Последовательность развития нервной системы в процессе эволюции. Развитие нервной системы человека

23.09.2019

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одно-клеточный слой вследствие образования и деления медуллярной трубки.

В эволюции нервной системы схематично можно выде-лить такие этапы:

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ро-товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе-ма проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальней-ших этапах развития многоклеточных животных она теряет зна-чение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синап-тическая, проводит возбуждение в одном направлении и обе-спечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные ор-ганы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией распо-лагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си-стемы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен-тральной нервной системы, отдельные части и структуры которой формиру-ются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозго-вой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга.

Рефлекс - это закономерная реакция организма в ответ на раздраже-ние рецепторов, которая осуществляется рефлекторной дугой при участии центральной нервной системы. Это приспособительная реакция организма в ответ на изменение внутренней или окружающей среды. Рефлекторные реакции обеспечивают целостность организма и постоянство его внутрен-ней среды, рефлекторная дуга является основной единицей интегративной рефлекторной активности.

Значительный вклад в развитие рефлекторной теории внес И.М. Сеченов (1829-1905). Он первым использовал рефлекторный принцип для изучения физиологических механизмов психических процессов. В работе «Рефлексы головного мозга» (1863) И.М. Сеченов аргументировано доказал, что пси-хическая деятельность человека и животных осуществляется по механизму рефлекторных реакций, которые происходят в головном мозге, включая са-мые сложные из них - формирование поведения и мышление. На основании проведенных исследований он сделал вывод, что все акты сознательной и бессознательной жизни являются рефлекторными. Рефлекторная теория И.М. Сеченова послужила основой, на которой возникло учение И.П. Пав-лова (1849-1936) о высшей нервной деятельности.

Разработанный им ме-тод условных рефлексов расширил научное понимание роли коры большого мозга как материального субстрата психики. И.П. Павлов сформулировал рефлекторную теорию работы головного мозга, которая основывается на трех принципах: причинности, структурности, единстве анализа и синтеза. П. К. Анохин (1898—1974) доказал значение обратной связи в рефлекторной деятельности организма. Суть ее состоит в том, что во время осуществления любого рефлекторного акта процесс не ограничивается лишь эффектором, а сопровождается возбуждением рецепторов рабочего органа, от которых информация о последствиях действия поступает афферентными путями к центральной нервной системе. Появились представления о «рефлекторном кольце», «обратной связи».

Рефлекторные механизмы играют существенную роль в поведении жи-вых организмов, обеспечивая адекватное их реагирование на сигналы окру-жающей среды. Для животных действительность сигнализируется почти исключительно раздражениями. Это первая сигнальная система действи-тельности, общая для человека и животных. И.П. Павлов доказал, что для человека, в отличие от животных, объектом отображения является не только окружающая среда, но и общественные факторы. Поэтому для него решаю-щее значение приобретает вторая сигнальная система - слово как сигнал первых сигналов.

Условный рефлекс лежит в основе высшей нервной деятельности че-ловека и животных. Он всегда включается как существенный компонент в самых сложных проявлениях поведения. Однако не все формы поведения живого организма можно объяснить с точки зрения рефлекторной теории, которая раскрывает лишь механизмы действия. Рефлекторный принцип не дает ответа на вопрос о целесообразности поведения человека и животных, не учитывает результата действия.

Поэтому на протяжении последних десятилетий на основании рефлек-торных представлений сформировалось понятие относительно ведущей роли потребностей как движущей силы поведения человека и животных. Наличие потребностей является необходимой предпосылкой любой дея-тельности. Деятельность организма приобретает определенную направлен-ность лишь при наличии цели, которая отвечает данной потребности. Каж-дому поведенческому акту предшествуют потребности, которые возникли в процессе филогенетического развития под влиянием условий окружающей среды. Именно поэтому поведение живого организма определяется не столь-ко реакцией на внешние воздействия, сколько необходимостью реализации намеченной программы, плана, направленных на удовлетворение той или иной потребности человека или животного.

П.К. Анохин (1955) разработал теорию функциональных систем, которая предусматривает системный подход к изучению механизмов работы голов-ного мозга, в частности, разработки проблем структурно-функциональной основы поведения, физиологии мотиваций и эмоций. Суть концепции - мозг может не только адекватно реагировать на внешние раздражения, но и пред-усматривать будущее, активно строить планы своего поведения и реализо-вывать их. Теория функциональных систем не исключает метода условных рефлексов из сферы высшей нервной деятельности и не заменяет его чем-то другим. Она дает возможность глубже вникать в физиологическую сущность рефлекса. Вместо физиологии отдельных органов или структур мозга си-стемный подход рассматривает деятельность организма в целом. Для любого поведенческого акта человека или животного нужна такая организация всех мозговых структур, которая обеспечит нужный конечный результат. Итак, в теории функциональных систем центральное место занимает полезный ре-зультат действия. Собственно факторы, которые находятся в основе дости-жения цели, формируются по типу разносторонних рефлекторных процессов.

Одним из важных механизмов деятельности центральной нервной си-стемы является принцип интеграции. Благодаря интегрированию сомати-ческих и вегетативных функций, которое осуществляется корой большого мозга через структуры лимбико-ретикулярного комплекса, реализуются разнообразные приспособительные реакции и поведенческие акты. Высшим уровнем интеграции функций у человека являются лобные отделы коры.

Важную роль в психической деятельности человека и животных играет принцип доминанты, разработанный О. О. Ухтомским (1875-1942). Доми-нанта (от лат. dominari господствовать) это превосходящее в централь-ной нервной системе возбуждение, которое формируется под влиянием стимулов окружающей или внутренней среды и в определенный момент подчиняет себе деятельность других центров.

Головной мозг с его высшим отделом - корой большого мозга - это слож-ная саморегулировочная система, построенная на взаимодействии возбуди-тельных и тормозных процессов. Принцип саморегуляции осуществляется на разных уровнях анализаторных систем - от корковых отделов до уровня рецепторов с постоянным подчинением низших отделов нервной системы высшим.

Изучая принципы функционирования нервной системы, не без основа-ния головной мозг сравнивают с электронной вычислительной машиной. Как известно, основой работы кибернетического оснащения являются прием, передача, переработка и сохранение информации (память) с дальнейшим ее воспроизведением. Для передачи информация должна быть закодирована, а для воспроизведения - раскодирована. Пользуясь кибернетическими поня-тиями, можно считать, что анализатор принимает, передает, перерабатывает и, возможно, сохраняет информацию. В корковых отделах осуществляется ее раскодирование. Это, наверное, достаточно, чтобы сделать возможной попытку сравнить мозг с компьютером.

Вместе с тем нельзя отождествлять работу головного мозга с вычислительной машиной: «...мозг — наиболее капризная машина в мире. Будем же скромными и осторожными с выво-дами» (И.М. Сеченов, 1863). Компьютер - это машина и ничего больше. Все кибернетические устройства работают по принципу электрического или электронного взаимодействия, а в головном мозге, который создан путем эволюционного развития, кроме того, происходят сложные биохимические и биоэлектрические процессы. Они могут осуществляться только в живой ткани. Головной мозг, в отличие от электронных систем, функционирует не по принципу «все или ничего», а учитывает великое множество градаций между этими двумя крайностями. Эти градации обусловлены не электрон-ными, а биохимическими процессами. В этом существенное отличие физи-ческого от биологического.

Головной мозг имеет качества, которые выходят за пределы тех, которые имеет вычислительная машина. Следует добавить, что поведенческие реакции организма в значительной мере определяются межклеточным взаимодействием в центральной нервной системе. К одному нейрону, как правило, подходят отростки от сотен или тысяч других нейро-нов, и он, в свою очередь, ответвляется в сотни или тысячи других нейро-нов. Никто не может сказать, сколько в мозге синапсов, но число 10 14 (сто триллионов) не кажется невероятным (Д. Хьюбел , 1982). Компьютер вме-щает значительно меньше элементов. Функционирование головного мозга и жизнедеятельность организма осуществляются в конкретных условиях окружающей среды. Поэтому удовлетворение тех или иных потребностей может быть достигнуто при условии адекватности этой деятельности суще-ствующим внешнесредовым условиям.

Для удобства изучения основных закономерностей функционирования головной мозг разделяют на три основные блока, каждый из которых вы-полняет свои определенные функции.

Первый блок - это филогенетически древнейшие структуры лимбико-ретикулярного комплекса, которые расположены в стволовых и глубинных отделах головного мозга. В их состав входят поясная извилина, морской ко-нек (гиппокамп), сосочкоподобное тело, передние ядра таламуса, гипотала-мус, сетчатая формация. Они обеспечивают регуляцию жизненно необходи-мых функций - дыхания, кровообращения, обмена веществ, а также общего тонуса. Относительно поведенческих актов, то эти образования принимают участие в регуляции функций, направленных на обеспечение пищевого и сексуального поведения, процессов сохранения вида, в регуляции систем, которые обеспечивают сон и бодрствование, эмоциональную деятельность, процессы памяти.Второй блок - это совокупность образований, размещенных позади цен-тральной борозды: соматосенсорные, зрительные и слуховые зоны коры большого мозга.

Основные их функции: прием, переработка и сохранение информации. Нейроны системы, которые размещены преимущественно кпереди от центральной борозды и связаны с эффекторными функциями, реализацией двигательных программ, составляют третий блок.Тем не менее следует признать, что нельзя провести четкой границы между сенсорными и моторными структурами мозга. Постцентральная извилина, которая является чувствительной проекционной зоной, тесно взаимосвязана с прецентральной двигательной зоной, образовывая единое сенсомоторное поле. Поэтому необходимо четко понимать, что та или дру-гая деятельность человека требует одновременного участия всех отделов нервной системы. Причем система в целом выполняет функции, которые выходят за пределы функций, присущих каждому из указанных блоков.

Анатомо-физиологическая характеристика и патология черепных нервов

Черепные нервы, отходящие от головного мозга в количестве 12 пар, иннервируют кожу, мышцы, органы головы и шеи, а также некоторые органы грудной и брюшной полостей. Из них III, IV,

VI, XI, XII пары являются двигательными, V, VII, IX, X сме-шанными, I, II и VIII пары - чувствительными, обеспечивающи-ми соответственно специфическую иннервацию органов обоня-ния, зрения и слуха; I и II пары - производные головного мозга, ядер в мозговом стволе не имеют. Все другие черепные нервы выходят из мозгового ствола или входят в него, где находятся их двигательные, чувствительные и вегетативные ядра. Так, ядра III и IV пар черепных нервов расположены в ножке мозга, V, VI, VII, VIII пар - преимущественно в покрышке моста, IX, X, XI, XII пар - в продолговатом мозге.

