Когда можно использовать теорему виета. Калькулятор онлайн

26.09.2019

Перед тем как перейти к теореме Виета, введем определение. Квадратное уравнение вида x ² + px + q = 0 называется приведенным. В этом уравнении старший коэффициент равен единице. Например, уравнение x ² — 3x — 4 = 0 является приведенным. Всякое квадратное уравнение вида ax ² + bx + c = 0 можно сделать приведенным, для этого делим обе части уравнения на а ≠ 0. Например, уравнение 4x ² + 4x — 3 = 0 делением на 4 приводится к виду: x ² + x — 3/4 = 0. Выведем формулу корней приведенного квадратного уравнения, для этого воспользуемся формулой корней квадратного уравнения общего вида: ax ² + bx + c = 0

Приведенное уравнение x ² + px + q = 0 совпадает с уравнением общего вида, в котором а = 1, b = p , c = q. Поэтому для приведенного квадратного уравнения формула принимает вид:

последнее выражение называют формулой корней приведенного квадратного уравнения, особенно удобно пользоваться этой формулой когда р — четное число. Для примера решим уравнение x ² — 14x — 15 = 0

В ответ запишем уравнение имеет два корня.

Для приведенного квадратного уравнения с положительным справедлива следующая теорема.

Теорема Виета

Если x 1 и x 2 — корни уравнения x ² + px + q = 0, то справедливы формулы:

x 1 + x 2 = — р

x 1 * x 2 = q, то есть сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Исходя из формулы корней приведенного квадратного уравнения имеем:

Складывая эти равенства, получаем: x 1 + x 2 = —р.

Перемножая эти равенства, по формуле разности квадратов получаем:


Отметим, что теорема Виета справедлива и тогда, когда дискриминант равен нулю, если считать, что в этом случае квадратное уравнение имеет два одинаковых корня: x 1 = x 2 = — р /2.

Не решая уравнения x ² — 13x + 30 = 0 найдем сумму и произведение его корней x 1 и x 2 . этого уравнения D = 169 — 120 = 49 > 0, поэтому можно применить теорему Виета: x 1 + x 2 = 13, x 1 * x 2 = 30. Рассмотрим еще несколько примеров. Один из корней уравнения x ² — рx — 12 = 0 равен x 1 = 4. Найти коэффициент р и второй корень x 2 этого уравнения. По теореме Виета x 1 * x 2 = — 12, x 1 + x 2 = — р. Так как x 1 = 4, то 4x 2 = — 12, откуда x 2 = — 3, р = — (x 1 + x 2) = — (4 — 3) = — 1. В ответ запишем, второй корень x 2 = — 3, коэффициент р = — 1.

Не решая уравнения x ² + 2x — 4 = 0 найдем сумму квадратов его корней. Пусть x 1 и x 2 — корни уравнения. По теореме Виета x 1 + x 2 = — 2, x 1 * x 2 = — 4. Так как x 1 ²+ x 2 ² = (x 1 + x 2)² — 2x 1 x 2 , тогда x 1 ²+ x 2 ² =(- 2)² -2 (- 4) = 12.

Найдем сумму и произведение корней уравнения 3x ² + 4x — 5 = 0. Данное уравнение имеет два различных корня, так как дискриминант D = 16 + 4*3*5 > 0. Для решения уравнения воспользуемся теоремой Виета. Эта теорема доказана для приведенного квадратного уравнения. Поэтому разделим данное уравнение на 3.

Следовательно, сумма корней равна -4/3, а их произведение равно -5/3.

В общем случае корни уравнения ax ² + bx + c = 0 связаны следующими равенствами: x 1 + x 2 = — b/a, x 1 * x 2 = c/a, Для получения этих формул достаточно разделить обе части данного квадратного уравнения на а ≠ 0 и применить к полученному приведенному квадратному уравнению теорему Виета. Рассмотрим пример, требуется составить приведенное квадратное уравнение, корни которого x 1 = 3, x 2 = 4. Так как x 1 = 3, x 2 = 4 — корни квадратного уравнения x ² + px + q = 0, то по теореме Виета р = — (x 1 + x 2) = — 7, q = x 1 x 2 = 12. В ответ запишем x ² — 7x + 12 = 0. При решении некоторых задач применяется следующая теорема.

