Степени и корни степенные. Степенная функция и корни - определение, свойства и формулы

26.09.2019

В этой статье мы введем понятие корня из числа . Будем действовать последовательно: начнем с квадратного корня, от него перейдем к описанию кубического корня, после этого обобщим понятие корня, определив корень n-ой степени. При этом будем вводить определения, обозначения, приводить примеры корней и давать необходимые пояснения и комментарии.

Квадратный корень, арифметический квадратный корень

Чтобы понять определение корня из числа, и квадратного корня в частности, нужно иметь . В этом пункте мы часто будем сталкиваться со второй степенью числа - квадратом числа.

Начнем с определения квадратного корня .

Определение

Квадратный корень из числа a - это число, квадрат которого равен a .

Чтобы привести примеры квадратных корней , возьмем несколько чисел, например, 5 , −0,3 , 0,3 , 0 , и возведем их в квадрат, получим соответственно числа 25 , 0,09 , 0,09 и 0 (5 2 =5·5=25 , (−0,3) 2 =(−0,3)·(−0,3)=0,09 , (0,3) 2 =0,3·0,3=0,09 и 0 2 =0·0=0 ). Тогда по данному выше определению число 5 является квадратным корнем из числа 25 , числа −0,3 и 0,3 есть квадратные корни из 0,09 , а 0 – это квадратный корень из нуля.

Следует отметить, что не для любого числа a существует , квадрат которого равен a . А именно, для любого отрицательного числа a не существует ни одного действительного числа b , квадрат которого равнялся бы a . В самом деле, равенство a=b 2 невозможно для любого отрицательного a , так как b 2 – неотрицательное число при любом b . Таким образом, на множестве действительных чисел не существует квадратного корня из отрицательного числа . Иными словами, на множестве действительных чисел квадратный корень из отрицательного числа не определяется и не имеет смысла.

Отсюда вытекает логичный вопрос: «А для любого ли неотрицательного a существует квадратный корень из a »? Ответ – да. Обоснованием этого факта можно считать конструктивный способ, используемый для нахождения значения квадратного корня .

Тогда встает следующий логичный вопрос: «Каково число всех квадратных корней из данного неотрицательного числа a – один, два, три, или еще больше»? Вот ответ на него: если a равно нулю, то единственным квадратным корнем из нуля является нуль; если же a – некоторое положительное число, то количество квадратных корней из числа a равно двум, причем корни являются . Обоснуем это.

Начнем со случая a=0 . Сначала покажем, что нуль действительно является квадратным корнем из нуля. Это следует из очевидного равенства 0 2 =0·0=0 и определения квадратного корня.

Теперь докажем, что 0 – единственный квадратный корень из нуля. Воспользуемся методом от противного. Предположим, что существует некоторое число b , отличное от нуля, которое является квадратным корнем из нуля. Тогда должно выполняться условие b 2 =0 , что невозможно, так как при любом отличном от нуля b значение выражения b 2 является положительным. Мы пришли к противоречию. Это доказывает, что 0 – единственный квадратный корень из нуля.

Переходим к случаям, когда a – положительное число. Выше мы сказали, что всегда существует квадратный корень из любого неотрицательного числа, пусть квадратным корнем из a является число b . Допустим, что существует число c , которое тоже является квадратным корнем из a . Тогда по определению квадратного корня справедливы равенства b 2 =a и c 2 =a , из них следует, что b 2 −c 2 =a−a=0 , но так как b 2 −c 2 =(b−c)·(b+c) , то (b−c)·(b+c)=0 . Полученное равенство в силу свойств действий с действительными числами возможно лишь тогда, когда b−c=0 или b+c=0 . Таким образом, числа b и c равны или противоположны.

Если же предположить, что существует число d , являющееся еще одним квадратным корнем из числа a , то рассуждениями, аналогичными уже приведенным, доказывается, что d равно числу b или числу c . Итак, число квадратных корней из положительного числа равно двум, причем квадратные корни являются противоположными числами.

Для удобства работы с квадратными корнями отрицательный корень «отделяется» от положительного. С этой целью вводится определение арифметического квадратного корня .

Определение

Арифметический квадратный корень из неотрицательного числа a – это неотрицательное число, квадрат которого равен a .

Для арифметического квадратного корня из числа a принято обозначение . Знак называется знаком арифметического квадратного корня. Его также называют знаком радикала. Поэтому можно часть слышать как «корень», так и «радикал», что означает один и тот же объект.