Кора большого мозга

Головной мозг (encephalon, cerebrum) включает правое и левое полушария и мозговой ствол. Каждое полушарие имеет три по-люса: лобный, затылочный и височный. В каждом полушарии различают четыре доли: лобную, теменную, затылочную, височ-ную и островок (см. рис. 2).

Полушария головного мозга (hemispheritae cerebri) назы-вают еще большим, или конечным мозгом, нормальное функ-ционирование которого предопределяет специфические для человека признаки. Головной мозг человека состоит из муль-типолярных нервных клеток - нейронов, количество которых достигает 10 11 (ста миллиардов). Это приблизительно столько же, сколько звезд в нашей Галактике. Средняя масса головного мозга взрослого человека составляет 1450 г. Для нее характер-ны значительные индивидуальные колебания. Например, у та-ких выдающихся людей, как писатель И.С. Тургенев (63 года), поэт Байрон (36 лет), она составляла соответственно 2016 г и 2238 г, у других, не менее талантливых - французского писате-ля А. Франса (80 лет) и политолога и философа Г.В. Плеханова (62 года) - соответственно 1017 г. и 1180 г. Изучение головного мозга великих людей не раскрыло тайну интеллекта. Зависимо-сти массы мозга от творческого уровня лица не выявлено. Аб-солютная масса мозга женщин на 100-150 г меньше, чем масса мозга мужчин.

Мозг человека отличается от мозга человекообразных обе-зьян и других высших животных не только большей массой, а и значительным развитием лобных долей, что составляет 29 % всей массы головного мозга. Значительно опережая рост других долей, лобные доли продолжают увеличиваться на протяжении первых 7-8 лет жизни ребенка. Очевидно, это обусловлено тем, что они связаны с двигательной функцией. Именно из лобных долей берет начало пирамидный путь. Важное значение лобной доли и в осуществлении высшей нервной деятельности. В от-личие от животного в теменной доле головного мозга человека дифференцируется нижняя теменная долька. Ее развитие связы-вают с появлением речевой функции.

Мозг человека - наиболее совершенен из всего, что создала природа. Вместе с тем, это самый сложный объект для познания. Какой же в общем понимании аппарат дает мозгу возможность выполнять свою чрезвычайно сложную функцию? Количество нейронов в мозге составляет около 10 11 , количество синапсов, или контактов между нейронами, равняется около 10 15 . В среднем на каждом нейроне насчитывается несколько тысяч отдель-ных входов, а он сам посылает связи многим другим нейронам (Ф. Крик, 1982). Это лишь отдельные основные положения учения о мозге. Научные исследования мозга прогрессируют, хотя и медленно. Тем не менее, это не означает, что в будущем в любой момент не будет сделано открытие или ряд открытий, благодаря которым раскроются тайны работы мозга.

Этот вопрос касается самой сущности человека, и поэтому принципиальные изменения в наших взглядах на человеческий мозг значительно повлияют на нас самих, окружающий мир и на другие области научных исследований, дадут ответ на целый ряд биологических и философских вопросов. Тем не менее, это еще перспективы развития науки о мозге. Их осуществление будет подобно тем переворотам, которые были сделаны Коперником, который доказал, что Земля не является центром Вселенной; Дарвиным, который установил, что человек находится в родственной связи со всеми другими живыми суще-ствами; Ейнштейном, который ввел новые понятия относительно времени и пространства, массы и энергии; Вотсоном и Криком, которые показали, что биологическую наследственность можно объяснить физическими и химиче-скими понятиями (Д. Хъюбел, 1982).

Кора большого мозга покрывает его полушария, имеет борозды, которые разделяют ее на доли и извилины, вследствие чего значительно увеличи-вается ее площадь. На верхнебоковой (внешней) поверхности полушария большого мозга размещены две самые большие первичные борозды - цен-тральная борозда (sulcus centralis), отделяющая лобную долю от теменной, и боковая борозда (sulcus lateralis), которую нередко называют сильвиевой; она отделяет лобную и теменную доли от височной (см. рис. 2). На ме-диальной поверхности полушария большого мозга различают теменно-затылочную борозду (sulcus parietooccipitalis), которая отделяет теменную долю от затылочной (см. рис. 4). Каждое полушарие большого мозга имеет также нижнюю (базальную) поверхность.

Кора большого мозга - эволюционно наиболее молодое образование, самое сложное по строению и функции. Она имеет исключительно важное значение в организации жизнедеятельности организма. Кора полушарий мозга развивалась как аппарат адаптации к меняющимся условиям окружа-ющей среды. Приспособительные реакции определяются взаимодействием соматических и вегетативных функций. Именно кора большого мозга обе-спечивает интеграцию этих функций через лимбико-ретикулярный ком-плекс. Она не имеет прямой связи с рецепторами, но получает важнейшую афферентную информацию, частично уже переработанную на уровне спинного мозга, в стволе и подкорковом отделе головного мозга. В коре чувстви-тельная информация поддается анализу и синтезу. Даже по наиболее осто-рожным оценкам в мозге человека на протяжении 1 с осуществляется около 10 11 элементарных операций (О. Форстер, 1982). Именно в коре нервными клетками, связанными между собой многими отростками, осуществляется анализ сигналов, которые поступают в организм, и принимаются решения относительно их реализации.

Подчеркивая ведущую роль коры большого мозга в нейрофизиологиче-ских процессах, необходимо отметить, что этот высший отдел центральной нервной системы может нормально функционировать лишь при тесном вза-имодействии с подкорковыми образованиями, сетчатым образованием моз-гового ствола. Здесь уместно напомнить высказывание П.К. Анохина (1955) о том, что, с одной стороны, развивается кора большого мозга, а с другой - ее энергетическое обеспечение, т. е. сетчатое образование. Последнее контро-лирует все сигналы, которые направляются к коре большого мозга, пропу-скает определенное их количество; избыточные сигналы кумулируются, а в случае информационного голода добавляются к общему потоку.

Цитоархитектоника коры большого мозга

Кора большого мозга - это серое вещество поверхности больших полу-шарий толщиной 3 мм. Максимального развития она достигает в прецен-тральной извилине, где толщина ее приближается к 5 мм. В коре большого мозга человека содержится около 70 % всех нейронов центральной нервной системы. Масса коры большого мозга у взрослого человека составляет 580 г, или 40 % всей массы мозга. Общая площадь коры около 2200 см 2 , что в 3 раза превышает площадь внутренней поверхности мозгового черепа, к кото-рой она прилегает. Две трети площади коры большого мозга скрыты в боль-шом количестве борозд (sulci cerebri).

Первые зачатки коры большого мозга формируются у человеческого зародыша на 3-м месяце эмбрионального развития, на 7-м месяце большая часть коры состоит из 6 пластинок, или слоев. Немецкий невролог К. Бродман (1903) дал слоям такие названия: молекулярная пластинка (lamina molecularis), наружная зернистая пластинка (lamina granulans externa), на-ружная пирамидная пластинка (lamina pyramidal is externa), внутренняя зернистая пластинка (lamina granulans interna), внутренняя пирамидная пластинка (lamina pyramidalis interna seu ganglionaris) и мультиформная пластинка (lamina miltiformis).

Структура коры большого мозга:

а - слои клеток; б - слои волокон; I - молекулярная пластинка; II - внеш-няя зернистая пластинка; III - внешняя пирамидная пластинка; IV - внутренняя зернистая пластинка; V - внутренняя пирамидная (ганглиозная) пластинка; VI - мультиформная пластинка (Via - клетки треугольной формы; VIб - клетки веретенообразной формы)

Морфологическое строение коры большого мозга в разных его участках подробно было описано профессором Киевского университета И.О. Бецом в 1874 г. Он впервые описал гигантские пирамидные клетки в пятом слое коры прецентральной извилины. Эти клетки известны как клетки Беца. Аксоны их направляются к моторным ядрам ствола голов-ного и спинного мозга, образуя пирамидный путь. В.О. Бец впер-вые ввел термин «цитоархитекто-ника коры». Это наука о клеточ-ном строении коры, количестве, форме и расположении клеток в разных ее слоях. Цитоархитекто-нические особенности строения разных участков коры большого мозга являются основой распре-деления ее на области, подобла-сти, поля и подполя.Отдельные поля коры отвечают за определенные проявления высшей нервной деятельности: речь, зрение, слух, обоняние и т. п. Топография по-лей коры большого мозга человека детально исследована К. Бродманом, который составил соответствующие карты коры. Всю поверхность коры, по К. Бродману, делят на 11 участков и 52 поля, которые отличаются особен-ностями клеточного состава, строения и исполнительной функции.

У человека различают три формации мозговой коры: новую, древнюю и старую. Они значительно отличаются по своему строению.Новая кора (neocortex) составляет приблизительно 96 % всей поверх-ности большого мозга и включает затылочную долю, верхнюю и нижнюю теменную, прецентральную и постцентральную извилины, а также лобную и височную доли мозга, островок. Это гомотопическая кора, она имеет пла-стинчатый тип строения и состоит преимущественно из шести слоев. Пла-стинки по мощности своего развития варьируют в разных полях. В част-ности, в прецентральной извилине, которая является моторным центром коры большого мозга, хорошо развиты наружная пирамидная, внутренняя пирамидная и мультиформная пластинки и хуже - наружная и внутренняя зернистая пластинки.

Древняя кора (paleocortex) включает обонятельный бугорок, прозрач-ную перегородку, периамигдалярную и препириформную области. Она свя-зана с древними функциями мозга, касающимися обоняния, вкуса. Древняя кора отличается от коры новой формации тем, что покрыта белым пластом волокон, часть которых состоит из волокон обонятельного пути (tractus olfactorius). Кора лимбической системы также является древней частью коры, она имеет трехслойную структуру.

Старая кора (archicortex) включает аммониев рог, зубчатую извилину. Она тесно связана с областью гипоталамуса (corpus mammillare) и лимбиче-ской корой. Старая кора отличается от древней тем, что она четко отделена от подкорковых образований. Функционально она связана с эмоциональны-ми реакциями.

Древняя и старая кора составляет приблизительно 4 % коры большого мозга. Она не проходит в эмбриональном развитии периода шестислойного строения. Такая кора имеет трех- или однослойную структуру и получила название гетеротопической.

