Какие четырехугольники могут быть вписаны в окружность. Вписанные и описанные четырехугольники

14.10.2019

1 . Сумма диагоналей выпуклого четырёхугольника больше суммы его двух противоположных сторон.

2 . Если отрезки, соединяющие середины противоположных сторон четырёхугольника

а) равны, то диагонали четырёхугольника перпендикулярны;

б) перпендикулярны, то диагонали четырёхугольника равны.

3 . Биссектрисы углов при боковой стороне трапеции пересекаются на её средней линии.

4 . Стороны параллелограмма равны и . Тогда четырёхугольник, образованный пересечениями биссектрис углов паралле­лограмма, является прямоугольником, диагонали которого равны .

5 . Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований трапеции, равен их полуразности.

6 . На сторонах АВ и AD параллелограмма ABCD взяты точки М и N так, что прямые МС и NC делят параллелограмм на три равновеликие части. Найдите MN, если BD=d.

7 . Отрезок прямой, параллельной основаниям трапеции, заключённый внутри трапеции, разбивается ее диагоналями на три части. Тогда отрезки, прилегающие к боковым сторонам, равны между собой.

8 . Через точку пересечения диагоналей трапеции с основаниями и проведена прямая, параллельная основаниям. Отрезок этой прямой, заключенный между боковыми сторонами трапеции, равен .

9 . Трапеция разделена прямой, параллельной её основаниям, равным и , на две равновеликие трапеции. Тогда отрезок этой прямой, заключённый между боковыми сторонами, равен .

10 . Если выполняется одно из следующих условий, то четыре точки А, В, С и D лежат на одной окружности.

а) CAD=CBD = 90°.

б) точки А и В лежат по одну сторону от прямой CD и угол CAD равен углу CBD.

в) прямые АС и BD пересекаются в точке О и О А ОС=ОВ OD.

11 . Прямая, соединяющая точку Р пересечения диагоналей четырехугольника ABCD с точкой Q пересечения прямых АВ и CD, делит сторону AD пополам. Тогда она делит пополам и сторону ВС.

12 . Каждая сторона выпуклого четырёхугольника поделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками. Тогда эти отрезки делят друг друга на три равные части.

13 . Две прямые делят каждую из двух противоположных сторон выпуклого четырёхугольника на три равные части. Тогда между этими прямыми заключена треть площади четырёхугольника.

14 . Если в четырёхугольник можно вписать окружность, то отрезок, соединяющий точки, в которых вписанная окружность касается противоположных сторон четырёхугольника, проходит через точку пересечения диагоналей.

15 . Если суммы противоположных сторон четырёхугольника равны, то в такой четырёхугольник можно вписать окружность.

16. Свойства вписанного четырёхугольника со взаимно перпендикулярными диагоналями. Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали АС и BD взаимно перпендикулярны и пересекаются в точке Р. Тогда

а) медиана треугольника АРВ перпендикулярна стороне CD;

б) ломаная АОС делит четырёхугольник ABCD на две равновеликие фигуры;

в) АВ 2 +CD 2 =4R 2 ;

г) АР 2 +ВР 2 +СР 2 +DP 2 = 4R 2 и АВ 2 +ВС 2 +CD 2 +AD 2 =8R 2 ;

д) расстояние от центра окружности до стороны четырёхугольника вдвое меньше противоположной стороны.

е) если перпендикуляры, опущенные на сторону AD из вершин В и С, пересекают диагонали АС и BD в точках Е и F, то BCFE - ромб;

ж) четырёхугольник, вершины которого - проекции точки Р на стороны четырёхугольника ABCD, - и вписанный, и описанный;

з) четырёхугольник, образованный касательными к описанной окружности четырёхугольника ABCD, проведёнными в его вершинах, можно вписать в окружность.

17 . Если a, b, c, d - последовательные стороны четырёхугольника, S - его площадь, то , причем равенство имеет место только для вписанного четырёхугольника, диагонали которого взаимно перпендикулярны.

18 . Формула Брахмагупты. Если стороны вписанного четырехугольника равны a, b, с и d, то его площадь S может быть вычислена по формуле ,

где - полупериметр четырехугольника.

19 . Если четырёхугольник со сторонами а , b, с, d можно вписать и около него можно описать окружность, то его площадь равна .

