Какое вещество вступает в цикл кребса. Сколько атф образуется в цикле кребса

21.01.2024

Цикл лимонной кислоты (цикл Кребса)

Биоорганические вещества, такие, как глюкоза, обладают большим запасом энергии. При окислении глюкозы кислородом

высвобождается энергия Гиббса AG = -2880 кДж/моль. Эта энергия может запасаться в клетке в форме химической энергии фосфатных связей аденозилтрифос- фата АТР. Образующиеся молекулы АТР диффундируют в различные участки клетки, где используется энергия. АТР - это переносчик энергии. Клетка использует эту энергию для выполнения работы. Однако при гликолизе тратится лишь незначительная часть энергии, запасенной в глюкозе (несколько процентов). Основная ее часть передается в цикле Кребса (рис. 9.4), сопряженном с клеточным дыханием.


Рис. 9.4.

I - оксалоацетат, ацетил*СоЛ, 2 - лимонная кислота (цитрат). 3 - иэоцитрат. 4 - оксалосукцинат. 5 - кетоглугарат. 6 - янтарная кислота (сукцинат). 7 - фумарат. 8 - яблочная кислота (малат)

Цикл Кребса, или цикл лимонной кислоты, или цикл 3-карбоновых кислот, представляет собой ряд последовательных реакций, протекающих в митохондриях. В ходе этих реакций осуществляется катаболизм ацетильных групп СН3СО-, передаваемых от пирувата, конечного продукта гликолиза. Пируват вступает в реакции цикла Кребса, предварительно превращаясь в ацетил-СоА.

Цикл Кребса, как и гликолиз, представляет собой метаболический путь, состоящий из последовательных стадий - реакций. В отличие от гликолиза, этот путь замкнутый, циклический.

1. Ацетил-СоА - продукт катаболизма углеводов, белков и липидов - вступает в цикл, реагируя (конденсируется) с солью щавелевоуксусной кислоты (оксало- ацстатом). При этом образуется соль лимонной кислоты (цитрат):

2. Цитрат изомеризуется в изоцитрат. Реакция катализируется ферментом ако- нитазой и проходит через образование аконитата с последующим его превращением в изоцитрат:

3. Изоцитрат окисляется до а-кетоглутарата. Реакция катализируется ферментом изоцитратдегидрогеназой:

4. а-Кетоглутарат подвергается окислительному декарбоксилированию с образованием сукцинил-СоА. Катализируеся а-кетоглутарат дегидрогеназой:

5. Сукцинил-СоА превращается в сукцинат. Реакция катализируется ферментом сукцинат-СоА-лигазой:

6. Сукцинат превращается в фумарат. Реакция катализируется ферментом дегидрогеназой:

7. Фумарат гидратируется по двойной связи с образованием малата (соль яблочной кислоты). Катализируется фумаратгидратазой:

8. Манат окисляется до оксапоацетата. Катализируется мапатдегидрогеназой:

Рис. 9.5.

На восьмой стадии цикл замыкается и начинается его новое прохождение.

Все стадии цикла лимонной кислоты протекают во внутренней среде митохондрий - матриксе (рис. 9.5). Здесь находятся все ферменты этого метаболического пути.

Митохондрия (от греч. «mitos» - нить и «chondrion» - зернышко) имеет вытянутую форму; длина 1,5-2 мкм, диаметр 0,5-1 мкм. Органеллы клеток животных находятся в жидкой среде клетки - цитоплазме (см. рис. 6.2).

Внутреннее пространство митохондрий окружено двумя непрерывными мембранами. При этом наружная мембрана гладкая, а внутренняя образует многочисленные складки, или кристы. Внутримитохондриальное пространство ограничено внутренней мембраной, заполнено жидкой средой - матриксом, который примерно на 50% состоит из белка и имеет очень тонкую структуру. Удлиненная форма митохондрий не универсальна. В некоторых тканях, например в поперечно-полосатых скелетных мышцах, митохондрии иногда принимают самые причудливые очертания.

В митохондриях сосредоточено большое количество ферментов.

В клетке может находиться от нескольких сотен до нескольких десятков тысяч митохондрий. Для одного и того же типа клеток число митохондрий более или менее постоянно. Однако следует помнить, что количество митохондрий может меняться в зависимости от стадии развития клетки и ее функциональной активности, а в целом от интенсивности нагрузок на организм.