Почти одновременно с изучением клеточной архитектоники коры на-чалось изучение ее миелоархитектоники, т. е. исследование волокнистого строения коры с точки зрения определения тех отличий, которые имеются в отдельных ее участках. Миелоархитектоника коры характеризуется на-личием шести слоев волокон в границах коры большого мозга с разными строками их миелинизации (рис. б).Среди нервных волокон полушарий большого мозга различают ассоциа-тивные волокна, соединяющие отдельные участки коры в границах одного полушария, комиссуральные, соединяющие кору разных полушарий, и про-екционные, соединяющие кору с низшими отделами центральной нервной системы.

Таким образом, кора большого мозга разделена на участки и поля. Все они имеют особую специфическую, присущую им структуру.Что касается функций, то различают три основных типа корковой дея-тельности. Первый тип связан с деятельностью отдельных анализаторов и обеспечивает простейшие формы познания. Это первая сигнальная система. Второй тип включает вторую сигнальную систему, работа которой тесно связана с функцией всех анализаторов. Это более сложный уровень корковой деятельности, которая непосредственно касается речевой функции. Слова для человека являются таким же условным раздражителем, как и сигналы действительности. Третий тип корковой деятельности обеспечивает целеу-стремленность действий, возможность перспективного их планирования, ко-торое функционально связано с лобными долями полушарий большого мозга.

Таким образом, человек воспринимает окружающий мир на основе пер-вой сигнальной системы, а логическое, абстрактное мышление связано со второй сигнальной системой, которая является высшей формой нервной деятельности человека.

Автономная (вегетативная) нервная система

Как уже отмечалось в предыдущих главах, сенсорная и мотор-ная системы воспринимают раздражение, осуществляют чув-ствительную связь организма с окружающей средой и обеспечи-вают движения путем сокращения скелетных мышц. Эта часть общей нервной системы называется соматической. Вместе с тем существует и вторая часть нервной системы, которая отвечает за процесс питания организма, обмен, выделение, рост, размно-жение, циркуляцию жидкостей, т. е. регулирует деятельность внутренних органов. Она называется автономной (вегетатив-ной) нервной системой.

Существуют разные терминологические обозначения этого отдела нервной системы. По Международной анатомической номенклатуре общепринятый термин - «авто-номная нервная система». Однако в отечественной литературе традиционно используется и прежнее название - вегетативная нервная система. Разделение общей нервной системы на две тесно взаимосвязанные части отображает ее специализацию при сохранении интегративной функции центральной нервной си-стемы как основы целостности организма.

Функции вегетативной нервной системы:

Трофотропная - регуляция деятельности внутренних органов, поддержание постоянства внутренней среды организ-ма - гомеостаза;

Эрготропная вегетативное обеспечение процессов адаптации организма к условиям окружающей среды, т. е. обе-спечение различных форм психической и физической деятель-ности организма: повышение АД, учащение пульса, углубление дыхания, повышение уровня глюкозы в крови, выброс гормонов надпочечников и другие функции. Указанные физиологические функции регулируются самостоятельно (автономно), без произ-вольного управления ними.

Томас Уиллис выделил из блуждающего нерва пограничный симпатичный ствол, а Якоб Уинслоу (1732) детально описал его строение, связь с внутрен-ними органами, отметив, что «...одна часть тела влияет на другую, возникают ощущения - симпатия». Так возник термин «симпатическая система», т. е. система, связывающая органы между собою и с центральной нервной систе-мой. В 1800 г. французский анатом М. Биша разделил нервную систему на два отдела: анимальную (животную) и вегетативную (растительную). По-следняя обеспечивает процессы обмена, необходимые для существования, как животного организма, так и растений. Хотя в тот период такие представ-ления полностью не воспринимались, а потом были вообще отброшены, но предложенный термин «вегетативная нервная система» получил широкое распространение и сохранился до настоящего времени.

Английский ученый Джон Ленгли установил, что разные нервные вегета-тивные проводниковые системы осуществляют противоположные влияния на органы. На основе этих функциональных отличий в вегетативной нервной системе выделили два отдела: симпатический и парасимпатический. Симпа-тический отдел автономной нервной системы активирует деятельность ор-ганизма в целом, обеспечивает защитные функции (иммунные процессы, ба-рьерные механизмы, терморегуляцию), парасимпатический - поддерживает гомеостаз в организме. По своей функции парасимпатическая нервная си-стема анаболическая, она способствует накапливанию энергии.

Кроме того, часть внутренних органов имеет еще метасимпатические нейроны, которые осуществляют местные механизмы регуляции внутренних органов. Симпа-тическая нервная система иннервирует все органы и ткани организма, тогда как сфера деятельности парасимпатической нервной системы относится в основном к внутренним органам. Большинство внутренних органов имеют двойную, симпатическую и парасимпатическую, иннервацию. Исключение составляют центральная нервная система, большинство сосудов, матка, моз-говое вещество надпочечников, потовые железы, которые не имеют пара-симпатической иннервации.

Первые анатомические описания структур вегетативной нервной системы были сделаны еще Галеном и Везалием , ко-торые изучали анатомию и функцию блуждающего нерва, хотя и ошибочно относили к нему и другие образования. В XVII ст.

Анатомия

По анатомическим критериям вегетативную нервную систему разделя-ют на сегментарный и надсегментарный отделы.

Сегментарный отдел вегетативной нервной системы обеспе-чивает вегетативную иннервацию отдельных сегментов тела и внутренних органов, которые к ним относятся. Он подразделяется на симпатическую и парасимпатическую часть.

Центральным звеном симпатической части вегетативной нервной системы является ядро Якобсона нейроны боковых рогов спинного мозга от нижнего шейного (С8) до поясничных (L2-L4) сегментов. Аксоны этих клеток выходят из спинного мозга в составе передних спин-номозговых корешков. Далее они в виде преганглионарных волокон (белые соединительные ветви) идут к симпатическим узлам пограничного (симпа-тического) ствола, где перерываются.

Симпатический ствол располагается по обе стороны от позвоночника и образуется паравертебральными узлами, из которых 3 шейных, 10-12 грудных, 3-4 поясничных и 4 крестцовых. В узлах симпатического ствола часть волокон (преганглионарные) заканчива-ется. Другая часть волокон, не перерываясь, идет к превертебральным спле-тениям (на аорте и ее ветвях - брюшное, или солнечное сплетение). От сим-патического ствола и промежуточных узлов берут начало постгангионарные волокна (серые соединительные ветви), которые не имеют миелиновой обо-лочки. Они иннервируют различные органы и ткани.

Схема строения сегментарного отдела автономной (вегетативной) нервной системы:

1 - краниобульбарный отдел парасимпатической нервной системы (ядра III, VII, IX, X пар черепных нервов); 2 - сакральный (крестцовый) отдел парасимпатической нервной си-стемы (боковые рога S2-S4 сегментов); 3 - симпатический отдел (боковые рога спинного мозга на уровне C8-L3 сегментов); 4 - ресничный узел; 5 - крылонебный узел; 6 - подче-люстной узел; 7 - ушной узел; 8 - симпатический ствол.

В боковых рогах спинного мозга на уровне С8-Т2 находится цилиоспи-нальный центр Будге, от которого берет начало шейный симпатический нерв. Преганглионарные симпатические волокна от этого центра направляются к верхнему шейному симпатическому узлу. От него постганглионарные волок-на поднимаются вверх, образуют симпатическое сплетение сонной артерии, глазничной артерии (a. ophtalmica), далее проникают в орбиту, где иннерви-руют гладкие мышцы глаза. При поражении боковых рогов на этом уровне или шейного симпатического нерва возникает синдром Бернара-Горнера. По-следний характеризуется частичным птозом (сужение глазной щели), миозом (сужение зрачка) и энофтальмом (западение глазного яблока). Раздражение симпатических волокон приводит к возникновению противоположного син-дрома Пурфюр дю Пти: расширение глазной щели, мидриаз, экзофтальм.

Симпатические волокна, которые начинаются от звездчатого узла (шейно-грудной узел, gangl. stellatum), образуют сплетение позвоночной ар-терии и симпатическое сплетение в сердце. Они обеспечивают иннервацию сосудов вертебрально-базилярного бассейна, а также дают ветки к сердцу и гортани. Грудной отдел симпатического ствола дает ветви, которые иннер-вируют аорту, бронхи, легкие, плевру, органы брюшной полости. От пояс-ничных узлов симпатические волокна направляются к органам и сосудам малого таза. На конечностях симпатические волокна идут вместе с перифе-рическими нервами, распространяясь в дистальных отделах вместе с мелки-ми артериальными сосудами.

Парасимпатическая часть вегетативной нервной системы делится на краниобульбарный и сакральный отделы. Краниобуль-барный отдел представлен нейронами ядер мозгового ствола: III, УП, IX, X пар черепных нервов. Вегетативные ядра глазодвигательного нерва - добавочное (ядро Якубовича) и центральное заднее (ядро Перлиа) находятся на уровне среднего мозга. Их аксоны в составе глазодвигатель-ного нерва идут к ресничного узлу (gangl. ciliarae), который находится в за-днем отделе орбиты. От него постганглионарные волокна в составе корот-ких цилиарных нервов (nn. ciliaris brevis) иннервируют гладкие мышцы глаза: мышцу, суживающую зрачок (m. sphincter pupillae), и ресничную мышцу (т. ciliaris), сокращение которой обеспечивает аккомодацию.

В области моста находятся секреторные слезовыделительные клетки, аксоны которых в составе лицевого нерва идут к крылонебному узлу (gangl. pterygopalatinum) и иннервируют слезную железу. В стволе мозга также ло-кализуются верхнее и нижнее секреторные слюновыделительные ядра, ак-соны от которых идут с языкоглоточным нервом к околоушному узлу (gangl. oticum) и с промежуточным нервом к подчелюстному и подъязычному узлам (gangl. submandibularis, gangl. sublingualis) и иннервируют соответствующие слюнные железы.

На уровне продолговатого мозга находится заднее (вис-церальное) ядро блуждающего нерва (nucl. dorsalis n.vagus), парасимпатические волокна которого иннер-вируют сердце, пищеварительный канал, желудочные железы и другие вну-тренние органы (кроме органов малого таза).

