтожение должны проводится согласно специальной инструкции. Все культуры патогенных микроорганизмов регистрируются в специальном журнале.

ТЕМА 2

МОРФОЛОГИЯ, СТРОЕНИE И КЛАССИФИКАЦИЯ

МИКРООРГАНИЗМОВ

2.1. Морфология микроорганизмов

2.1.1. Из истории микроскопа

Изучение морфологии микроорганизмов невозможно без увеличительных приборов – микроскопов. Первый увеличительный прибор был сделан в 1608 г Итальянским ученым Г.Галилеем.Он смастерил длинную трубку (типа современного телескопа) с двумя увеличительными линзами внутри и с помощью его смотрел на отдаленные объекты. Затем он усовершенствовал этот прибор и в 1610 году сделал первый «микроскоп», с помощью которого смотрел на мелкие объекты.

В 1625 году Немецкий ученый Иоган Фабер второй прибор Галилея назвал микроскопом.

В 1665 году Английский ученый Роберт Гук усовершенствовал микроскоп добавлением 3–ую собирательную линзу.

В 1667 году Итальянский ученый Евстахий Давини сделал 2–ой линзовый окуляр, в результате которого появился плоское видимое поле.

В 1715 году Немецкий ученый Гертель впервые применил осветительное зеркало для направления лучи цвета к объекту и линзу.

1850 году Итальянский ученый Д.Амиги создал иммерсионный микроскоп и изпользовал водную иммерсию, а в1878 году Английский ученый В.Стефансон предложил масленную иммерсию.

1886 году Немецкий ученый Ф.Эбнер сделал темнополый микроскоп.

В 1908 году Немецкие ученые А.Кёлер и Г.Зидонтонф создали люминесцентный микроскоп.

В 1930 году Е.Руска, М.Кнолль и Б,Боррие создали первый электронный микроскоп.

2.1.2 Морфология и строение бактерий

Формы и размер бактерий

По внешней форме бактерии можно разделить на несколько групп: шаровидные (сферические), палочковидные, извитые, вибрионы, кольцообразные, (тороиды) в форме шестиугольной звезды, бактерии образующие выросты (простеки), червеобразной формы и разветвленные бактерии. Однако большинство известных бактерий имеют шарообразную, палочковидную и извитую форму.

Бактерии сферической формы или кокки имеют размер в диаметре 1-2 мкм (микрометр). В зависимости от расположения клеток после деления они подразделяются на ряд групп. Если после деления клетки располагаются по одиночно, то их называют монококки или микрококки. Если деление происходит в одной плоскости и клетки не разъединяются, а остаются связанными по две, то их называют диплококки. После такой деление, если клетки не разъединяются и образуют цепочки разной длины, то их называют стрептококки. Деление кокков в двух взаимно перпендикулярных плескостьях приводит к образованию форм из четырех клеток-тетракокков. При одновременном делении кокков в трех взаимоперпендикулярных плоскостях образуются пакеты из восьми клеток в виде кубика. Такое скопление кокков называют сарцина. При делении кокков неравномерно в нескольких плоскостях возникают скопления клеток напоминающие гроздья винограда. Это – стафилококки.

Среди кокков имеются представители с неправильно круглой формой клетки. К ним относятся пневмококки, менингококки и гонококки. Форма пневмококков овальная, напоминающая пламя свечи, клетки соединены попарно широкими основаниями. Менингококки и гонококки имеют форму бобов или кофейных зерен, клетки соединены по две вогнутыми сторонами.

Кокковые формы, за исключением Sarsina ureae (мочевой сарцины), не образуют спор, неподвижны, широко распространены в природе. Многие из кокков патогенные-возбудители воспалительных процессов, например, пневмококки, менингококки, гноеродные стрептококки и стафилококки; другие – непатогенные, возбудители молочнокислого брожения, например, Streptococcus lactis, Str.cremoris; некоторые используются в производстве для биосинтеза декстрана – заменителя плазмы крови Leuconostos mesenteroides.

Самые мелькие по размеру бактерии встречаются среди шаровидных форм, которые пренадлежат к микоплазмам. Описаны микоплазмы с

диаметром клеток 0,12-0,15 мкм.

К палочкавидным формам относится самая многочисленная группа бактерий. Клетки имеют цилиндрическую форму, концы их могут быть округлые либо срезанные, прямые и выпуклые. Различают палочки короткие и длинные, толстые и тонкие. Размеры палочкавидных бактерий от нескольких десятых микрона до 100 и больше. У коротких палочек длина лищь ненамного превышает поперечник клетки, так что иногда довольно трудно отличить их от кокков.