Митохондрии - энергетические станции, вырабатывающие энергию для жизнедеятельности организма. Особенно много митохондрий в мышечных клетках, где требуются большие затраты энергии.

Образованные в цикле Кребса высокоэнергетические вещества NADH и FADFb (см. рис. 9.4) передают свою энергию в реакции ресинтеза АТР из ADP:

В результате на каждую молекулу NADH образуются 3 молекулы АТР. Эта реакция окислительно-восстановительная, т. е. сопровождается переносом электронов от восстановителя NADH к окислителям (см. разд. 4.3). В качестве окислителя выступает кислород О2. Эта реакция называется окислительным фосфорилированием ADP в АТР.

Окислительное фосфорилирование происходит во внутренней митохондриальной мембране. В трех участках дыхательной цепи запасается энергия в результате синтеза АТР из ADP и Р,.

Реакция протекает в несколько стадий на внутренних мембранах митохондрий (см. рис. 9.5), в системе ферментов, называемой дыхательной цепью. Сюда из клеточной плазмы поступают молекулы ADP. Соответствующий окислительновосстановительный процесс называется клеточным дыханием. Именно здесь расходуется кислород, которым мы дышим.

Молекулы АТР, образованные в матриксе, выходят из митохондрий в плазму клетки, где участвуют в различных биохимических реакциях, протекающих с расходом энергии.

Таким образом, энергия, высвобождающаяся в процессе переноса электронов от восстановителей, используется для окислительного фосфорилирования ADP в АТР.

Предполагают, что энергия, высвобождающаяся вдыхательной цепи, затрачивается непосредственно на перевод внутренней мембраны в новое, богатое энергией конформационное состояние, которое, в свою очередь, становится движущей силой окислительного фосфорилирования, приводящего к образованию АТР. В настоящее время наиболее серьёзное обоснование получила гипотеза хемоосмо- тического сопряжения Митчела.

Таким образом, биосинтез АТР в животном организме осуществляется из ADP и неорганического фосфата Р, при активировании последнего за счёт энергии окисления органических соединений при метаболических процессах.

Окисление органических соединений в живых системах не всегда сопряжено с фосфорилированием, и фосфорилирование не обязательно должно быть окислительным.

Известно несколько сотен реакций окисления. Не менее десятка из них сопряжено с одновременным активированием неорганического фосфата. Такие реакции называют реакциями субстратного фосфорилирования. Здесь реакции расщепления субстрата сопровождаются передачей энергии непосредственно неорганическому фосфату. В результате образуется другой фосфорилированный субстрат с макроэргической связью. В этом случае в процессе не участвует дыхательная цепь ферментов и не происходит превращение энергии, выделяемой при переносе электронов на кислород, в энергию фосфатной связи АТР.

В качестве примера субстратного фосфорилирования можно привести реакцию превращения сукницил-СоА в янтарную кислоту с образованием GTP из GDP и фосфата Р, в лимоннокислом цикле.

В растениях источником энергии для активирования неорганического фосфата и обеспечения синтеза АТР служит энергия солнечного света, улавливаемая фото- синтетическим аппаратом клетки. Такое фосфорилирование называют фотосин- тетическим.

Для удовлетворения потребностей человеческого организма в энергии молекулы АТР на протяжении суток тысячи и тысячи раз расщепляются до молекул ADP и Р, с последующим ресинтезом АТР. Кроме того, скорость ресинтеза АТР должна меняться в широких пределах - от минимальной во время сна до максимальной в периоды напряженной мышечной работы.

Из сказанного можно сделать вывод, что окислительное фосфорилирование не просто непрерывный жизненно важный процесс. Он должен регулироваться в широких пределах, что достигается путем тренировки.

Суммарное уравнение реакций гликолиза и цикла лимонной кислоты записывается следующим образом:

Стандартная энергия Гиббса окисления 1 моля глюкозы СбН^Об равна ДG* = = -2880 кДж (см. разд. 5.1). Стандартная энергия Гиббса гидролиза 38 молей АТР (запасенная энергия) равна ДG°" = -38*30 = -1180 кДж, т. е. запасается лишь 40% энергии глюкозы (коэффициент полезного действия дыхания). Остальная энергия выделяется из организма в виде тепла Q. Этим объясняется разогрев и повышение температу ры тела при интенсивной работе (см. рис. 5.2).