Схема эфферентной парасимпатической иннервации:

1 - парасимпатические ядра гла-зодвигательного нерва; 2 - верхнее слюноотделительное ядро; 3 - ниж-нее слюноотделительное ядро; 4 - заднее ядро блуждающего не-рва; 5 - боковое промежуточное ядро крестцового отдела спинного мозга; б - глазодвигательный нерв; 7 - лицевой нерв; 8 - языкоглоточ-ный нерв; 9 - блуждающий нерв; 10 - тазовые нервы; 11 - ресничный узел; 12 - крылонебный узел; 13 - ушной узел; 14 - подчелюстной узел; 15 - подъязычный узел; 16 - узлы легочного сплетения; 17 - узлы сердечного сплетения; 18 - брюшные узлы; 19 - узлы желудочного и кишечного сплетений; 20 - узлы тазового сплетения.

На поверхности или внутри внутренних органов находятся внутриор-ганные нервные сплетения (метасимпатический отдел вегетативной нерв-ной системы), которые выполняют роль коллектора - переключают и транс-формируют все импульсы, которые поступают к внутренним органам и адаптируют их деятельность к наступившим изменениям, т. е. обеспечивают адаптационные и компенсаторные процессы (например, после операции).

Сакральная (крестцовая) часть вегетативной нервной системы пред-ставлена клетками, которые размещаются в боковых рогах спинного мозга на уровне S2-S4 сегментов (боковое промежуточное ядро). Аксоны этих клеток формируют тазовые нервы (nn. pelvici), которые иннервируют моче-вой пузырь, прямую кишку и половые органы.

Симпатическая и парасимпатическая часть вегетативной нервной систе-мы осуществляет противоположное влияние на органы: расширение или су-жение зрачка, ускорение или замедление сердцебиения, противоположные изменения секреции, перистальтики, и т. п. Усиление активности одного отдела в физиологических условиях ведет к компенсаторному напряжению другого. Это возвращает функциональную систему к исходному состоянию.

Отличия между симпатическим и парасимпатическим отделами вегета-тивной нервной системы следующие:

1. Парасимпатические ганглии находятся вблизи или в самих органах, которые они иннервируют, а симпатические ганглии - на значительном расстоянии от них. Поэтому постганглионарные волокна симпатической системы имеют значительную протяженность и при их раздражении кли-ническая симптоматика не локальная, а диффузная. Проявления патологии парасимпатической части вегетативной нервной системы более локальные, часто охватывают лишь один орган.

2. Разный характер медиаторов: медиатором преганглионарных волокон обеих отделов (симпатического и парасимпатического) является ацетилхо-лин. В синапсах постганглионарных волокон симпатической части выделя-ется симпатии (смесь адреналина и норадреналина), парасимпатического -ацетилхолин.

3. Парасимпатический отдел эволюционно более древний, он осущест-вляет трофотропную функцию и более автономный. Симпатический отдел более новый, выполняет приспособительную (эрготропную) функцию. Он менее автономный, зависит от функции центральной нервной системы, эн-докринной системы и других процессов.

4. Сфера функционирования парасимпатической части вегетативной нервной системы более ограничена и касается в основном внутренних ор-ганов; симпатические волокна обеспечивают иннервацию всех органов и тканей организма.

Надсегментарный отдел вегетативной нервной системы не подраз-деляется на симпатическую и парасимпатическую часть. В структуре над-сегментарного отдела выделяют эрготропные и трофотропные и системы, предложенные английским исследователем Гедом. Эрготропная система усиливает свою деятельность в моменты, требующие от организма опреде-ленного напряжения, активной деятельности. В этом случае повышается АД, расширяются коронарные артерии, учащается пульс, увеличивается частота дыхания, расширяются бронхи, усиливается легочная вентиляция, уменьшается перистальтика кишок, суживаются сосуды почек, расширя-ются зрачки, повышается возбудимость рецепторов и внимание.

Организм готовый к защите или к сопротивлению. Для реализации этих функций эрготропная система включает в основном сегментарные аппараты симпа-тической части вегетативной нервной системы. В таких случаях в процесс включаются и гуморальные механизмы - в кровь выбрасывается адреналин. Больше всего этих центров располагается в лобных и теменных долях. На-пример, моторные центры иннервации гладких мышц, внутренних органов, сосудов, потоотделения, трофики, обмена веществ находятся в лобных долях мозга (поля 4, 6, 8). Иннервация органов дыхания связана с корой островка, органов брюшной полости - с корой постцентральной извилины (поле 5).

Трофотропная система оказывает содействие поддержанию внутреннего равновесия, гомеостаза. Она обеспечивает пищевые функции. Деятельность трофотропной системы связана с состоянием покоя, отдыха, сна, процес-сами пищеварения. В таком случае замедляется сердечный ритм, дыхание, снижается АД, суживаются бронхи, усиливается перистальтика кишок и секреция пищеварительных соков. Действия трофотропной системы реали-зуются через образования сегментарного отдела парасимпатической части вегетативной нервной системы.

Деятельность обеих этих функций (эрго- и трофотропной) протекает синергически. В каждом конкретном случае можно отметить преобладание одной из них, а от их функционального соотношения зависит адаптация ор-ганизма к меняющимся условиям окружающей среды.

Надсегментарные вегетативные центры находятся в коре полушарий большого мозга, подкорковых структурах, мозжечке и стволе мозга. Напри-мер, такие вегетативные центры, как иннервации гладких мышц, внутрен-них органов, сосудов, потоотделения, трофики, обмена веществ находятся в лобных долях мозга. Особое место среди высших вегетативных центров занимает лимбико-ретикулярный комплекс.

Лимбическая система представляет собой комплекс структур мозга, к ко-торому относятся: кора задней и медиобазальной поверхности лобной доли, обонятельный мозг (обонятельная луковица, обонятельные пути, обоня-тельный бугор), гиппокамп, зубчатая, поясная извилины, ядра перегородки, передние ядра таламуса, гипоталамус, миндалевидное тело. Лимбическая система теснейшим образом связана с ретикулярной формацией ствола мозга. Поэтому все эти образования и их связи получили название лимбико-ретикулярного комплекса. Центральной частью лимбической системы явля-ются обонятельный мозг, гиппокамп и миндалевидное тело.

Весь комплекс структур лимбической системы, несмотря на их филогенетические и морфо-логические отличия, обеспечивает целостность многих функций организма. На этом уровне происходит первичный синтез всей чувствительности, ана-лиз состояния внутренней среды, формируются элементарные потребности, мотивации, эмоции. Лимбическая система обеспечивает интегративные функции, взаимодействие всех систем мозга двигательных, сенсорных, ве-гетативных. От ее состояния зависят уровень сознания, внимания, память, способность ориентироваться в пространстве, двигательная и психическая активность, возможность выполнять автоматизированные движения, речь, состояние бодрости или сна.

Значительное место среди подкорковых структур лимбической системы отводится гипоталамусу. Он регулирует функцию пищеварения, дыхания, сердечно-сосудистой, эндокринной систем, метаболизм, терморегуляцию.

Обеспечивает постоянство показателей внутренней среды (АД, уровень глюкозы в крови, температура тела, концентрация газов, электролиты и т. п.), т. е. является основным центральным механизмом регуляции гомеоста-за, обеспечивает регуляцию тонуса симпатического и парасимпатическо-го отделов вегетативной нервной системы. Благодаря связям со многими структурами центральной нервной системы, гипоталамус осуществляет ин-теграцию соматической и вегетативной функций организма. Причем связи эти осуществляются по принципу обратной связи, двустороннего контроля.

Важную роль среди структур надсегментарного отдела вегетативной нерв-ной системы играет ретикулярная формация ствола мозга. Она имеет само-стоятельное значение, но является составляющей лимбико-ретикулярного комплекса - интегративного аппарата мозга. Ядра ретикулярной формации (их около 100) формируют надсегментарные центры жизненно важных функций: дыхания, сосудодвигательный, сердечной деятельности, глотания, рвоты и т. п. Кроме того, она контролирует состояние сна и бодрствования, фазический и тонический тонус мышц, расшифровывает информационные сигналы из окружающей среды. Взаимодействие ретикулярной формации с лимбической системой обеспечивает организацию целесообразного поведе-ния человека к меняющимся условиям окружающей среды.

Оболочки головного и спинного мозга

Головной и спинной мозг покрыты тремя оболочками: твер-дой (dura mater encephali), паутинной (arachnoidea encephali) и мягкой (pia mater encephali).

Твердая оболочка головного мозга состоит из плотной во-локнистой ткани, в которой различают внешнюю и внутреннюю поверхности. Ее внешняя поверхность хорошо васкуляризована и непосредственно соединена с костями черепа, выполняя роль внутренней надкостницы. В полости черепа твердая оболочка образует складки (дубликатуры), которые принято называть от-ростками.

Различают такие отростки твердой мозговой оболочки:

Серп большого мозга (falx cerebri), находящийся в сагит-тальной плоскости между полушариями головного мозга;

Серп мозжечка (falx cerebelli), расположенный между по-лушариями мозжечка;

Намет мозжечка (tentorium cerebelli), натянутый в горизон-тальной плоскости над задней черепной ямкой, между верхним углом пирамиды височной кости и поперечной бороздой заты-лочной кости и отграничивает затылочные доли большого мозга от верхней поверхности полушарий мозжечка;

Диафрагма турецкого седла (diaphragma sellae turcicae); этот отросток натянут над турецким седлом, он образует его по-толок (operculum sellae).

Между листками твердой мозговой оболочки и ее отростка-ми находятся полости, собирающие кровь из мозга и называемые синусами твердой оболочки (sinus dures matris).

Различают следующие синусы:

Верхний сагиттальный синус (sinus sagittalis superior), через который кровь выводится в поперечный синус (sinus transversus). Он находится вдоль выпяченной стороны верхнего края большого серповидного отростка;

Нижний сагиттальный синус (sinus sagittalis inferior) лежит вдоль нижнего края большого серповидного отростка и вливает-ся в прямую пазуху (sinus rectus);

Поперечный синус (sinus transversus) содержится в одноименной бороз-де затылочной кости; огибая сосцевидный угол теменной кости, он перехо-дит в сигмовидную пазуху (sinus sigmoideus);

Прямой синус (sinus rectus) проходит вдоль линии соединения большо-го серповидного отростка с наметом мозжечка. Вместе с верхним сагитталь-ным синусом он выводит венозную кровь в поперечную пазуху;

Пещеристый синус (sinus cavernosus) находится по бокам от турецко-го седла.

На поперечном срезе он имеет вид треугольника. В нем выделя-ют три стенки: верхнюю, внешнюю и внутреннюю. В верхней стенке про-ходят глазодвигательный нерв (п.