Теорема, обратная теореме Виета

Если числа р , q , x 1 , x 2 таковы, что x 1 + x 2 = — р, x 1 * x 2 = q , то x 1 и x 2 — корни уравнения x ² + px + q = 0. Подставим в левую часть x ² + px + q вместо р выражение — (x 1 + x 2), а вместо q — произведение x 1 * x 2 . Получим: x ² + px + q = x ² — (x 1 + x 2) х + x 1 x 2 = x² — x 1 x — x 2 x + x 1 x 2 = (x — x 1) (x — x 2). Таким образом, если числа р , q , x 1 и x 2 связаны этими соотношениями, то при всех х выполняется равенство x ² + px + q = (x — x 1) (x — x 2), из которого следует, что x 1 и x 2 — корни уравнения x ² + px + q = 0. Используя теорему, обратную теореме Виета, иногда можно подбором найти корни квадратного уравнения. Рассмотрим пример, x ² — 5x + 6 = 0. Здесь р = — 5, q = 6. Подберем два числа x 1 и x 2 так, чтобы x 1 + x 2 = 5, x 1 * x 2 = 6. Заметив, что 6 = 2 * 3 , а 2 + 3 = 5, по теореме, обратной теореме Виета, получаем, что x 1 = 2, x 2 = 3 — корни уравнения x ² — 5x + 6 = 0.

Начальный уровень

Квадратные уравнения. Исчерпывающий гид (2019)

В термине «квадратное уравнение» ключевым является слово «квадратное». Это значит, что в уравнении обязательно должна присутствовать переменная (тот самый икс) в квадрате, и при этом не должно быть иксов в третьей (и большей) степени.

Решение многих уравнений сводится к решению именно квадратных уравнений.

Давай научимся определять, что перед нами квадратное уравнение, а не какое-нибудь другое.

Пример 1.

Избавимся от знаменателя и домножим каждый член уравнения на

Перенесем все в левую часть и расположим члены в порядке убывания степеней икса

Теперь можно с уверенностью сказать, что данное уравнение является квадратным!

Пример 2.

Домножим левую и правую часть на:

Это уравнение, хотя в нем изначально был, не является квадратным!

Пример 3.

Домножим все на:

Страшно? Четвертая и вторая степени… Однако, если произвести замену, то мы увидим, что перед нами простое квадратное уравнение:

Пример 4.

Вроде бы есть, но давай посмотрим внимательнее. Перенесем все в левую часть:

Видишь, сократился - и теперь это простое линейное уравнение!

Теперь попробуй сам определить, какие из следующий уравнений являются квадратными, а какие нет:

Примеры:

Ответы:

  1. квадратное;
  2. квадратное;
  3. не квадратное;
  4. не квадратное;
  5. не квадратное;
  6. квадратное;
  7. не квадратное;
  8. квадратное.

Математики условно делят все квадратные уравнения на вида:

  • Полные квадратные уравнения - уравнения, в которых коэффициенты и, а также свободный член с не равны нулю (как в примере). Кроме того, среди полных квадратных уравнений выделяют приведенные - это уравнения, в которых коэффициент (уравнение из примера один является не только полным, но еще и приведенным!)
  • Неполные квадратные уравнения - уравнения, в которых коэффициент и или свободный член с равны нулю:

    Неполные они, потому что в них не хватает какого-то элемента. Но в уравнении всегда должен присутствовать икс в квадрате!!! Иначе это будет уже не квадратное, а какое-то другое уравнение.

Зачем придумали такое деление? Казалось бы, есть икс в квадрате, и ладно. Такое деление обусловлено методами решения. Рассмотрим каждый из них подробнее.

Решение неполных квадратных уравнений

Для начала остановимся на решении неполных квадратных уравнений - они гораздо проще!

Неполные квадратные уравнения бывают типов:

  1. , в этом уравнении коэффициент равен.
  2. , в этом уравнении свободный член равен.
  3. , в этом уравнении коэффициент и свободный член равны.

1. и. Поскольку мы знаем, как извлекать квадратный корень, то давайте выразим из этого уравнения

Выражение может быть как отрицательным, так и положительным. Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел - результатом всегда будет положительное число, так что: если, то уравнение не имеет решений.

А если, то получаем два корня. Эти формулы не нужно запоминать. Главное, ты должен знать и помнить всегда, что не может быть меньше.