Глюкоза выполняет функцию клеточного топлива в нашем организме. Она получается главным образом либо в процессе пищеварения из углеводов, либо путем синтеза из резервных жиров.

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

Цикл трикарбоновых кислот (цикл Кребса, цитратный цикл) - центральная часть общего пути катаболизма, т.е процесс обмена веществ, которые возникают в живом организме для поддержания жизни распада, разложения на более элементарные вещества или окисления какого-либо вещества, обычно протекающий с высвобождением энергии в виде тепла и в виде АТФ циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород устремляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая прямое участие в синтезе универсального источника энергии - АТФ.

Это ключевой этап дыхания всех клеток, т.е совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды применяющих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и основная пластическая функция, то есть это значительный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.
Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953 год).

При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.

Регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов (ацетил-КоА, оксалоацетат), цикл активно работает, а при избытке продуктов реакции (NADH, ATP) тормозится. Регуляция осуществляется и при помощи гормонов, основным источником ацетил-КоА является глюкоза, поэтому гормоны, способствующие аэробному распаду глюкозы, способствуют работе цикла Кребса. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса.

Функции
1. Интегративная функция - цикл является связующим звеном между реакциями анаболизма и катаболизма.
2. Катаболическая функция - превращение различных веществ в субстраты цикла:
o Жирные кислоты, пируват,Лей,Фен - Ацетил-КоА.
o Арг, Гис, Глу - α-кетоглутарат.
o Фен, тир - фумарат.
3. Анаболическая функция - использование субстратов цикла на синтез органических веществ:
o Оксалацетат - глюкоза, Асп, Асн.
o Сукцинил-КоА - синтез гема.
o CО2 - реакции карбоксилирования.
4. Водорододонорная функция - цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н+ и одного ФАДН2.
5. Энергетическая функция - 3 НАДН.Н+ дает 7.5 моль АТФ, 1 ФАДН2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилирования синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилирования: ГТФ + АДФ = АТФ + ГДФ.

Вывод

Из всего выше сказанного следует что цикл Кребса является важным компонентом в производстве большого количества клеточной энергии. Использования цикла важно для обеспечения того, чтобы у вас было достаточное количество энергии в течение длительных тренировок. Потому что есть очень много шагов для повышения эффективности этого цикла, что выгодно спортсменов и бодибилдеров. Спортивные добавки могут способствовать аэробному производству энергии за счет увеличения скорости окислительного производства АТФ во время тренировки, и скорость восстановления после тренировки.

Цикл Кребса и бодибилдинг
Цикл Кребса является самой важной системой производства энергии в повседневной жизни. Он является основным производителем энергии в состоянии покоя и с низким уровнем умеренной интенсивности упражнений и большей продолжительностью упражнений. Повышения его эффективности в производстве большей энергии, может помочь вам, как культуристу получить больше, обеспечивая мышцам меньшую усталость и увеличение производительности. Сегодня производители спортивного питания предлагают большой выбор добавок на основе различных компонентов увеличивающих окислительные реакции в организме. Это различные виды креатинов, аргинина, и многое другое.



Купить Вы можете в интернет магазине спортивного питания Fitness Live

Этот метаболический путь назван именем открывшего его автора - Г. Кребса, получившего (совместно с Ф. Липманом) за данное открытие в 1953 г. Нобелевскую премию. В цикле лимонной кислоты улавливается большая часть свободной энергии , образующейся при распаде белков, жиров и углеводов пищи. Цикл Кребса - центральный путь обмена веществ.

Образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА в матриксе митохондрий включается в цепь последовательных реакций окисления. Таких реакций восемь.

1-я реакция - образование лимонной кислоты . Образование цитрата происходит путем конденсации ацетильного остатка ацетил-КоА с оксалацетатом (ОА) при помощи фермента цитратсинтазы (с участием воды):

Данная реакция практически необратима, поскольку при этом распадается богатая энергией тиоэфирная связь ацетил~S-КоА.

2-я реакция - образование изолимонной кислоты. Эта реакция катализируется железосодержащим (Fe - негеминовое) ферментом - аконитазой. Реакция протекает через стадию образования цис -аконитовой кислоты (лимонная кислота подвергается дегидратации с образованием цис -аконитовой кислоты, которая, присоединяя молекулу воды, превращается в изолимонную).