В развитие нервной системы связано как с двигательной активностью, так и со степенью активности ВНД.

У человека выделяют 4 стадии развития нервной деятельности мозга:

  1. Первичные локальные рефлексы – это «критический» период в функциональном развитии нервной системы;
  2. Первичная генерализация рефлексов в форме быстрых рефлекторных реакций головы, туловища и конечностей;
  3. Вторичная генерализация рефлексов в виде медленных тонических движений всей мускулатуры тела;
  4. Специализация рефлексов, выражающаяся в координированных движениях отдельных частей тела.
  5. Безусловно-рефлекторная адаптация;
  6. Первичная условно-рефлекторная адаптация (формирование суммационных рефлексов и доминантных приобретенных реакций);
  7. Вторичная условно-рефлекторная адаптация (образование условных рефлексов на основе ассоциаций – «критический» период), с ярким проявлением ориентировочно-исследовательских рефлексов и игровых реакций, которые стимулируют образование новых условно-рефлекторных связей типа сложных ассоциаций, что является основой для внутривидовых (внутригрупповых) взаимодействий развивающихся организмов;
  8. Формирование индивидуальных и типологических особенностей нервной системы.

Закладка и развитие нервной системы человек:

I. Стадия нервной трубки. Центральный и периферический отделы нервной системы человека развиваются из единого эмбрионального источника – эктодермы. В процессе развития зародыша она закладывается в виде так называемой нервной пластинки. Нервная пластинка состоит из группы высоких, быстро размножающихся клеток. На третьей неделе развития нервная пластинка погружается в нижележащую ткань и принимает форму желобка, края которого приподнимаются над эктодермой в виде нервных валиков. По мере роста зародыша нервный желобок удлиняется и достигает каудального конца зародыша. На 19-ый день начинается процесс смыкания валиков над желобком, в результате чего образуется длинная трубка – нервная трубка. Она располагается под поверхностью эктодермы отдельно от нее. Клетки нервных валиков перераспределяются в один слой, в результате чего образуется ганглиозная пластинка. Из нее формируются все нервные узлы соматической периферической и вегетативной нервной системы. К 24-му дню развития трубка замыкается в головной части, а сутками позже – в каудальной. Клетки нервной трубки носят название медуллобластов. Клетки ганглиозной пластинки называются ганглиобластами. Медуллобласты затем дают начало нейробластам и спонгиобластам. Нейробласты отличаются от нейронов значительно меньшим размером, отсутствием дендритов, синаптических связей и вещества Ниссля в цитоплазме.

II. Стадия мозговых пузырей. В головном конце нервной трубки после ее замыкания очень быстро образуется три расширения – первичные мозговые пузыри. Полости первичных мозговых пузырей сохраняются в мозгу ребенка и взрослого в видоизмененной форме, образуя желудочки мозга и сильвиев водопровод. Существует две стадии мозговых пузырей: стадия трех пузырей и стадия пяти пузырей.

III. Стадия формирования отделов мозга. Сначала образуются передний, средний и ромбовидный мозг. Затем из ромбовидного мозга образуются задний и продолговатый мозг, а из переднего образуются конечный мозг и промежуточный. Конечный мозг включает в себя два полушария и часть базальных ядер.


Развитие нервной системы в фило- и онтогенезе

Развитие – это качественные изменения в организме, заключающиеся в усложнении его организации, а также их взаимоотношений и процессов регуляции.

Рост – это увеличение длины, объема и массы тела организма в онтогенезе, связанное с увеличением числа клеток и количества составляющих их органических молекул, то есть рост – это количественные изменения.

Рост и развитие, то есть количественные и качественные изменения, тесно взаимосвязаны и обуславливают друг друга.

В филогенезе развитие нервной системы связано как с двигательной активностью, так и со степенью активности ВНД.

1. У простейших одноклеточных способность отвечать на стимулы присуща одной клетке, которая функционирует одновременно как рецептор и как эффектор.

2. Простейший тип функционирования нервной системы – диффузная или сетевидная нервная система. Диффузная нервная система отличается тем, что здесь имеет место изначальная дифференциация нейронов на два вида: нервные клетки, которые воспринимают сигналы внешней среды (рецепторные клетки) и нервные клетки, которые осуществляют передачу нервного импульса на клетки, выполняющие сократительные функции. Эти клетки образуют нервную сеть, которая обеспечивает простые формы поведения (реагирования), дифференциацию продуктов потребления, манипуляции ротовой областью, изменение формы организма, выделение и специфические формы передвижения.

3. От животных с сетевидной нервной системой произошли две ветви животного мира с различным строением нервной системы и различной психикой: одна ветвь вела к образованию червей и членистоногих с ганглиозным типом нервной системы, которая способна обеспечить только врожденное инстинктивное поведение.

4. Вторая ветвь вела к образованию позвоночных с трубчатым типом нервной системы. Трубчатая нервная система функционально обеспечивает достаточно высокую надежность, точность и быстроту реакций организма. Эта нервная система предназначена не только для сохранения наследственно сформированных инстинктов, но и обеспечивает научение, связанное с приобретением и использованием новой прижизненной информации (условно-рефлекторная деятельность, память, активное отражение).

Эволюция диффузной нервной системы сопровождалась процессами централизации и цефализации нервных клеток.

Централизация представляет собой процесс скопления нервных клеток, при котором отдельные нервные клетки и их ансамбли стали выполнять специфические регулятивные функции в центре и образовали центральные нервные узлы.

Цефализация – это процесс развития переднего конца нервной трубки и формирования головного мозга, связанный с тем, что нервные клетки и окончания стали специализироваться на приеме внешних раздражителей и распознавании средовых факторов. Нервные импульсы от внешних раздражителей и воздействий среды оперативно передавались в нервные узлы и центры.

В процессе саморазвития нервная система последовательно проходит критические этапы усложнения и дифференцировки, как в морфологическом, так и в функциональном отношении. Общая тенденция эволюции мозга в онтогенезе и филогенезе осуществляется по универсальной схеме: от диффузных, слабо дифференцированных форм деятельности к более специализированным, локальным формам функционирования.

На основании фактов о связи между процессами онтогенетического развития потомков и филогенеза предков был сформулирован биогенетический закон Мюллера-Геккеля: онтогенетическое (особенно зародышевое) развитие индивида сокращенно и сжато повторяет (рекапитулирует) основные этапы развития всего ряда предковых форм – филогенеза. При этом в большей степени рекапитулируют те признаки, которые развиваются в форме «надстроек» конечных стадий развития, то есть более близких предков, признаки же отдаленных предков в значительной степени редуцируются.

Развитие любой структуры в филогенезе происходило с увеличением предъявляемой нагрузки к органу или системе. Эта же закономерность наблюдается и в онтогенезе.

В пренатальном периоде у человека выделяют четыре характерных стадии развития нервной деятельности мозга:

· Первичные локальные рефлексы – это «критический» период в функциональном развитии нервной системы;

· Первичная генерализация рефлексов в форме быстрых рефлекторных реакций головы, туловища и конечностей;

· Вторичная генерализация рефлексов в виде медленных тонических движений всей мускулатуры тела;

· Специализация рефлексов, выражающаяся в координированных движениях отдельных частей тела.

В постнатальном онтогенезе также отчетливо выступают четыре последовательных стадии развития нервной деятельности:

· Безусловно-рефлекторная адаптация;

· Первичная условно-рефлекторная адаптация (формирование суммационных рефлексов и доминантных приобретенных реакций);

· Вторичная условно-рефлекторная адаптация (образование условных рефлексов на основе ассоциаций – «критический» период), с ярким проявлением ориентировочно-исследовательских рефлексов и игровых реакций, которые стимулируют образование новых условно-рефлекторных связей типа сложных ассоциаций, что является основой для внутривидовых (внутригрупповых) взаимодействий развивающихся организмов;

· Формирование индивидуальных и типологических особенностей нервной системы.

Созревание и развитие ЦНС в онтогенезе происходит по тем же закономерностям, что и развитие других органов и систем организма, в том числе и функциональных систем. Согласно теории П.К.Анохина, функциональная система – это динамическая совокупность различных органов и систем организма, формирующаяся для достижения полезного (приспособительного) результата.

Развитие головного мозга в фило- и онтогенезе идет согласно общим принципам системогенеза и функционирования.

Системогенез – это избирательное созревание и развитие функциональных систем в пренатальном и постнатальном онтогенезе. Системогенез отражает:

· развитие в онтогенезе различных по функции и локализации структурных образований, которые объединяются в полноценную функциональную систему, обеспечивающую новорожденному выживание;

· и процессы формирования и преобразования функциональных систем в ходе жизнедеятельности организма.

Принципы системогенеза:

1. Принцип гетерохронности созревания и развития структур: в онтогенезе раньше созревают и развиваются отделы головного мозга, которые обеспечивают формирование функциональных систем, необходимых для выживания организма и дальнейшего его развития;

2. Принцип минимального обеспечения: Вначале включается минимальное число структур ЦНС и других органов и систем организма. Например, нервный центр формируется и созревает раньше, чем закладывается иннервируемый им субстрат.

3. Принцип фрагментации органов в процессе антенатального онтогенеза: отдельные фрагменты органа развиваются неодновременно. Первыми развиваются те, которые обеспечивают к моменту рождения возможность функционирования некоторой целостной функциональной системы.

Показателем функциональной зрелости ЦНС является миелинизация проводящих путей, от которой зависят скорость проведения возбуждения в нервных волокнах, величина потенциалов покоя и потенциалов действия нервных клеток, точность и скорость двигательных реакций в раннем онтогенезе. Миелинизация различных путей в ЦНС происходит в таком же порядке, в каком они развиваются в филогенезе.

Общее число нейронов в составе ЦНС достигает максимума в первые 20-24 недели антенатального периода и остается относительно постоянным вплоть до зрелого возраста, лишь незначительно уменьшается в период раннего постнатального онтогенеза.