Давай попробуем решить несколько примеров.

Пример 5:

Решите уравнение

Теперь осталось извлечь корень из левой и правой части. Ведь ты помнишь как извлекать корни?

Ответ:

Никогда не забывай про корни с отрицательным знаком!!!

Пример 6:

Решите уравнение

Ответ:

Пример 7:

Решите уравнение

Ой! Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней!

Для таких уравнений, в которых нет корней, математики придумали специальный значок - (пустое множество). И ответ можно записать так:

Ответ:

Таким образом, данное квадратное уравнение имеет два корня. Здесь нет никаких ограничений, так как корень мы не извлекали.
Пример 8:

Решите уравнение

Вынесем общий множитель за скобки:

Таким образом,

У этого уравнения два корня.

Ответ:

Самый простой тип неполных квадратных уравнений (хотя они все простые, не так ли?). Очевидно, что данное уравнение всегда имеет только один корень:

Здесь обойдемся без примеров.

Решение полных квадратных уравнений

Напоминаем, что полное квадратное уравнение, это уравнение вида уравнение где

Решение полных квадратных уравнений немного сложнее (совсем чуть-чуть), чем приведенных.

Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Остальные способы помогут сделать это быстрее, но если у тебя возникают проблемы с квадратными уравнениями, для начала освой решение с помощью дискриминанта.

1. Решение квадратных уравнений с помощью дискриминанта.

Решение квадратных уравнений этим способом очень простое, главное запомнить последовательность действий и пару формул.

Если, то уравнение имеет корняНужно особое внимание обратить на шаг. Дискриминант () указывает нам на количество корней уравнения.

  • Если, то формула на шаге сократится до. Таким образом, уравнение будет иметь всего корень.
  • Если, то мы не сможем извлечь корень из дискриминанта на шаге. Это указывает на то, что уравнение не имеет корней.

Вернемся к нашим уравнениям и рассмотрим несколько примеров.

Пример 9:

Решите уравнение

Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет два корня.

Шаг 3.

Ответ:

Пример 10:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет один корень.

Ответ:

Пример 11:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

Азначит мы не сможем извлечь корень из дискриминанта. Корней уравнения не существует.

Теперь мы знаем, как правильно записывать такие ответы.

Ответ: Корней нет

2. Решение квадратных уравнений с помощью теоремы Виета.

Если ты помнишь, то есть такой тип уравнений, которые называются приведенными (когда коэффициент а равен):

Такие уравнения очень просто решать, используя теорему Виета:

Сумма корней приведенного квадратного уравнения равна, а произведение корней равно.

Пример 12:

Решите уравнение

Это уравнение подходит для решения с использованием теоремы Виета, т.к. .

Сумма корней уравнения равна, т.е. получаем первое уравнение:

А произведение равно:

Составим и решим систему:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Ответ: ; .

Пример 13:

Решите уравнение

Ответ:

Пример 14:

Решите уравнение

Уравнение приведенное, а значит:

Ответ:

КВАДРАТНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Что такое квадратное уравнение?

Другими словами, квадратное уравнение - это уравнение вида, где - неизвестное, - некоторые числа, причем.

Число называют старшим или первым коэффициентом квадратного уравнения, - вторым коэффициентом , а - свободным членом .

Почему? Потому что если, уравнение сразу станет линейным, т.к. пропадет.

При этом и могут быть равны нулю. В этом стулчае уравнение называют неполным. Если же все слагаемые на месте, то есть, уравнение - полное.

Решения различных типов квадратных уравнений

Методы решения неполных квадратных уравнений:

Для начала разберем методы решений неполных квадратных уравнений - они проще.

Можно выделить типа таких уравнений:

I. , в этом уравнении коэффициент и свободный член равны.

II. , в этом уравнении коэффициент равен.

III. , в этом уравнении свободный член равен.

Теперь рассмотрим решение каждого из этих подтипов.

Очевидно, что данное уравнение всегда имеет только один корень:

Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел результатом всегда будет положительное число. Поэтому:

если, то уравнение не имеет решений;

если, имеем учаем два корня

Эти формулы не нужно запоминать. Главное помнить, что не может быть меньше.

Примеры:

Решения:

Ответ:

Никогда не забывай про корни с отрицательным знаком!

Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней.

Чтобы коротко записать, что у задачи нет решений, используем значок пустого множества.

Ответ:

Итак, это уравнение имеет два корня: и.

Ответ:

Вынесем общим множитель за скобки:

Произведение равно нулю, если хотя бы один из множителей равен нулю. А это значит, что уравнение имеет решение, когда:

Итак, данное квадратное уравнение имеет два корня: и.

Пример:

Решите уравнение.

Решение:

Разложим левую часть уравнения на множители и найдем корни:

Ответ:

Методы решения полных квадратных уравнений:

1. Дискриминант

Решать квадратные уравнения этим способом легко, главное запомнить последовательность действий и пару формул. Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Ты заметил корень из дискриминанта в формуле для корней? Но ведь дискриминант может быть отрицательным. Что делать? Нужно особое внимание обратить на шаг 2. Дискриминант указывает нам на количество корней уравнения.

  • Если, то уравнение имеет корня:
  • Если, то уравнение имеет одинаковых корня, а по сути, один корень:

    Такие корни называются двукратными.

  • Если, то корень из дискриминанта не извлекается. Это указывает на то, что уравнение не имеет корней.

Почему возможно разное количество корней? Обратимся к геометрическому смыслу квадратного уравнения. График функции является параболой:

В частном случае, которым является квадратное уравнение, . А это значит, что корни квадратного уравнения, это точки пересечения с осью абсцисс (ось). Парабола может вообще не пересекать ось, либо пересекать ее в одной (когда вершина параболы лежит на оси) или двух точках.

Кроме того, за направление ветвей параболы отвечает коэффициент. Если, то ветви параболы направлены вверх, а если - то вниз.

Примеры:

Решения:

Ответ:

Ответ: .

Ответ:

А значит, решений нет.

Ответ: .

2. Теорема Виета

Использовать теорему Виета очень легко: нужно всего лишь подобрать такую пару чисел, произведение которых равно свободному члену уравнения, а сумма - второму коэффициенту, взятому с обратным знаком.

Важно помнить, что теорему Виета можно применять только в приведенных квадратных уравнениях ().

Рассмотрим несколько примеров:

Пример №1:

Решите уравнение.

Решение:

Это уравнение подходит для решения с использованием теоремы Виета, т.к. . Остальные коэффициенты: ; .

Сумма корней уравнения равна:

А произведение равно:

Подберем такие пары чисел, произведение которых равно, и проверим, равна ли их сумма:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Таким образом, и - корни нашего уравнения.

Ответ: ; .

Пример №2:

Решение:

Подберем такие пары чисел, которые в произведении дают, а затем проверим, равна ли их сумма:

и: в сумме дают.

и: в сумме дают. Чтобы получить, достаточно просто поменять знаки предполагаемых корней: и, ведь произведение.

Ответ:

Пример №3:

Решение:

Свободный член уравнения отрицательный, а значит и произведение корней - отрицательное число. Это возможно только если один из корней отрицательный, а другой - положительный. Поэтому сумма корней равна разности их модулей .

Подберем такие пары чисел, которые в произведении дают, и разность которых равна:

и: их разность равна - не подходит;

и: - не подходит;

и: - не подходит;

и: - подходит. Остается только вспомнить, что один из корней отрицательный. Так как их сумма должна равняться, то отрицательным должен быть меньший по модулю корень: . Проверяем:

Ответ:

Пример №4:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Свободный член отрицателен, а значит и произведение корней отрицательно. А это возможно только тогда, когда один корень уравнения отрицателен, а другой положителен.

Подберем такие пары чисел, произведение которых равно, а затем определим, какой корней должен иметь отрицательный знак:

Очевидно, что под первое условие подходят только корни и:

Ответ:

Пример №5:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Сумма корней отрицательна, а это значит что, по крайней мере, один из корней отрицателен. Но поскольку их произведение положительно, то значит оба корня со знаком минус.

Подберем такие пары чисел, произведение которых равно:

Очевидно, что корнями являются числа и.

Ответ:

Согласись, это очень удобно - придумывать корни устно, вместо того, чтобы считать этот противный дискриминант. Старайся использовать теорему Виета как можно чаще.