3-я реакция - дегидрирование и прямое декарбоксилирование изолимонной кислоты. Реакция катализируется НАД + -зависимым ферментом изоцитратдегидрогеназой. Фермент нуждается в присутствии ионов марганца (или магния). Являясь по своей природе аллостерическим белком, изоцитратдегидрогеназа нуждается в специфическом активаторе - АДФ.

4-я реакция - окислительное декарбоксилирование α-кетоглутаровой кислоты. Процесс катализируется α-кетоглутаратдегидрогеназой - ферментным комплексом, по структуре и механизму действия похожим на пируватдегидрогеназный комплекс. В его состав входят те же коферменты: ТПФ, ЛК и ФАД - собственные коферменты комплекса; КоА-SH и НАД + - внешние коферменты.

5-я реакция - субстратное фосфорилирование. Суть реакции заключается в переносе богатой энергией связи сукцинил-КоА (макроэргическое соединение) на ГДФ с участием фосфорной кислоты - при этом образуется ГТФ, молекула которого вступает в реакцию перефосфорилирования с АДФ - образуется АТФ.

6-я реакция - дегидрирование янтарной кислоты сукцинатдегидрогеназой. Фермент осуществляет прямой перенос водорода с субстрата (сукцината) на убихинон внутренней мембраны митохондрий. Сукцинатдегидрогеназа - II комплекс дыхательной цепи митохондрий. Коферментом в этой реакции является ФАД.

7-я реакция - образование яблочной кислоты ферментом фумаразой. Фумараза (фумаратгидратаза) гидратирует фумаровую кислоту - при этом образуется яблочная кислота, причем ее L -форма, так как фермент обладает стереоспецифичностью.


8-я реакция - образование оксалацетата. Реакция катализируется малатдегидрогеназой , коферментом которой служит НАД + . Образовавшийся под действием фермента оксалацетат вновь включается в цикл Кребса и весь циклический процесс повторяется.

Последние три реакции обратимы, но поскольку НАДН?Н + захватывается дыхательной цепью, равновесие реакции сдвигается вправо, т.е. в сторону образования оксалацетата . Как видно, за один оборот цикла происходит полное окисление, “сгорание”, молекулы ацетил-КоА. В ходе цикла образуются восстановленные формы никотинамидных и флавиновых коферментов, которые окисляются в дыхательной цепи митохондрий. Таким образом, цикл Кребса находится в тесной взаимосвязи с процессом клеточного дыхания.

Функции цикла трикарбоновых кислот многообразны:

· Интегративная - цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

· Анаболическая - субстраты цикла используются для синтеза многих других соединений: оксалацетат используется для синтеза глюкозы (глюконеогенез) и синтеза аспарагиновой кислоты, ацетил-КоА - для синтеза гема, α-кетоглутарат - для синтеза глютаминовой кислоты, ацетил-КоА - для синтеза жирных кислот, холестерола, стероидных гормонов, ацетоновых тел и др.

· Катаболическая - в этом цикле завершают свой путь продукты распада глюкозы, жирных кислот, кетогенных аминокислот - все они превращаются в ацетил-КоА; глутаминовая кислота - в α-кетоглутаровую; аспарагиновая - в оксалоацетат и пр.

· Собственно энергетическая - одна из реакций цикла (распад сукцинил-КоА) является реакцией субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

· Водороддонорная - при участии трех НАД + -зависимых дегидрогеназ (дегидрогеназ изоцитрата, α-кетоглутарата и малата) и ФАД-зависимой сукцинатдегидрогеназы образуются 3 НАДН?Н + и 1 ФАДН 2 . Эти восстановленные коферменты являются донорами водорода для дыхательной цепи митохондрий, энергия переноса водородов используется для синтеза АТФ.

· Анаплеротическая - восполняющая. Значительные количества субстратов цикла Кребса используются для синтеза разных соединений и покидают цикл. Одной из реакций, восполняющих эти потери, является реакция, катализируемая пируваткарбоксилазой.