Закладка и развитие нервной системы человека

I. Стадия нервной трубки. Центральный и периферический отделы нервной системы человека развиваются из единого эмбрионального источника – эктодермы. В процессе развития зародыша она закладывается в виде так называемой нервной пластинки. Нервная пластинка состоит из группы высоких, быстро размножающихся клеток. На третьей неделе развития нервная пластинка погружается в нижележащую ткань и принимает форму желобка, края которого приподнимаются над эктодермой в виде нервных валиков. По мере роста зародыша нервный желобок удлиняется и достигает каудального конца зародыша. На 19-ый день начинается процесс смыкания валиков над желобком, в результате чего образуется длинная трубка – нервная трубка. Она располагается под поверхностью эктодермы отдельно от нее. Клетки нервных валиков перераспределяются в один слой, в результате чего образуется ганглиозная пластинка. Из нее формируются все нервные узлы соматической периферической и вегетативной нервной системы. К 24-му дню развития трубка замыкается в головной части, а сутками позже – в каудальной. Клетки нервной трубки носят название медуллобластов. Клетки ганглиозной пластинки называются ганглиобластами. Медуллобласты затем дают начало нейробластам и спонгиобластам. Нейробласты отличаются от нейронов значительно меньшим размером, отсутствием дендритов, синаптических связей и вещества Ниссля в цитоплазме.

II. Стадия мозговых пузырей. В головном конце нервной трубки после ее замыкания очень быстро образуется три расширения – первичные мозговые пузыри. Полости первичных мозговых пузырей сохраняются в мозгу ребенка и взрослого в видоизмененной форме, образуя желудочки мозга и сильвиев водопровод. Существует две стадии мозговых пузырей: стадия трех пузырей и стадия пяти пузырей.

III. Стадия формирования отделов мозга. Сначала образуются передний, средний и ромбовидный мозг. Затем из ромбовидного мозга образуются задний и продолговатый мозг, а из переднего образуются конечный мозг и промежуточный. Конечный мозг включает в себя два полушария и часть базальных ядер.

Нейроны различных отделов нервной системы и даже нейроны в пределах одного центра дифференцируются асинхронно: а) дифференцировка нейронов вегетативной нервной системы значительно отстает от таковой соматической нервной системы; б) дифференцировка симпатических нейронов несколько отстает от развития парасимпатических. Раньше всего созревают продолговатый и спинной мозг, позже развиваются ганглии ствола головного мозга, подкорковые узлы, мозжечок и кора больших полушарий.

Развитие отдельных областей мозга

1. Продолговатый мозг. На начальных этапах формирования продолговатый мозг имеет сходство со спинным мозгом. Затем в продолговатом мозге начинают развиваться ядра черепных нервов. Количество клеток в продолговатом мозге начинает уменьшаться, но их размеры увеличиваются. У новорожденного ребенка продолжается процесс уменьшения количества нейронов и увеличение из размеров. Вместе с этим увеличивается дифференцировка нейронов. У полуторагодовалого ребенка клетки продолговатого мозга организованы в четко определяемые ядра и имеют почти все признаки дифференцировки. У ребенка 7 лет нейроны продолговатого мозга неотличимы от нейронов взрослого даже по тонким морфологическим признакам.

2. Задний мозг включает в себя мост и мозжечок. Мозжечок частично развивается из клеток крыловидной пластинки заднего мозга. Клетки пластинки мигрируют и постепенно образуют все отделы мозжечка. К концу 3-его месяца клетки-зерна мигрируя, начинают преобразовываться в грушевидные клетки коры мозжечка. На 4-ом месяце внутриутробного развития появляются клетки Пуркинье. Параллельно и чуть отставая от развития клеток Пуркинье идет формирование борозд коры мозжечка. У новорожденного мозжечок лежит выше, чем у взрослого. Борозды неглубокие, слабо обрисовано древо жизни. С ростом ребенка борозды становятся глубже. До трехмесячного возраста в коре мозжечка сохраняется зародышевый слой. В возрасте от 3 месяцев до 1 года происходит активная дифференцировка мозжечка: увеличение синапсов грушевидных клеток, увеличение диаметра волокон в белом веществе, интенсивный рост молекулярного слоя коры. Дифференцировка мозжечка происходит и в более поздние сроки, что объясняется развитием двигательных навыков.

3. Средний мозг, так же как и спинной, имеет крыловидную и базальную пластинки. Из базальной пластинки к концу 3-го месяца пренатального периода развивается одно ядро глазодвигательного нерва. Крыловидная пластинка дает начало ядрам четверохолмия. Во второй половине внутриутробного развития появляются основания ножек мозга и сильвиев водопровод.

4. Промежуточный мозг образуется из переднего мозгового пузыря. В результате неравномерной пролиферации клеток образуются таламусы и гипоталамус.

5. Конечный мозг также развивается из переднего мозгового пузыря. Пузыри конечного мозга, разрастаясь за короткий промежуток времени, покрывают собой промежуточный мозг, затем средний мозг и мозжечок. Наружная часть стенки мозговых пузырей растет значительно быстрее внутренней. В начале 2-го месяца пренатального периода конечный мозг представлен нейробластами. С 3-его месяца внутриутробного развития начинается закладка коры в виде узкой полоски густо расположенных клеток. Затем идет дифференцировка: образуются слои и дифференцируются клеточные элементы. Основными морфологическими проявлениями дифференцировки нейронов коры большого мозга являются прогрессивный рост количества и ветвлений дендритов, коллатералей аксонов и, соответственно, увеличение и усложнение межнейронных связей. К 3-ему месяцу образуется мозолистое тело. С 5-го месяца внутриутробного развития в коре уже видна цитоархитектоника. К середине 6-го месяца неокортекс имеет 6 нечетко разделенных слоев. II и III слои имеют между собой четкую границу только после рождения. У плода и новорожденного нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается в белом веществе. По мере роста ребенка концентрация клеток снижается. Мозг новорожденного имеет большую относительную массу – 10% от общей массы тела. К концу полового созревания его масса составляет всего около 2% от массы тела. Абсолютная же масса мозга с возрастом увеличивается. Мозг новорожденного незрелый, причем кора больших полушарий является наименее зрелым отделом нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточный и средний мозг. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друг друга претерпевают достаточно заметные изменения. Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой – в дифференцировке нервных клеток, характерных для каждого коркового слоя. Образование шестислойной коры заканчивается к моменту рождения. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще остается не завершенной. Наиболее интенсивны дифференциация клеток и миелинизация аксонов в первые два года постнатальной жизни. К 2-летнему возрасту заканчивается формирование пирамидных клеток коры. Установлено, что именно первые 2-3 года жизни ребенка являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. К 4-7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10-12 годам. Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других созревают корковые концы обонятельного анализатора, находящиеся в древней, старой и межуточной коре. В новой коре прежде всего развиваются корковые концы двигательного и кожного анализаторов, а также лимбическая область, связанная с интерорецепторами, и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором. Наконец, в последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти.

Миелинизация нервных волокон необходима:

1) для уменьшения проницаемости клеточных мембран,

2) совершенствования ионных каналов,

3) увеличения потенциала покоя,

4) увеличения потенциала действия,

5) повышения возбудимости нейронов.

Процесс миелинизации начинается еще в эмбриогенезе. Миелинизация черепных нервов осуществляется в течение первых 3-4 месяцев и заканчивается к 1 году или 1 году и 3 месяцам постнатальной жизни. Миелинизация спинальных нервов завершается несколько позднее – к 2-3 годам. Полная миелинизация нервных волокон завершается в возрасте 8-9 лет. Миелинизация филогенетически более древних путей начинается раньше. Нервные проводники тех функциональных систем, которые обеспечивают выполнение жизненно важных функций миелинизируются быстрее. Созревание структур ЦНС контролируется гормонами щитовидной железы.

Нарастание массы мозга в онтогенезе

Масса головного мозга новорожденного составляет 1/8 массы тела, то есть около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды и извилины, но глубина их мала. К 9-месячному возрасту первоначальная масса мозга удваивается и к концу 1-го года жизни составляет 1/11 – 1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам она составляет 1/13-1/14 массы тела. К 20 годам первоначальная масса мозга увеличивается в 4-5 раз и составляет у взрослого человека всего 1/40 массы тела.

Функциональное созревание

В спинном мозге, стволе и гипоталамусе у новорожденных обнаруживают ацетилхолин, γ-аминомасляную кислоту, серотонин, норадреналин, дофамин, однако их количество составляет лишь 10-50% от содержания у взрослых. В постсинаптических мембранах нейронов уже к моменту рождения появляются специфические для перечисленных медиаторов рецепторы. Электрофизиологические характеристики нейронов имеют ряд возрастных особенностей. Так, например, у новорожденных ниже потенциал покоя нейронов; возбуждающие постсинаптические потенциалы имеют большую длительность, чем у взрослых, более продолжительную синаптическую задержку, в итоге нейроны новорожденных и детей первых месяцев жизни менее возбудимы. Кроме этого постсинаптическое торможение нейронов новорожденных менее активно, так как мало еще тормозных синапсов на нейронах. Электрофизиологические характеристики нейронов ЦНС у детей приближаются к таковым у взрослых в возрасте 8-9 лет. Стимулирующую роль в ходе созревания и функционального становления ЦНС играют афферентные потоки импульсов, поступающие в структуры мозга при действии внешних раздражителей.


Поведение: эволюционный подход Курчанов Николай Анатольевич

8.2. Эволюция нервной системы

8.2. Эволюция нервной системы

Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их функционирования удивительно сходен у представителей самых разных таксономических групп. Филогенетические преобразования нервной системы часто не укладываются в рамки традиционных представлений.

Наиболее простой вариант нервной системы (по диффузному типу) наблюдается у кишечнополостных (тип Cnidaria ). Их нервные клетки относительно равномерно распределены в мезоглее. Однако даже у этих животных у подвижных форм наблюдается концентрация нервных клеток.

Более упорядоченную нервную систему мы встречаем в типе плоских червей (тип Plathelminthes ). Нейроны переднего конца их тела концентрируются в головной ганглий, от которого отходят два или четыре нервных ствола. Но, возможно, самый древний тип нервной системы двусторонне-симметричных животных сохранился у нематод (тип Nematoda ). У них не нервные, а мышечные клетки формируют отростки для нервно-мышечного соединения. Сама нервная система нематод представлена четырьмя стволами, соединенными окологлоточным нервным кольцом.

Более сложную структуру нервной системы имеют кольчатые черви (тип Annelida ) с брюшной нервной цепочкой из ганглиев. Окологлоточное нервное кольцо включает в себя самый крупный головной ганглий. Этот вариант нервной системы оказался столь удачным, что сохранился у всех вышестоящих групп беспозвоночных.

Членистоногие (тип Arthropoda ) и моллюски (тип Mollusca ) являются самыми многочисленными типами животного царства, что показывает успех их эволюции. У них наблюдается прогрессирующая концентрация нейронов в головном отделе, параллельно с усложняющимся поведением. Ганглии, как правило, соединены или сливаются. Нервные пути, соединяющие разные отделы нервной системы, в нейрофизиологии называются комиссурами.