Но теорема Виета нужна для того, чтобы облегчить и ускорить нахождение корней. Чтобы тебе было выгодно ее использовать, ты должен довести действия до автоматизма. А для этого порешай-ка еще пяток примеров. Но не жульничай: дискриминант использовать нельзя! Только теорему Виета:

Решения заданий для самостоятельной работы:

Задание 1. {{x}^{2}}-8x+12=0

По теореме Виета:

Как обычно, начинаем подбор с произведения:

Не подходит, так как сумма;

: сумма - то что надо.

Ответ: ; .

Задание 2.

И снова наша любимая теорема Виета : в сумме должно получиться, а произведение равно.

Но так как должно быть не, а, меняем знаки корней: и (в сумме).

Ответ: ; .

Задание 3.

Хм… А где тут что?

Надо перенести все слагаемые в одну часть:

Сумма корней равна, произведение.

Так, стоп! Уравнение-то не приведенное. Но теорема Виета применима только в приведенных уравнениях. Так что сперва нужно уравнение привести. Если привести не получается, бросай эту затею и решай другим способом (например, через дискриминант). Напомню, что привести квадратное уравнение - значит сделать старший коэффициент равным:

Отлично. Тогда сумма корней равна, а произведение.

Тут подобрать проще простого: ведь - простое число (извини за тавтологию).

Ответ: ; .

Задание 4.

Свободный член отрицательный. Что в этом особенного? А то, что корни будут разных знаков. И теперь во время подбора проверяем не сумму корней, а разность их модулей: эта разность равна, а произведение.

Итак, корни равны и, но один из них с минусом. Теорема Виета говорит нам, что сумма корней равна второму коэффициенту с обратным знаком, то есть. Значит, минус будет у меньшего корня: и, так как.

Ответ: ; .

Задание 5.

Что нужно сделать первым делом? Правильно, привести уравнение:

Снова: подбираем множители числа, и их разность должна равняться:

Корни равны и, но один из них с минусом. Какой? Их сумма должна быть равна, значит, с минусом будет больший корень.

Ответ: ; .

Подведу итог:
  1. Теорема Виета используется только в приведенных квадратных уравнениях.
  2. Используя теорему Виета можно найти корни подбором, устно.
  3. Если уравнение не приводится или не нашлось ни одной подходящей пары множителей свободного члена, значит целых корней нет, и нужно решать другим способом (например, через дискриминант).

3. Метод выделения полного квадрата

Если все слагаемые, содержащие неизвестное, представить в виде слагаемых из формул сокращенного умножения - квадрата суммы или разности - то после замены переменных можно представить уравнение в виде неполного квадратного уравнения типа.

Например:

Пример 1:

Решите уравнение: .

Решение:

Ответ:

Пример 2:

Решите уравнение: .

Решение:

Ответ:

В общем виде преобразование будет выглядеть так:

Отсюда следует: .

Ничего не напоминает? Это же дискриминант! Вот именно, формулу дискриминанта так и получили.

КВАДРАТНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Квадратное уравнение - это уравнение вида, где - неизвестное, - коэффициенты квадратного уравнения, - свободный член.

Полное квадратное уравнение - уравнение, в котором коэффициенты, не равны нулю.

Приведенное квадратное уравнение - уравнение, в котором коэффициент, то есть: .

Неполное квадратное уравнение - уравнение, в котором коэффициент и или свободный член с равны нулю:

  • если коэффициент, уравнение имеет вид: ,
  • если свободный член, уравнение имеет вид: ,
  • если и, уравнение имеет вид: .

1. Алгоритм решения неполных квадратных уравнений

1.1. Неполное квадратное уравнение вида, где, :

1) Выразим неизвестное: ,

2) Проверяем знак выражения:

  • если, то уравнение не имеет решений,
  • если, то уравнение имеет два корня.

1.2. Неполное квадратное уравнение вида, где, :

1) Вынесем общим множитель за скобки: ,

2) Произведение равно нулю, если хотя бы один из множителей равен нулю. Следовательно, уравнение имеет два корня:

1.3. Неполное квадратное уравнение вида, где:

Данное уравнение всегда имеет только один корень: .

2. Алгоритм решения полных квадратных уравнений вида где

2.1. Решение с помощью дискриминанта

1) Приведем уравнение к стандартному виду: ,

2) Вычислим дискриминант по формуле: , который указывает на количество корней уравнения:

3) Найдем корни уравнения:

  • если, то уравнение имеет корня, которые находятся по формуле:
  • если, то уравнение имеет корень, который находится по формуле:
  • если, то уравнение не имеет корней.