20 . Точка Р расположена внутри квадрата ABCD, причем угол PAB равен углу РВА и равен 15°. Тогда треугольник DPC - равносторонний.

21 . Если для вписанного четырёхугольника ABCD выполнено равенство CD=AD+ВС, то биссектрисы его углов А и В пересекаются на стороне CD.

22 . Продолжения противоположных сторон АВ и CD вписанного четырёхугольника ABCD пересекаются в точке М, а сторон AD и ВС - в точке N. Тогда

а) биссектрисы углов AMD и DNC взаимно перпендикулярны;

б) прямые МQ и NQ пересекают стороны четырёхугольника в вер­шинах ромба;

в) точка пересечения Q этих биссектрис лежит на отрезке, соеди­няющем середины диагоналей четырёхугольника ABCD.

23 . Теорема Птолемея. Сумма произведений двух пар противопо­ложных сторон вписанного четырёхугольника равна произведению его диагоналей.

24 . Теорема Ньютона. Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

25 . Теорема Монжа. Прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

27 . Четыре круга, построенных на сторонах выпуклого четырёхугольника как на диаметрах, покрывают весь четырёхугольник.

29 . Два противоположных угла выпуклого четырёхугольника - тупые. Тогда диагональ, соединяющая вершины этих углов, меньше другой диагонали.

30. Центры квадратов, построенных на сторонах параллелограмма вне его, сами образуют квадрат.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

ВПИСАННЫЕ И ОПИСАННЫЕ МНОГОУГОЛЬНИКИ,

§ 106. СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЁХУГОЛЬНИКОВ.

Теорема 1. Сумма противоположных углов вписанного четырёхугольника равна 180° .

Пусть в окружность с центром О вписан четырёхугольник ABCD (черт. 412). Требуется доказать, что / А + / С = 180° и / В + / D = 180°.

/ А, как вписанный в окружность О, измеряется 1 / 2 BCD.
/ С, как вписанный в ту же окружность, измеряется 1 / 2 BAD.

Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т. е. имеют 360°.
Отсюда / А + / С = 360°: 2 = 180°.

Аналогично доказывается, что и / В + / D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов А и С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180° .

Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.

Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно
/ А + / С = 180° и / В + / D = 180° (черт. 412).

Докажем, что около такого четырёхугольника можно описать окружность.

Доказательство . Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?

Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.

Допустим, что вершина окажется внутри круга и займёт положение D" (черт. 413). Тогда в четырёхугольнике ABCD" будем иметь:

/ В + / D" = 2d .

Продолжив сторону AD" до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме

/ B + / Е = 2d .

Из этих двух равенств следует:

/ D" = 2d - / B;
/ E = 2d - / B;

/ D" = / E,

но этого быть не может, так как / D", как внешний относительно треугольника CD"E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.

Так же доказывается, что вершина D не может занять положение D" вне круга (черт. 414).

Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.

Следствия. 1. Вокруг всякого прямоугольника можно описать окружность.

2. Вокруг равнобедренной трапеции можно описать окружность.

В обоих случаях сумма противоположных углов равна 180°.

Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (черт. 415), т. е. стороны его АВ, ВС, CD и DA - касательные к этой окружности.

Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки (§ 75), имеем:

АР = АК;
ВР = ВМ;
DN = DK;
CN = СМ.

Сложим почленно эти равенства. Получим:

АР + ВР + DN + CN = АК + ВМ +DK + СМ,

т. е. АВ + CD = AD + ВС, что и требовалось доказать.

Упражнения.

1. Во вписанном четырёхугольнике два противоположных угла относятся как 3: 5,
а другие два относятся как 4: 5. Определить величину этих углов.

2. В описанном четырёхугольнике сумма двух противоположных сторон равна 45 см. Остальные две стороны относятся как 0,2: 0,3. Найти длину этих сторон.