У представителей насекомых (класс Insecta ) из членистоногих и головоногих (класс Cephalopoda ) из моллюсков нервная система и поведение достигают исключительной сложности и представляют собой вершину организации в мире беспозвоночных. У насекомых в головном ганглии выделяют грибовидные тела – функциональные аналоги ассоциативных структур мозга позвоночных. Такую же роль выполняют центральные ганглии головоногих, причем их относительный размер весьма велик. Недаром крупных головоногих моллюсков называют «приматами моря».

У этих же представителей наиболее четко можно наблюдать реализацию двух стратегий поведения в эволюции беспозвоночных – ригидности и пластичности.

Ригидность представляет собой эволюционную направленность к генетически жестко программируемым действиям. Она нашла свое наиболее законченное выражение в поведении насекомых. Несмотря на всю сложность поведения, их миниатюрная нервная система имеет готовый набор программ. Так, количество нейронов у пчелы (Apis melifera) всего 950 000, что составляет ничтожную долю от их количества у человека (рис. 8.1). Но это количество позволяет ей осуществлять сложнейшие модели поведения практически без обучения. Большое число исследований посвящено изучению механизмов навигации у насекомых (в том числе пчел ), их уникальной способности находить нужный путь. Эта способность базируется на использовании поляризационного света как компаса, что позволяет зрительная система насекомых.

Некоторые авторы рассматривали насекомых как четкие «машины» (Мак-Фарленд Д., 1988). Однако в этологических экспериментах последних лет были продемонстрированы способности пчел к самым разнообразным формам научения. Даже крошечная мушка дрозофила (ее головной ганглий содержит в 50 раз меньше нейронов, чем у пчелы) способна к научению.

Пластичность подразумевает возможность коррекции генетически детерминированного поведения. Из беспозвоночных эта способность наиболее четко наблюдается у представителей головоногих моллюсков. Так, осьминог (Octopus dofleini ) способен к весьма сложным формам научения (рис. 8.2). Концентрация нейронов осьминога формирует самый крупный и сложный ганглий беспозвоночных (Wells M., 1966). Наиболее важную роль в нем выполняют зрительные доли.

Рис. 8.2 . Осьминог способен к весьма сложным формам научения

Поскольку в направлении пластичности шла эволюция нервной системы позвоночных, особенно млекопитающих, то этот вариант обычно преподносится как более прогрессивный. Однако в природе все за счет чего-то – любое достоинство одновременно является слабостью. Нервная система насекомых позволяет хранить огромное количество поведенческих программ в крошечном объеме нервных ганглиев с эффективной системой гормональной регуляции. Действительно, за компактность и экономичность своей нервной системы они заплатили отсутствием индивидуальности. «Зарегламентированность» мешает даже высокоорганизованным насекомым эффективно корректировать свое поведение. Но и «сверхпластичный» мозг человека оказался таким эволюционным приобретением, за которое ему пришлось заплатить слишком высокую цену. Об этом мы узнаем в последующих главах.

Следует помнить, что ни одна структура не хранит столько тайн, как нервная система. Подчеркнем, что сложность поведения нельзя напрямую связывать со строением нервной системы. У представителей с самой «примитивной» нервной системой иногда можно наблюдать исключительно сложное поведение. В некоторых исследованиях перепончатокрылые, особенно муравьи (рис. 8.3), показали феноменальные интеллектуальные способности (Резникова Ж. И., 2005). На чем они базируются – пока остается загадкой. И наоборот, жесткость генетических рамок в поведении оказалась значительно выше, чем предполагалось ранее, даже у самых «пластичных» видов, в том числе и у человека.

Рис. 8.3. Обладают ли муравьи когнитивными способностями?

Понятия ригидности и пластичности следует рассматривать лишь как полюса единого континуума, аналогичного континууму генетической детерминации поведения. Причем у одного вида разные аспекты поведения могут характеризоваться разной степенью пластичности.

В заключение этого раздела мне хотелось бы коснуться вопроса терминологии. Многие авторы называют головным мозгом головные ганглии насекомых, головоногих, высших ракообразных. Более того, термин «головной мозг» иногда употребляется и в отношении головных ганглиев других беспозвоночных. Хотелось бы выразить несогласие с таким подходом. Но не потому, что беспозвоночные «не достойны» столь «высокого титула» для своих нервных центров. Высшие беспозвоночные демонстрируют не менее совершенное поведение, чем многие позвоночные. Мы уже отметили, что не стоит однозначно решать вопрос прогрессивности. Я предлагаю оставить термин «мозг» только для позвоночных, исходя исключительно из структурных принципов организации нервной системы как производной нервной трубки.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30-60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с

Из книги Род человеческий автора Барнетт Энтони

Болезни нервной системы Л. В. Панышева Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при

Из книги Основы психофизиологии автора Александров Юрий

Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к

Из книги Антропология и концепции биологии автора

Механизм действия нервной системы Теперь, вероятно, следует присмотреться к механизму действия этой сложной структуры, начав с простого примера. Если направить в глаза яркий свет, зрачок человека сужается. Эта реакция зависит от целой серии событий, которые начинаются в

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их

Из книги автора

§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного

Из книги автора

§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью

Из книги автора

§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае

Из книги автора

§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых - трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать

Из книги автора

§ 47. Особенности нервной системы млекопитающих Центральная нервная система у млекопитающих развита больше, чем у какой-либо другой группы животных. Диаметр спинного мозга обычно несколько больше, чем у других тетрапод (см. рис. III-18, а). Он имеет два утолщения в грудном и

Из книги автора

Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей

Из книги автора

8.1. Принципы функционирования нервной системы Нервная система включает в себя нервную ткань и вспомогательные элементы, которые являются производными всех других тканей. В основе функционирования нервной системы лежит рефлекторная деятельность. Понятие рефлекса

Основные этапы эволюции ЦНС.

Нервная система высших животных и человека представляет собой результат длительного развития в процессе приспособительной эволюции живых существ. Развитие центральной нервной системы происходило, прежде всего, в связи с усовершенствованием восприятия и анализа воздействий из внешней среды. Вместе с тем совершенствовалась и способность отвечать на эти воздействия координированной, биологически целесообразной реакцией. Развитие нервной системы шло также в связи с усложнением строения организмов и необходимостью согласования и регуляции работы внутренних органов.

У простейших одноклеточных организмов (амеба) нервной системы еще нет, а связь с окружающей средой осуществляется при помощи жидкостей, находящихся внутри и вне организма, - гуморальная или донервная, форма регуляции .

В дальнейшем, когда возникает нервная система, появляется и другая форма регуляции - нервная . По мере развития она все больше подчиняет себе гуморальную, так что образуется единая нейрогуморальная регуляция при ведущей роли нервной системы. Последняя в процессе филогенеза проходит ряд основных этапов.

I этап - сетевидная нервная система . На этом этапе (кишечнополостные) нервная система, например гидры, состоит из нервных клеток, многочисленные отростки которых соединяются друг с другом в разных направлениях, образуя сеть, диффузно пронизывающую все тело животного. При раздражении любой точки тела возбуждение разливается по всей нервной сети и животное реагирует движением всего тела. Диффузная нервная сеть не разделена на центральный и периферический отделы и может быть локализована в эктодерме и энтодерме.

II этап - узловая нервная система . На этом этапе (беспозвоночные) нервные клетки сближаются в отдельные скопления или группы, причем из скоплений клеточных тел получаются нервные узлы - центры, а из скоплений отростков - нервные стволы - нервы. При этом в каждой клетке число отростков уменьшается и они получают определенное направление. Соответственно сегментарному строению тела животного, например у кольчатого червя, в каждом сегменте имеются сегментарные нервные узлы и нервные стволы. Последние соединяют узлы в двух направлениях: поперечные стволы связывают узлы данного сегмента, а продольные - узлы разных сегментов. Благодаря этому нервные импульсы, возникающие в какой-либо точке тела, не разливаются по всему телу, а распространяются по поперечным стволам в пределах данного сегмента. Продольные стволы связывают нервные сегменты в одно целое. На головном конце животного, который при движении вперед соприкасается с различными предметами окружающего мира, развиваются органы чувств, в связи с чем головные узлы развиваются сильнее остальных, давая начало развитию будущего головного мозга. Отражением этого этапа является сохранение у человека примитивных черт (разбросанность на периферии узлов и микроганглиев) в строении вегетативной нервной системы.

III этап - трубчатая нервная система. На первоначальной ступени развития животных особенно большую роль играл аппарат движения, от совершенства которого зависело основное условие существования животного - питание (передвижение в поисках пищи, захватывание и поглощение ее). У низших многоклеточных развился перистальтический способ передвижения, что связано с непроизвольной мускулатурой и ее местным нервным аппаратом. На более высокой ступени перистальтический способ сменяется скелетной моторикой, т. е. передвижением с помощью системы жестких рычагов - поверх мышц (членистоногие) и внутри мышц (позвоночные). Следствием этого явилось образование произвольной (скелетной) мускулатуры и центральной нервной системы, координирующей перемещение отдельных рычагов моторного скелета.

Такая центральная нервная система у хордовых (ланцетник) возникла в виде метамерно построенной нервной трубки с отходящими от нее сегментарными нервами ко всем сегментам тела, включая и аппарат движения, - туловищный мозг. У позвоночных и человека туловищный мозг становится спинным. Таким образом, появление туловищного мозга связано с усовершенствованием в первую очередь моторного аппарата животного. Уже у ланцетника имеются и рецепторы (обонятельный, световой). Дальнейшее развитие нервной системы и возникновение головного мозга обусловлено преимущественно усовершенствованием рецепторного аппарата.

Так как большинство органов чувств возникают на том конце тела животного, который обращен в сторону движения, т. е. вперед, то для восприятия поступающих через них внешних раздражений развивается передний конец туловищного мозга и образуется головной мозг, что совпадает с обособлением переднего конца тела в виде головы - цефализация.

На первом этапе развития головной мозг состоит из трех отделов: заднего, среднего и переднего, причем из этих отделов в первую очередь (у низших рыб) особенно развивается задний, или ромбовидный мозг. Развитие заднего мозга происходит под влиянием рецепторов акустики и гравитации (рецепторы VIII пары черепных нервов имеющих ведущее значение для ориентировки в водной среде). В процессе дальнейшей эволюции задний мозг дифференцируется на продолговатый мозг и собственно задний мозг, из которого развиваются мозжечок и мост.