2.2. Решение с помощью теоремы Виета

Сумма корней приведенного квадратного уравнения (уравнения вида, где) равна, а произведение корней равно, т.е. , а.

2.3. Решение методом выделения полного квадрата

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

Сегодня достойна в стихах быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого:
Умножил ты корни – и дробь уж готова
В числителе с , в знаменателе а.
И сумма корней тоже дроби равна
Хоть с минусом дробь эта
Что за беда
В числители в , в знаменателе а .
(Из школьного фольклора)

В эпиграфе замечательная теорема Франсуа Виета приведена не совсем точно. В самом деле, мы можем записать квадратное уравнение, которое не имеет корней и записать их сумму и произведение. Например, уравнение х 2 + 2х + 12 = 0 не имеет действительных корней. Но, подойдя формально, мы можем записать их произведение (х 1 · х 2 = 12) и сумму (х 1 + х 2 = -2). Наши стихи будут соответствовать теореме с оговоркой: «если уравнение имеет корни», т.е. D ≥ 0.

Первое практическое применение этой теоремы – составление квадратного уравнения, имеющего заданные корни. Второе: она позволяет устно решать многие квадратные уравнения. На отработку этих навыков, прежде всего и обращается внимание в школьных учебниках.

Мы же здесь будем рассматривать более сложные задачи, решаемые с помощью теоремы Виета.

Пример 1.

Один из корней уравнения 5х 2 – 12х + с = 0 в три раза больше за второй. Найдите с.

Решение.

Пусть второй корень равен х 2 .

Тогда первый корень х1 = 3х 2 .

Согласно теореме Виета сумма корней равна 12/5 = 2,4.

Составим уравнение 3х 2 + х 2 = 2,4.

Отсюда х 2 = 0,6. Следовательно х 1 = 1,8.

Ответ: с = (х 1 · х 2) · а = 0,6 · 1,8 · 5 = 5,4.

Пример 2.

Известно, что х 1 и х 2 – корни уравнения х 2 – 8х + p = 0, причём 3х 1 + 4х 2 = 29. Найдите p.

Решение.

Согласно теореме Виета х 1 + х 2 = 8, а по условию 3х 1 + 4х 2 = 29.

Решив систему из этих двух уравнений найдём значение х 1 = 3, х 2 = 5.

А следовательно p = 15.

Ответ: p = 15.

Пример 3.

Не вычисляя корней уравнения 3х 2 + 8 х – 1 = 0, найдите х 1 4 + х 2 4

Решение.

Заметим, что по теореме Виета х 1 + х 2 = -8/3 и х 1 · х 2 = -1/3 и преобразуем выражение

а) х 1 4 + х 2 4 = (х 1 2 + х 2 2) 2 – 2х 1 2 х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) 2 – 2(х 1 х 2) 2 = ((-8/3) 2 – 2 · (-1/3)) 2 – 2 · (-1/3) 2 = 4898/9

Ответ: 4898/9.

Пример 4.

При каких значениях параметра а разность наибольшего и наименьшего корней уравнения
2х 2 – (а + 1)х + (а – 1) = 0 равна их произведению.

Решение.

Это квадратное уравнение. Оно будет иметь 2 разных корня, если D > 0. Иными словами (а + 1) 2 – 8(а – 1) > 0 или (а – 3) 2 > 0. Следовательно, мы имеем 2 корня при всех а, за исключением а = 3.

Для определенности будем считать, что х 1 >х 2 и получим х 1 + х 2 = (а + 1)/2 и х 1 · х 2 = (а – 1)/2. Исходя из условия задачи х 1 – х 2 = (а – 1)/2. Все три условия должны выполняться одновременно. Рассмотрим первое и последнее уравнения как систему. Она легко решается методом алгебраического сложения.

Получаем х 1 = а/2, х 2 = 1/2. Проверим при каких а выполнится второе равенство: х 1 · х 2 = (а – 1)/2. Подставим полученные значения и будем иметь: а/4 = (а – 1)/2. Тогда, а = 2. Очевидно, что если а = 2, то все условия выполнены.