У некоторых бактерий палочковидные клетки соединяются в длинные нити, образуя так называемые нитчатые формы. К таким многоклеточным нитевидным формам относятся некоторые железобактерии и бесцветные серобактерии. Длина нити серобактерии Beggiatoa mirabilis достигает 1 см и больше. Она считается гигантом среди бактерий.

По способности к спорообразованию палочковидные формы делятся на две группы: бактерии и бациллы. Клетки, не образующие спор, называются бактериями. Они как правило, располагаются одиночно. В преобладающем большинстве это мелкие палочки, относяшиеся к родам Bacterium и Pseudomonas. Палочковидные формы, образующие споры, называют бациллами (Bacillus). Они различаются между собой по форме клеток, обусловленной размерами и местом расположения спор.

Если спора распологается в центре клетки и диаметр ее не превышает диаметра клетки, то такой тип называют собственно бациллами; если диаметр споры превышает диаметр клетки, то при расположении споры в центре клетки имеет веретеновидное утолщение и называется клостридием (например, у Clostridium pasterianum) а при расположении споры в конце принимает вид барабанной палочки или теннисной ракетки и называется плектридием. Спороносные формы образуют длинные цепочки клеток, так называемые стрептобациллы (например, Bacillus mycoides).

Микроорганизмы спиралевидной формы различаются числом витков. Если у бактерий клетки имеют несколько крупных завитков, то их называют спириллы. Клетки с множеством мелких витков спирали называют спирохеты. Бактерии изогнутые в виде полумесяца или занятой называют вибрионы. Большинство извитых форм представлено паточенными видами (например, холерной вибрион, возбудитель сифилиса). Среди них есть и сапрофиты, обитающие в почве и воде. Извитые формы имеют весьма различные размеры клеток – от мельких 1,5-2,0 мкм (вибрионы) до очень крупных 2-3 х 15-20 мкм (например, Spirillum volutans). Есть среди прокариотов организмы, отличающиеся от описанных выше основных форм. Некоторые бактерии имеют вид кольца, замкнутого или разомкнутого в зависимости от стадии роста (например, бактерии рода Microcyclus). Такие клетки предложено называть тероидами.

У бактерий, в основном размножающихся почкованием, описано образование клеточных выростов, число которых может колебаться от 1 до 8 и больше. Бактерий образующие выросты называют простеки.

Из природных субстратов выделены бактерии червеобразной формы (длинные клетки с загнутыми, очень тонкими концами) и напоминающие по виду правильную шестиугольную звезду.

Для некоторых групп прокариотов характерно слабое ветвление, например, у микобактерий и пропионовых бактерии. У некоторых бактерий имеется хорошо выраженное ветвление. Их называют актиномицеты (стрептомицеты).

Описаны бактерии, обладающие морфологической изменчивостью (племорфизмом), например бактерии, относящиеся к группе коринебактерий, в зависимости от условий могут иметь вид палочек, кокков или слабоветвящихся форм.

Форма клеток прокариотов (бактерий) определятся жесткой (ригидной) клеточной стенкой. Именно последняя придает клетке определенную, наследственно закрепленную внешнюю форму. У ряда бактерий (например, у спирохет, миксобактерий и флексибактерий) клеточная стенка довольно эластична, поэтому они способны в определенных пределах меньят форму клеток, например путем загибания. Наконец известны бактерии, у которых клеточная стенка отсутствует совсем. Это – микоплазмы и L - формы. Микоплазмы существуют в природе и в большинстве патогенны для человека и животных. L – формы получены экспериментально под действием химических веществ, которые разрушают клеточную стенку бактерий или подавляют синтез компонентов клеточный стенки. Для этих бактерий характерен ярко выраженный племорфизм.

Строение и химический состав бактерий

Структуры, расположенные снаружи от цитоплазматической мембраны (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки), называют обычно поверхностными структурами или бактериальной оболочкой. Цитоплазматическая мембрана вместе с цитоплазмой называется протопластом. Рассмотрим сначала строение, химический состав и функции поверхностных клеточных структур.

Жгутики . На поверхности клеток многих бактерий имеются структуры, определяющие способность клеток к движению. Это жгутики. Их наличие, число, размеры, расположение являются признаками, постоянными для определенного вида бактерий и имеющими поэтому важное таксономическое значение.