Скорость реакция цикла Кребса определяется энергетическими потребностями клетки

Скорость реакций цикла Кребса коррелирует с интенсивностью процесса тканевого дыхания и связанного с ним окислительного фосфорилирования - дыхательный контроль. Все метаболиты, отражающие достаточное обеспечение клетки энергией являются ингибиторами цикла Кребса. Увеличение соотношения АТФ/АДФ - показатель достаточного энергообеспечении клетки и снижает активность цикла. Увеличение соотношения НАД + / НАДН, ФАД/ ФАДН 2 указывает на энергодефицит и является сигналом ускорения процессов окисления в цикле Кребса.

Основное действие регуляторов направлено на активность трех ключевых ферментов: цитратсинтазы, изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназы. Аллостерическими ингибиторами цитратсинтазы являются АТФ, жирные кислоты. В некоторых клетках роль ее ингибиторов играют цитрат и НАДН. Изоцитратдегидрогеназа аллостерически активируется АДФ и ингибируется при повышении уровня НАДН+Н + .

Рис. 5.15. Цикл трикарбоновых кислот (цикл Кребса)

Последний является ингибитором и a-кетоглутаратдегидрогена зы, активность которой снижается также при повышении уровня сукцинил-КоА.

Активность цикла Кребса во многом зависит от обеспеченности субстратами. Постоянная “утечка” субстратов из цикла (например, при аммиачном отравлении) может вызывать значительные нарушения энергообеспеченности клеток.

Пентозофосфатный путь окисления глюкозы обслуживает восстановительные синтезы в клетке.

Как видно из названия, в этом пути образуются столь необходимые клетке пентозофосфаты . Поскольку образование пентоз сопровождается окислением и отщеплением первого углеродного атома глюкозы, то этот путь называется также апотомическим (apex - вершина).

Пентозофосфатный путь можно разделить две части: окислительную и неокислительную. В окислительной части, включающей три реакции, образуются НАДФН?Н + и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8 атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

· Окислительная часть . Первая реакция -дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназойс образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН?Н + (НАДФ + - кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция - гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции - 6-фосфоглюконат.

Третья реакция - дегидрирование и декарбоксилирование 6-фосфоглюконолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ + . В ходе реакции восстанавливается кофермент и отщепляется С-1 глюкозы с образованием рибулозо-5-фосфата.


· Неокислительная часть . В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы (рис5.16)

Рис.5.16.Окислительная часть пентозофосфатного пути (F-вариант)

Рибулозо-5-фосфат может изомеризоваться (фермент - кетоизомераза ) в рибозу-5-фосфат и эпимеризоваться (фермент - эпимераза ) в ксилулозо-5-фосфат. Далее следуют два типа реакций: транскетолазная и трансальдолазная.

Транскетолаза (кофермент - тиаминпирофосфат) отщепляет двухуглеродный фрагмент и переносит его на другие сахара (см. схему). Трансальдолаза переносит трехуглеродные фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это - транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фосфата на рибозо-5-фосфат.

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА образуются эритрозо-4-фосфат и фруктозо-6-фосфат.Это F-вариант пентозофосфатного пути. Он характерен для жировой ткани.

Однако реакции могут идти и по другому пути(рис.5.17).Этот путь обозначается как L-вариант. Он протекает в печени и других органах. В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Рис.5.17. Пентозофосфатный (апотомический) путь обмена глюкозы (октулозный, или L-вариант)

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА.

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:

Глюкозо-6-Ф + 7Н 2 О + 12НАДФ + 5 Пентозо-5-Ф + 6СО 2 + 12 НАДФН?Н + + Фн.

Цикл Кребса

Цикл трикарбоновых кислот (цикл Кребса , цитратный цикл ) - центральная часть общего пути катаболизма , циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO 2 . При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии - АТФ .

Цикл Кребса - это ключевой этап дыхания всех клеток , использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.

Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Гансом Кребсом , за эту свою работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953).