Ответ: при а = 2.

Пример 5.

Чему равно наименьшее значение а, при котором сумма корней уравнения
х 2 – 2а(х – 1) – 1 = 0 равна сумме квадратов его корней.

Решение.

Прежде всего, приведем уравнение к каноническому виду: х 2 – 2ах + 2а – 1 = 0. Оно будет иметь корни, если D/4 ≥ 0. Следовательно: а 2 – (2а – 1) ≥ 0. Или (а – 1) 2 ≥ 0. А это условие справедливо при любом а.

Применим теорему Виета: х 1 + х 2 = 2а, х 1 · х 2 = 2а – 1. Посчитаем

х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 . Или после подстановки х 1 2 + х 2 2 = (2а) 2 – 2 · (2а – 1) = 4а 2 – 4а + 2. Осталось составить равенство которое соответствует условию задачи: х 1 + х 2 = х 1 2 + х 2 2 . Получим: 2а = 4а 2 – 4а + 2. Это квадратное уравнение имеет 2 корня: а 1 = 1 и а 2 = 1/2. Наименьший из них –1/2.

Ответ: 1/2.

Пример 6.

Найти зависимость между коэффициентами уравнения ах 2 + вх + с = 0 если сумма кубов его корней равна произведению квадратов этих корней.

Решение.

Будем исходить из того, что данное уравнение имеет корни и, поэтому, к нему можно применить теорему Виета.

Тогда условие задачи запишется так: х 1 3 + х 2 3 = х 1 2 · х 2 2 . Или: (х 1 + х 2)(х 1 2 – х 1 · х 2 + х 2 2) = (х 1 х 2) 2 .

Необходимо преобразовать второй множитель. х 1 2 – х 1 · х 2 + х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) – х 1 х 2 .

Получим (х 1 + х 2)((х 1 + х 2) 2 – 3х 1 х 2) = (х 1 х 2) 2 . Осталось заменить суммы и произведения корней через коэффициенты.

(-b/a)((b/a) 2 – 3 · c/a) = (c/a) 2 . Это выражение легко преобразуется к виду b(3ac – b 2)/a = c 2 . Соотношение найдено.

Замечание. Следует учесть, что полученное соотношение имеет смысл рассматривать лишь после того, как выполнится другое: D ≥ 0.

Пример 7.

Найдите значение переменной а, для которого сумма квадратов корней уравнения х 2 + 2ах + 3а 2 – 6а – 2 = 0 есть величина наибольшая.

Решение.

Если у этого уравнения есть корни х 1 и х 2 , то их сумма х 1 + х 2 = -2а, а произведение х 1 · х 2 = 3а 2 – 6а – 2.

Вычисляем х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 = (-2а) 2 – 2(3а 2 – 6а – 2) = -2а 2 + 12а + 4 = -2(а – 3) 2 + 22.

Теперь очевидно, что это выражение принимает наибольшее значение при а = 3.

Остается проверить, в самом ли деле у исходного квадратного уравнения существуют корни при а = 3. Проверяем подстановкой и получаем: х 2 + 6х + 7 = 0 и для него D = 36 – 28 > 0.

Следовательно, ответ: при а = 3.

Пример 8.

Уравнение 2х 2 – 7х – 3 = 0 имеет корни х 1 и х 2 . Найти утроенную сумму коэффициентов приведенного квадратного уравнения, корнями которого являются числа Х 1 = 1/х 1 и Х 2 = 1/х 2 . (*)

Решение.

Очевидно, что х 1 + х 2 = 7/2 и х 1 · х 2 = -3/2. Составим второе уравнение по его корням в виде х 2 + рх + q = 0. Для этого используем утверждение, обратное теореме Виета. Получим: р = -(Х 1 + Х 2) и q = Х 1 · Х 2 .

Выполнив подстановку в эти формулы, исходя из (*), тогда: р = -(х 1 + х 2)/(х 1 · х 2) = 7/3 и q = 1/(х 1 · х 2) = -2/3.

Искомое уравнение примет вид: х 2 + 7/3 · х – 2/3 = 0. Теперь легко посчитаем утроенную сумму его коэффициентов:

3(1 + 7/3 – 2/3) = 8. Ответ получен.

Остались вопросы? Не знаете, как использовать теорему Виета?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.



Похожие статьи