Если жгутики находятся у полюсов клетки, говорят об их полярном расположении, если вдоль боковой поверхности клетки, говорят об их латеральном расположении. Если один жгутик прикреплен к одному из полюсов клетки, его называют монотрихи. Если на каждом полюсе по одному или пучок жгутиков, - называются амфитрихи (или биополярные политрихи). Если пучок жгутиков расположен на одном из полюсов клетки –

называются лофотрихи (или монополярные политрихи). Если многочисленные жгутики расположены по всей поверхности клетки – называются перитрихи. Толщина жгутиков 100 – 300 А, длина от 3 до 12 мкм. Состоят они из одного вида белка – флагеллин.

Перемещение бактерий осуществляется за счет активных вращательных движений жгутиков. Некоторые бактерии, не имеющие жгутик, перемещаются по твердому субстрату скольжением (например, миксобактерии, флексибактерии, спирохеты, цианобактерии).

Следует отметить, что механизмы движения бактерий пока не выяснен.

Подвижные бактерии активно и направленно перемещаются. Такие направленные перемещения бактерий называются таксисами. Известно, хемотаксисы, аэротаксисы и фототаксисы. Скорость перемещения бактерий велика – за 1 секунду может пройти расстояние в 20 – 50 раз больше, чем длина клеток.

Жгутики и ворсинки не являются обьязательной клеточной структурой, так как без них бактерии тоже хорошо растут и размножаются.

Капсулы и слизистые чехлы . Снаружи клеточная стенка бактерий и цианобактерий часто бывает окружена слизистым веществом. В зависимости от его толщины и консистенции различают макро и микрокапсулы. Под капсулой понимают слизистое образование, обволакивающее клеточную стенку и имеющее четко очерченную поверхность. Если же окружающие клетку слизистое вещество имеет аморфный, бесструктурный вид и легко отделятся от поверхности прокариотной клетки, говорят о слизистом чехле, окружающем клетку. Колонии, состоящие из клеток, окруженных капсулой, имеют гладкую поверхность. Их обозначают как S – колонии (от английского слова smooth -гладкой). Колонии, сформированные из безкапсульных клеток, имеют шероховатую поверхность и называются R – колонии (от английского слова rough - шероховатый).

Клеточная стенка . Клеточная стенка важной и объязательный структурной элемент прокариотной клетки (исключение составляют микоплазмы). На долю клеточной стенки у прокариотных микроорганизмов приходится от 5 до 50% сухих веществ клетки. Она служит механическим барьером между протопластом и внешней средой и придает клеткам определенную форму. Клеточная стенка чисто механически защищает клетку от проникновения в нее избытка воды.

Химический состав и строение клеточной стенки постоянны для определенного вида и являются важным диагностическим признаком. В зависимости от строения клеточный стенки бактерии делятся на две большие группы: грамположительные и грамотрицательные. Было обнаружено, что если фиксированные клетки микроорганизмов обработать сначала кристаллическим фиолетовым, а затем йодом, образуются окрашенный комплекс. При последующей обработке спиртом в зависимости от строения клеточной стенки судьба комплекса будет различна. У грамположительных бактерий этот комплекс удерживается клеткой, и последние остаются окрашенными, а у грамотрицательних бактерий, наоборот, окрашенный комплекс вымывается из клеток, и они обесцвечиваются. Этот способ окрашивания был впервые предложен в 1884 г. датским ученым Х.Грамом.

Клеточные стенки грамположительных и грамотрицательных бактерий различаются по химическому составу. Считается, что гликопептиды образуют жесткий каркас клеточной стенки. У грамположительных бактерий они составляют основную ее массу (до 90%), а у грамотрицательных их содержание значительно меньше (5-10%).

Клеточная стенка грамположительных бактерий содержит гликопептиды (муреиновый комплекс), полисахариды, тейховые кислоты, липиды. Клеточная стенка грамотрицательных бактерий содержит полисахариды, липиды (до 90%) , белки, липополисахариды, липопротеиды и гликопептиды. Следовательно, тейховые кислоты отсутствуют у грампотрицательных бактерий и липополисахариды и липопротеиды отсутствуют у

грамположительных бактерий.

Цитоплазматическая мембрана. Содержимое клетки отделяется от клеточной стенки цитоплазматической мембраной (ЦПМ). Нарушение целостности ЦПМ приводит к потере клеткой жизнеспособности. ЦПМ – белково – липидный комплекс, в котором белки составляют 50-70%, липиды от 15-30%. Под електронном микроскопом она видна в виде трехслойной структуры. Согласно модели, предложенной Г.Даусоном и Д Даниелли, ЦПМ построена из двух белковых слоев, между которыми расположен липидный слой.