Определение 1. Четырехугольником называется фигура, состоящая из четырех точек (вершины), никакие три из которых не лежат на одной прямой, и четырех последовательно соединяющих их непересекающихся отрезков (стороны).
Определение 2. Соседними называют вершины, которые являются концами одной стороны.
Определение 3. Вершины, не являющиеся соседними, называют противолежащими.
Определение 4. Отрезки, соединяющие противоположные вершины четырехугольника, называются его диагоналями.
Теорема 1. Сумма углов четырехугольника равна 360 о.
Действительно, поделив четырехугольник диагональю на два треугольника, получаем, что сумма его углов равна сумме углов этих двух треугольников. Зная, что сумма углов треугольника равна 180 о, получаем искомое: 2 * 180 о =360 о
Определение d1. Описанный четырёхугольник - это четырёхугольник, все стороны которого касаются некоторой окружности. Напомним, что понятие стороны, касающейся окружности: окружность считается касающейся данной стороны, если она касается прямой, содержащей эту сторону, и точка касания лежит на этой стороне.
Определение d2. Вписанный четырехугольник - это четырёхугольник, все вершины которого принадлежат некоторой окружности.
Теорема 2. У любого четырехугольника, вписанного в окружность, суммы пар противоположных углов равны 180 о.
Углы А и С оба опираются на дугу BD только с разных сторон, то есть охватывают всю окружность, а сама окружность - это дуга величиной в 360 о, но мы знаем теоремму, которая твердит, что величина вписанного угла равна половине угловой величины дуги, на которую он опирается, поэтому можем утвердить, что сумма этих углов (А и С в частности) равна 180 о. Тем же способом можно жоказать эту теорему и для другой пары углов.
Теорема 3. Если в четырехугольник можно вписать окружность, то суммы длин его противоположных сторон равны.
Для доказательства этой теоремы воспользуемся теоремой из темы круг и окружность , которая гласит: Отрезки касательных, проведенных из одной точки к окружности, равны, т.е. ВК=ВР, СР=СН, DH=DT и АТ=АК. Суммируем стороны АВ и CD: AB+CD=(AK+KB)+(DH+HC)=AT+BP+DT+CP=(AT+TD)+(BP+PC)=AD+BC, ч.т.д.

Для теорем 2 и 3 существуют обратные. Запишем их соответственно:

Теорема 4. Около четырехугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равны 180 градусам
Теорема 5. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин противоположных сторон равны.

Доказательство: Пусть ABCD - данный четырехугольник, и него AB + CD = AD + BC. Проведем биссектрисы его углов A и D. Эти биссектрисы непараллельны, а значит, пересекаются в некоторой точке O. Опустим из точки O на стороны AB, AD и CD перпендикуляры OK, OL и OM. Тогда OK=OL, и OL=OM, а значит, окружность с центром в точке O и радиусом OK касается сторон AB, AD и CD данного четырёхугольника. Проведём из точки B касательную к этой окружности. Пусть эта касательная пересекает прямую CD в точке P. Тогда ABPD - описанный четырёхугольник. Следовательно, по свойству описанного четырёхугольника, AB + DP = AD + BP. Также, по условию, AB+ CD = AD + BC. Следовательно, BP + PC = BC, а значит, по неравенству треугольника, точка P лежит на отрезке BC. Следовательно, прямые BP и BC совпадают, а значит, прямая BC касается окружности с центром в точке O, то есть ABCD - описанный четырёхугольник по определению. Теорема доказана.
Теорема 6. Площадь четырехугольника равна половине произведения его диагоналей и синуса угла между ними.

Доказательство: Пусть ABCD - данный четырёхугольник. Пусть также O - точка пересечения диагоналей. Тогда
S ABCD = S ABO + S BCO +S CDO + S DAO =
= 1/2(AO·BO·sin∠ AOB + BO·CO·sin∠ BOC +
+ CO·DO·sin∠ COD + DO·AO·sin∠ AOD) =
= 1/2·sin∠ BOC·(AO + CO)·(BO + DO) =
= 1/2·sin∠ BOC·AC·BD.
Теорема доказана.
Теорема d1. (Вариньона) Четырёхугольник с вершинами в серединах сторон любого четырёхугольника есть параллелограмм, причём площадь этого параллелограмма равна половине площади исходного четырёхугольника.

Доказательство: Пусть ABCD - данный четырёхугольник, а K, L, M и N - середины его сторон. Тогда KL - средняя линия треугольника ABC, а значит, KL параллельно AC. Также LM параллельно BD, MN параллельно AC, а NK параллельно BD. Следовательно, KL параллельно MN, LM параллельно KN. Значит, KLMN - параллелограмм. Площадь этого параллелограмма - KL·KN·sin∠ NKL =
1/2·AC·BD·sin∠ DOC = 1/2S ABCD .
Теорема доказана.



Похожие статьи