Число под знаком арифметического квадратного корня называют подкоренным числом , а выражение под знаком корня – подкоренным выражением , при этом термин «подкоренное число» часто заменяют на «подкоренное выражение». Например, в записи число 151 – это подкоренное число, а в записи выражение a является подкоренным выражением.

При чтении слово «арифметический» часто опускается, например, запись читают как «квадратный корень из семи целых двадцати девяти сотых». Слово «арифметический» произносят лишь тогда, когда хотят особо подчеркнуть, что речь идет именно о положительном квадратном корне из числа.

В свете введенного обозначения из определения арифметического квадратного корня следует, что и для любого неотрицательного числа a .

Квадратные корни из положительного числа a с помощью знака арифметического квадратного корня записываются как и . Например, квадратные корни из числа 13 есть и . Арифметический квадратный корень из нуля равен нулю, то есть, . Для отрицательных чисел a записи мы не будем придавать смысла вплоть до изучения комплексных чисел . Например, лишены смысла выражения и .

На базе определения квадратного корня доказываются свойства квадратных корней , которые часто применяются на практике.

В заключение этого пункта заметим, что квадратные корни из числа a являются решениями вида x 2 =a относительно переменной x .

Кубический корень из числа

Определение кубического корня из числа a дается аналогично определению квадратного корня. Только оно базируется на понятии куба числа, а не квадрата.

Определение

Кубическим корнем из числа a называется число, куб которого равен a .

Приведем примеры кубических корней . Для этого возьмем несколько чисел, например, 7 , 0 , −2/3 , и возведем их в куб: 7 3 =7·7·7=343 , 0 3 =0·0·0=0 , . Тогда, основываясь на определении кубического корня, можно утверждать, что число 7 – это кубический корень из 343 , 0 есть кубический корень из нуля, а −2/3 является кубическим корнем из −8/27 .

Можно показать, что кубический корень из числа a , в отличие от квадратного корня, всегда существует, причем не только для неотрицательных a , но и для любого действительного числа a . Для этого можно использовать тот же способ, о котором мы упоминали при изучении квадратного корня.

Более того, существует только единственный кубический корень из данного числа a . Докажем последнее утверждение. Для этого отдельно рассмотрим три случая: a – положительное число, a=0 и a – отрицательное число.

Легко показать, что при положительном a кубический корень из a не может быть ни отрицательным числом, ни нулем. Действительно, пусть b является кубическим корнем из a , тогда по определению мы можем записать равенство b 3 =a . Понятно, что это равенство не может быть верным при отрицательных b и при b=0 , так как в этих случаях b 3 =b·b·b будет отрицательным числом либо нулем соответственно. Итак, кубический корень из положительного числа a является положительным числом.

Теперь предположим, что помимо числа b существует еще один кубический корень из числа a , обозначим его c . Тогда c 3 =a . Следовательно, b 3 −c 3 =a−a=0 , но b 3 −c 3 =(b−c)·(b 2 +b·c+c 2) (это формула сокращенного умножения разность кубов ), откуда (b−c)·(b 2 +b·c+c 2)=0 . Полученное равенство возможно только когда b−c=0 или b 2 +b·c+c 2 =0 . Из первого равенства имеем b=c , а второе равенство не имеет решений, так как левая его часть является положительным числом для любых положительных чисел b и c как сумма трех положительных слагаемых b 2 , b·c и c 2 . Этим доказана единственность кубического корня из положительного числа a .

При a=0 кубическим корнем из числа a является только число нуль. Действительно, если предположить, что существует число b , которое является отличным от нуля кубическим корнем из нуля, то должно выполняться равенство b 3 =0 , которое возможно лишь при b=0 .

Для отрицательных a можно привести рассуждения, аналогичные случаю для положительных a . Во-первых, показываем, что кубический корень из отрицательного числа не может быть равен ни положительному числу, ни нулю. Во-вторых, предполагаем, что существует второй кубический корень из отрицательного числа и показываем, что он обязательно будет совпадать с первым.

Итак, всегда существует кубический корень из любого данного действительного числа a , причем единственный.

Дадим определение арифметического кубического корня .

Определение

Арифметическим кубическим корнем из неотрицательного числа a называется неотрицательное число, куб которого равен a .