В процессе приспособления организма к окружающей среде путем изменения обмена веществ в заднем мозге, как наиболее развитом на этом этапе отделе центральной нервной системы, возникают центры управления жизненно важными процессами жизни, связанными, в частности, с жаберным аппаратом (дыхание, кровообращение, пищеварение и др.). Поэтому в продолговатом мозге возникают ядра жаберных нервов (группа X пары - блуждающего нерва). Эти жизненно важные центры дыхания и кровообращения остаются в продолговатом мозге человека. Развитие вестибулярной системы, связанной с полукружными каналами и рецепторами боковой линии, возникновение ядер блуждающего нерва и дыхательного центра создают основу для формирования заднего мозга.

На втором этапе (еще у рыб) под влиянием зрительного рецептора особенно развивается средний мозг. На дорсальной поверхности нервной трубки развивается зрительный рефлекторный центр - крыша среднего мозга, куда приходят волокна зрительного нерва.

На третьем этапе , в связи с окончательным переходом животных из водной среды в воздушную, усиленно развивается обонятельный рецептор, воспринимающий содержащиеся в воздухе химические вещества, сигнализирующие о добыче, опасности и других жизненно важных явлениях окружающей природы.



Под влиянием обонятельного рецептора развивается передний мозг, prosencephalon, вначале имеющий характер чисто обонятельного мозга. В дальнейшем передний мозг разрастается и дифференцируется на промежуточный и конечный. В конечном мозге, как в высшем отделе центральной нервной системы, появляются центры для всех видов чувствительности. Однако нижележащие центры не исчезают, а сохраняются, подчиняясь центрам вышележащего этажа. Следовательно, с каждым новым этапом развития головного мозга возникают новые центры, подчиняющие себе старые. Происходят как бы передвижение функциональных центров к головному концу и одновременное подчинение филогенетически старых зачатков новым. В результате центры слуха, впервые возникшие в заднем мозге, имеются также в среднем и переднем, центры зрения, возникшие в среднем, имеются и в переднем, а центры обоняния - только в переднем мозге. Под влиянием обонятельного рецептора развивается небольшая часть переднего мозга, называемая обонятельным мозгом, который покрыт корой серого вещества - старой корой.

Совершенствование рецепторов приводит к прогрессивному развитию переднего мозга, который постепенно становится органом, управляющим всем поведением животного. Различают две формы поведения животного: инстинктивное, основанное на видовых реакциях (безусловные рефлексы), и индивидуальное, основанное на опыте индивида (условные рефлексы). Соответственно этим двум формам поведения в конечном мозге развиваются 2 группы центров серого вещества: базальные ганглии , имеющие строение ядер (ядерные центры), и кора серого вещества , имеющая строение сплошного экрана (экранные центры). При этом вначале развивается «подкорка», а затем кора. Кора возникает при переходе животного от водного к наземному образу жизни и обнаруживается отчетливо у амфибий и рептилий. Дальнейшая эволюция нервной системы характеризуется тем, что кора головного мозга все более подчиняет себе функции всех нижележащих центров, происходит постепенная кортиколизация функций . Рост новой коры у млекопитающих происходит настолько интенсивно, что старая и древняя кора оттесняется в медиальном направлении к мозговой перегородке. Бурный рост коры компенсируется формированием складчатости.

Необходимой структурой для осуществления высшей нервной деятельности является новая кора , расположенная на поверхности полушарий и приобретающая в процессе филогенеза 6-слойное строение. Благодаря усиленному развитию новой коры конечный мозг у высших позвоночных превосходит все остальные отделы головного мозга, покрывая их, как плащом. Развивающийся новый мозг оттесняет в глубину старый мозг (обонятельный), который как бы свертывается, но остается по-прежнему обонятельным центром. В результате плащ, т. е. новый мозг, резко преобладает над остальными отделами мозга - старым мозгом.

Рис. 1. Развитие конечного мозга у позвоночных (по Эддингеру). I - мозг человека; II - кролика; III - ящерицы; IV - акулы. Черным обозначена новая кора, пунктиром - старая обонятельная часть¸

Итак, развитие головного мозга совершается под влиянием развития рецепторов, чем и объясняется то, что самый высший отдел головной: мозга - кора (серое вещество) представляет собой совокупность корковых концов анализаторов, т. е. сплошную воспринимающую (рецепторную) поверхность.

Дальнейшее развитие мозга у человека подчиняется иным закономерностям, связанным с его социальной природой. Кроме естественных органов тела, имеющихся и у животных, человек начал пользоваться орудиями труда. Орудия труда, ставшие искусственными органами, дополнили естественные органы тела и составили техническое «вооружение» человека. С помощью этого «вооружения» человек приобрел возможность не только приспосабливаться самому к природе, как это делают животные, но и приспосабливать природу к своим нуждам. Труд, как уже отмечалось, явился решающим фактором становления человека, а в процессе общественного труда возникло необходимое для общения людей средство - речь. «Сначала труд, а затем и вместе с ним членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг, который, при всем своем сходстве с обезьяньим, далеко превосходит его по величине и совершенству». (К. Маркс, Ф. Энгельс). Это совершенство обусловлено максимальным развитием конечного мозга, особенно его коры - новой коры.

Кроме анализаторов, воспринимающих различные раздражения внешнего мира и составляющих материальный субстрат конкретно-наглядного мышления, свойственного животным (первая сигнальная система отражения действительности, но И.П.Павлову), у человека возникла способность абстрактного, отвлеченного мышления с помощью слова, сначала слышимого (устная речь) и позднее видимого (письменная речь). Это составило вторую сигнальную систему, по И. П. Павлову, которая в развивающемся животном мире явилась «чрезвычайной прибавкой к механизмам нервной деятельности» (И.П.Павлов). Материальным субстратом второй сигнальной системы стали поверхностные слои новой коры. Поэтому кора конечного мозга достигает наивысшего развития у человека.

Таким образом, эволюция нервной системы сводится к прогрессивному развитию конечного мозга, который у высших позвоночных и особенно у человека в связи с усложнением нервных функций достигает огромных размеров. В процессе развития наблюдается тенденция к перемещению ведущих интегративных центров мозга в ростральном направлении от среднего мозга и мозжечка к переднему мозгу. Однако эту тенденцию нельзя абсолютизировать, так как мозг представляет собой целостную систему, в которой стволовые части играют важную функциональную роль на всех этапах филогенетического развития позвоночных. Кроме того, начиная с круглоротых в переднем мозгу обнаруживаются проекции различных сенсорных модальностей, свидетельствующие об участии этого отдела мозга в управлении поведением уже на ранних стадиях эволюции позвоночных.

Эмбриогенез ЦНС.

Онтогенез (оntogenesis; греч. оп, ontos - сущее + genesis - зарождение, происхождение) - процесс индивидуального развития организма от момента его зарождения (зачатия) до смерти. Выделяют: эмбриональный (зародышевый, или пренатальный) - время от оплодотворения до рождения и постэмбриональный (послезародышевый, или постнатальный) - от рождения до смерти, периоды развития.

Нервная система человека развивается из эктодермы - наружного зародышевого листка. В конце второй недели эмбрионального развития в дорсальных отделах туловища обособляется участок эпителия – нервная (медуллярная) пластинка , клетки которой интенсивно размножаются и дифференцируются. Ускоренный рост боковых отделов нервной пластинки приводит к тому, что ее края сначала приподнимаются, затем сближаются и, наконец, в конце третьей недели срастаются, формируя первичную мозговую трубку . После чего мозговая трубка постепенно погружается в мезодерму.

Рис.1. Формирование нервной трубки.

Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека. Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев (нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой - ганглиозную пластинку. Последняя служит исходным материалом для клеток чувствительных нервных узлов (спинно- и черепномозговых ганглиев) и узлов вегетативной нервной системы, иннервирующей внутренние органы.

Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается. В этой стадии развития в ней можно выделить три слоя: внутренний (в дальнейшем из него сформируется эпендимальная выстилка), среднего слоя (серое вещество мозга, клеточные элементы этого слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть - в глиальные клетки) и наружного слоя (белое вещество мозга).

Рис.2. Этапы развитияголовного мозга человека.

Нервная трубка развивается неравномерно. Вследствие интенсивного развития ее передней части начинает формироваться головной мозг, образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. В результате у четырехнедельных эмбрионов головной мозг состоит из трех мозговых пузырей (передний, средний и ромбовидный мозг). На пятой неделе передний мозговой пузырь подразделяется на конечный мозг и промежуточный, а ромбовидный – на задний и продолговатый (стадия пяти мозговых пузырей ). Одновременно нервная трубка образует несколько изгибов в сагитальной плоскости.

Из недифференцированной задней части медуллярной трубки развивается спинной мозг со спинно-мозговым каналом. Из полостей эмбрионального головного мозга происходит формирование желудочков мозга . Полость ромбовидного мозга преобразуется в IY желудочек, полость среднего мозга формирует водопровод мозга, полость промежуточного мозга образует III желудочек мозга, а полость переднего мозга - имеющие сложную конфигурацию боковые желудочки мозга.

После формирования пяти мозговых пузырей в структурах нервной системы происходят сложные процессы внутренней дифференцировки и роста различных отделов мозга. На 5-10 неделе наблюдается рост и дифференцировка конечного мозга: образуются корковые и подкорковые центры, происходит расслоение коры. Образуются мозговые оболочки. Спинной мозг приобретает дефинитивное состояние. На 10-20 неделе завершаются процессы миграции, формируются все основные отделы головного мозга, на первый план выходят процессы дифференцировки. Наиболее активно развивается конечный мозг. Полушария головного мозга становятся самой крупной частью нервной системы. На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м - центральная борозда и другие главные борозды, в последующие месяцы - второстепенные и после рождения - самые мелкие борозды.

В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов. К концу 4-го месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствуются о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем - на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Формирование функции и также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия.

К моменту рождения ребенка нервные клетки достигают зрелости и уже неспособны к делению. В связи с этим в дальнейшем их число не увеличивается. В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела - коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни. Еще один важный этап в онтогенезе это период полового созревания, когда проходит и половая дифференцировка мозга.

В течение всей жизни человека мозг активно изменяется, приспосабливаясь к условиям внешней и внутренней среды, часть этих изменений носит генетически запрограммированный характер, часть является относительно свободной реакцией на условия существования. Онтогенез нервной системы заканчивается только со смертью человека.



Похожие статьи