ЦПМ выполняет разнообразные функции. Препараты мембран обладают АТФ-азной активностью, катализируют процессы синтеза веществ, входящих в состав клеточной стенки и слизистого чехла. В мембранах локализованы окислительные ферменты. Здесь же находится ферменты – пермеазы, которые осуществляют активный двусторонней избирательный перенос через мембрану различных органических и неорганических веществ. Между ЦПМ – ой и клеточной стенкой имеется пространство, которое называют периплазматическим пространством. Многие внеклеточные ферменты функцанируют именно в этом пространстве.

Цитоплазма. Содержимые клетки, окруженное ЦПМ, называется цитоплазмой. В цитоплазме бактерий, содержится ядерный материал и различные включения.

Ядерный материал бактерий, состояший из ДНК, диффузионно расположен в центральной части цитоплазмы и не ограничен от цитоплазмы мембраной. Его называют нуклеоидом.

В цитоплазме имеются мембранные структуры – мезосомы, у фотосинтезирующих бактерий – тилокоиды и хроматофоры.

Тилокоиды и хроматофоры фотосинтезирующих бактерий являются местом локализации фотосинтетических пигментов.

Мезосомы различаются размерами, формой и локализацией в клетке. Выделяют три основных типа мезосом: пластинчатые (ламеллярные), пузырчатые (везикулярные) и трубчатые (тубуларные). Считается, что они принимают участие в важных процессах клеточного метобализма. Однако истинная функция бактериальных мезосом остается загадочной.

Рибосомы в бактериальной клетке могут существовать свободно в цитоплазме или же быть связанными с мембранными структурами. В синтезе белка участвуют рибосомальные агрегаты,называемые полиробосомами, или полисомами.

В цитоплазме различных бактерий обнаруживаются еще и твердые, жидкие, газообразные вещества.

2.1.3. Классификация бактерий

В настоящее время царство бактерий делится на 4 категории:

1. Грамотрицательные эубактерии, имеющие клеточные стенки;

2. Грамположительные эубактерии, имеющие клеточные стенки;

3. Эубактерии, лишенные клеточных стенок;

4. Археобактерии.

Первая категория имеет 16 групп; вторая котегория – 13 групп, третья категория – имеет одну группу, а четвертая категория – 5 групп. (более подробно см: 1) Определитель бактерий Берджи. М.: Мир, 1997, том 1, 430 с.; 2)Шлегель. Общая микробиология. М.: Мир, 1987, 562 с.).

2.1.3. Морфология, строение и классификация грибов

Грибы относятся к эвкариотным микроорганизмам. Все они гетеротрофы и в основном аэробы. Тело большинства грибов состаит из тонких нитей-гиф, а образуемые ими сплетение называется мицелием или грибница. Гифы некоторых грибов разделены перегародками на клетки (септированы), такие грибы называют многоклеточными. Гифы других грибов не имеют перегородок – это одноклеточные грибы. Имеются еще шаровидные или яцевидные одноклеточные грибы, которые называют дрожжи.

Строение клеток грибов мало отличается от строения клеток других эквариотных организмов. Клетки состоят из клеточной оболочки, цитоплазмы и одного, двух или нескольких ядер. Цитоплазма содержит внутриклеточные органеллы, вакуоли и различные включения. Клеточная оболочка состоит из клеточной стенки и цитоплазматической мембраны.

По современной системе царство грибов дельят на 8 отделов: 1) отдел Myxomycota; 2) отдел Plazmodiophoramycota; 3) отдел Oomycota; 4) отдел

Chytridiomycota; 5) отдел Zygomycota; 6) отдел Ascomycota; 7) отдел Basidiomycota; 8) отдел Deuteromycota. Отделы подразделяются на порядки, порядки – на классы, классы – на семейства, а семейства – на роды (более подробно см: 1) Гарибова Л.В., Лекомцева С.Н. Основы микологии. М. 2005; 2) Мюллер Э.; Леффлер В. Микология, М.: Мир,1995).

Литература

1. Гусев М.В., Минеева Л.А., Микробиология. М. 1978.

2. Коротяев А.И., Бабичев С.А., Медицинская микробиология., Санкт – Петербург,1998.

3. Шлегель Г. Общая микробиология. М.: Мир, 1987.

4. Дараселия Г.Я. Микробиология, гигиена и безопасность питания, Тбилиси, 2006.

5. Бирюзова В.И. Мембранные структуры микроорганизмов. М.: Наука, 1973.

6. Феофилова Е. П. Клеточная стенка грибов. М.: Наука, 1983.



Похожие статьи