Арифметический кубический корень из неотрицательного числа a обозначается как , знак называется знаком арифметического кубического корня, число 3 в этой записи называется показателем корня . Число под знаком корня – это подкоренное число , выражение под знаком корня – это подкоренное выражение .

Хотя арифметический кубический корень определяется лишь для неотрицательных чисел a , но удобно также использовать записи, в которых под знаком арифметического кубического корня находятся отрицательные числа. Понимать их будем так: , где a – положительное число. Например, .

О свойствах кубических корней мы поговорим в общей статье свойства корней .

Вычисление значения кубического корня называется извлечением кубического корня, это действие разобрано в статье извлечение корней: способы, примеры, решения .

В заключение этого пункта скажем, что кубический корень из числа a является решением вида x 3 =a .

Корень n-ой степени, арифметический корень степени n

Обобщим понятие корня из числа – введем определение корня n-ой степени для n .

Определение

Корень n -ой степени из числа a – это число, n -я степень которого равна a .

Из данного определения понятно, что корень первой степени из числа a есть само число a , так как при изучении степени с натуральным показателем мы приняли a 1 =a .

Выше мы рассмотрели частные случаи корня n -ой степени при n=2 и n=3 – квадратный корень и кубический корень. То есть, квадратный корень – это корень второй степени, а кубический корень – корень третьей степени. Для изучения корней n -ой степени при n=4, 5, 6, … их удобно разделить на две группы: первая группа – корни четных степеней (то есть, при n=4, 6, 8, … ), вторая группа – корни нечетных степеней (то есть, при n=5, 7, 9, … ). Это связано с тем, что корни четных степеней аналогичны квадратному корню, а корни нечетных степеней – кубическому. Разберемся с ними по очереди.

Начнем с корней, степенями которых являются четные числа 4, 6, 8, … Как мы уже сказали, они аналогичны квадратному корню из числа a . То есть, корень любой четной степени из числа a существует лишь для неотрицательного a . Причем, если a=0 , то корень из a единственный и равен нулю, а если a>0 , то существует два корня четной степени из числа a , причем они являются противоположными числами.

Обоснуем последнее утверждение. Пусть b – корень четной степени (обозначим ее как 2·m , где m – некоторое натуральное число) из числа a . Предположим, что существует число c – еще один корень степени 2·m из числа a . Тогда b 2·m −c 2·m =a−a=0 . Но мы знаем вида b 2·m −c 2·m = (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2) , тогда (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2)=0 . Из этого равенства следует, что b−c=0 , или b+c=0 , или b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2 =0 . Первые два равенства означают, что числа b и c равны или b и c – противоположны. А последнее равенство справедливо лишь при b=c=0 , так как в его левой части находится выражение, которое неотрицательно при любых b и c как сумма неотрицательных чисел.

Что касается корней n -ой степени при нечетных n , то они аналогичны кубическому корню. То есть, корень любой нечетной степени из числа a существует для любого действительного числа a , причем для данного числа a он является единственным.

Единственность корня нечетной степени 2·m+1 из числа a доказывается по аналогии с доказательством единственности кубического корня из a . Только здесь вместо равенства a 3 −b 3 =(a−b)·(a 2 +a·b+c 2) используется равенство вида b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m) . Выражение в последней скобке можно переписать как b 2·m +c 2·m +b·c·(b 2·m−2 +c 2·m−2 + b·c·(b 2·m−4 +c 2·m−4 +b·c·(…+(b 2 +c 2 +b·c)))) . Например, при m=2 имеем b 5 −c 5 =(b−c)·(b 4 +b 3 ·c+b 2 ·c 2 +b·c 3 +c 4)= (b−c)·(b 4 +c 4 +b·c·(b 2 +c 2 +b·c)) . Когда a и b оба положительны или оба отрицательны их произведение является положительным числом, тогда выражение b 2 +c 2 +b·c , находящееся в скобках самой высокой степени вложенности, является положительным как сумма положительных чисел. Теперь, продвигаясь последовательно к выражениям в скобках предыдущих степеней вложенности, убеждаемся, что они также положительны как суммы положительных чисел. В итоге получаем, что равенство b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m)=0 возможно только тогда, когда b−c=0 , то есть, когда число b равно числу c .

Пришло время разобраться с обозначениями корней n -ой степени. Для этого дается определение арифметического корня n -ой степени .

Определение

Арифметическим корнем n -ой степени из неотрицательного числа a называется неотрицательное число, n -я степень которого равна a .