Стадии цикла Кребса

Субстраты Продукты Фермент Тип реакции Комментарий
1 Оксалоацетат +
Ацетил-CoA +
H 2 O
Цитрат +
CoA-SH
Цитратсинтаза Альдольная конденсация лимитирующая стадия,
превращает C 4 оксалоацетат в С 6
2 Цитрат цис -акониат +
H 2 O
аконитаза Дегидратация обратимая изомеризация
3 цис -акониат +
H 2 O
изоцитрат гидратация
4 Изоцитрат +
изоцитратдегидрогеназа Окисление образуется NADH (эквивалент 2.5 ATP)
5 Оксалосукцинат α-кетоглутарат +
CO 2
декарбоксилирование обратимая стадия,
образуется C 5
6 α-кетоглутарат +
NAD + +
CoA-SH
сукцинил-CoA +
NADH + H + +
CO 2
альфакетоглутаратдегидрогеназа Окислительное декарбоксилирование образуется NADH (эквивалентно 2.5 ATP),
регенерация C 4 пути (освобождается CoA)
7 сукцинил-CoA +
GDP + P i
сукцинат +
CoA-SH +
GTP
сукцинилкофермент А синтетаза субстратное фосфорилирование или ADP ->ATP ,
образуется 1 ATP
8 сукцинат +
убихинон (Q)
фумарат +
убихинол (QH 2)
сукцинатдегидрогеназа Окисление используется FAD как простетическая группа (FAD->FADH 2 на первой стадии реакции) в ферменте,
образуется эквивалент 1.5 ATP
9 фумарат +
H 2 O
L -малат фумараза H 2 O-присоединение
(гидратация )
10 L -малат +
NAD +
оксалоацетат +
NADH + H +
малатдегидрогеназа окисление образуется NADH (эквивалетно 2.5 ATP)

Общее уравнение одного оборота цикла Кребса:

Ацетил-КоА → 2CO 2 + КоА + 8e −

Примечания

Ссылки

Wikimedia Foundation . 2010 .

  • Цикл Кальвина
  • Цикл Хамфри

Смотреть что такое "Цикл Кребса" в других словарях:

    ЦИКЛ КРЕБСА - (цикл лимонной и трикарбоновой кислот), система биохимических реакций, посредством которой большинство организмов ЭУКАРИОТОВ получают основную энергию в результате окисления пищи. Происходит в КЛЕТКАХ МИТОХОНДРИЙ. Включает несколько химических… … Научно-технический энциклопедический словарь

    цикл Кребса - Цикл трикарбоновых кислот, цикл последовательных реакций в клетках аэробных организмов, в результате которых происходит синтез молекул АТФ Тематики биотехнологии EN Krebs cycle … Справочник технического переводчика

    цикл кребса - – метаболитический путь, приводящий к полному разрушению ацетил КоА до конечных продуктов – CO2 и H2O … Краткий словарь биохимических терминов

    цикл Кребса - trikarboksirūgščių ciklas statusas T sritis chemija apibrėžtis Baltymų, riebalų ir angliavandenių oksidacinio skaidymo organizme ciklas. atitikmenys: angl. citric acid cycle; Krebs cycle; tricarboxylic acid cycle rus. цикл Кребса; цикл лимонной… … Chemijos terminų aiškinamasis žodynas

    цикл Кребса - tricarboxylic acid (Krebs, citric acid) cycle цикл трикарбоновых кислот, цикл Кребса. Важнейшая циклическая последовательность метаболических реакций у аэробных организмов (эу и прокариот), в результате которых происходит последовательное… … Молекулярная биология и генетика. Толковый словарь.

    ЦИКЛ КРЕБСА - то же, что трикарбоновых кислот цикл … Естествознание. Энциклопедический словарь

    Цикл Кребса (Krebs Cycle), Цикл Лимонной Кислоты (Citric Acid Cycle) - сложный цикл реакций, где в качестве катализаторов выступают ферменты; эти реакции проходят в клетках всех животных и заключаются в разложении ацетата в присутствии кислорода с выделением энергии в виде АТФ (по цепи передачи электронов) и… … Медицинские термины

    ЦИКЛ КРЕБСА, ЦИКЛ ЛИМОННОЙ КИСЛОТЫ - (citric acid cycle) сложный цикл реакций, где в качестве катализаторов выступают ферменты; эти реакции проходят в клетках всех животных и заключаются в разложении ацетата в присутствии кислорода с выделением энергии в виде АТФ (по цепи передачи… … Толковый словарь по медицине

    ЦИКЛ КРЕБСА (цикл трикарбоновых кислот - цикл лимонной кислоты) сложный циклический ферментативный процесс, при котором в организме происходит окисление пировиноградной кислоты с образованием углекислого газа, воды и энергии в виде АТФ; занимает центральное положение в общей системе… … Словарь ботанических терминов

    Цикл трикарбоновых кислот - Цик … Википедия



Похожие статьи