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сценарий урока в 11 классе по теме:

« Корень n-й степени из действительного числа. »

Цель урока: Формирование у учащихся целостного представления о корне n -ой степени и арифметического корень n-ой степени, формирование вычислительных навыков, навыков сознательного и рационального использования свойств корня при решении различных задач, содержащих радикал. Проверить уровень усвоения учащимися вопросов темы.

Предметные: создать содержательные и организационные условия для усвоения материала по теме « Числовые и буквенные выражения» на уровне восприятия осмысления и первичного запоминания; формировать умения применять данные сведения при вычислении корня n-й степени из действительного числа;

Метопредметные: способствовать развитию вычислительных навыков; умение анализировать, сравнивать, обобщать, делать выводы;

Личностные: воспитывать умение высказывать свою точку зрения, слушать ответы других, принимать участие в диалоге, формировать способность к позитивному сотрудничеству.

Планируемый результат.

Предметные: уметь в процессе реальной ситуации применять свойства корня n-й степени из действительного числа при вычислении корней, решении уравнений.

Личностные: формировать внимательность и аккуратность в вычислениях, требовательное отношение к себе и к своей работе, воспитывать чувство взаимопомощи.

Тип урока: урок изучения и первичного закрепления новых знаний

    Мотивация к учебной деятельности:

Восточная мудрость гласит: «Можно коня привести к воде, но нельзя заставить его пить». И человека невозможно заставить учиться хорошо, если он сам не старается узнать больше, не имеет желания работать над своим умственным развитием. Ведь знания только тогда знания, когда они приобретены усилиями своей мысли, а не одной памятью.

Наш урок пройдёт под девизом: «Покорим любую вершину, если будем к ней стремиться». Нам с вами в течение урока нужно успеть преодолеть несколько вершин, и каждый из вас должен вложить все свои усилия, чтобы покорить эти вершины.

«Сегодня у нас урок, на котором мы должны познакомиться с новым понятием: « Корень n-й степени» и научиться применять это понятие к преобразованию различных выражений.

Ваша цель – на основе различных форм работы активизировать имеющиеся знания, внести свой вклад в изучение материала и получить хорошие оценки»
Корень квадратный из действительного числа мы с вами изучали в 8 классе. Корень квадратный связан с функцией вида y =x 2 . Ребята, вы помните, как мы вычисляли корни квадратные, и какие у него были свойства?
а) индивидуальный опрос:

    что это за выражение

    что называется квадратным корнем

    что называется арифметическим квадратным корнем

    перечислите свойства квадратного корня

б) работа в парах: вычислите.

-

2. Актуализация знаний и создание проблемной ситуации: Решите уравнение x 4 =1 . Как мы его можем решить? (Аналитически и графически). Решим его графически. Для этого в одной системе координат построим график функции у = х 4 прямую у = 1 (рис. 164 а). Они пересекаются в двух точках: А (-1;1) и B(1;1). Абсциссы точек А и B, т.е. х 1 = -1,

х 2 = 1, являются корнями уравнения х 4 = 1.
Рассуждая точно так же, находим корни уравнения х 4 =16: А теперь попробуем решить уравнение х 4 =5; геометрическая иллюстрация представлена на рис. 164 б. Ясно, что уравнение имеет два корня x 1 и x 2 , причем эти числа, как и в двух предыдущих случаях, взаимно противоположны. Но для первых двух уравнений корни были найдены без труда (их можно было найти и не пользуясь графиками), а с уравнением х 4 =5 имеются проблемы: по чертежу мы не можем указать значения корней, а можем только установить, что один корень располагается левее точки -1, а второй - правее точки 1.

х 2 = - (читается: «корень четвертой степени из пяти»).

Мы говорили об уравнении х 4 = а, где а 0. С равным успехом мы могли говорить и об уравнении х 4 =а, где а 0, а n - любое натуральное число. Например, решая графически уравнение х 5 = 1, находим х = 1 (рис. 165); решая уравнение х 5 " = 7, устанавливаем, что уравнение имеет один корень х 1 , который располагается на оси х чуть правее точки 1 (см. рис. 165). Для числа х 1 введем обозначение .

Определение 1. Корнем n-й степени из неотрицательного числа а (n = 2, 3,4, 5,...) называют такое неотрицательное число, которое при возведении в степень n дает в результате число а.

Это число обозначают , число а при этом называют подкоренным числом, а число n - показателем корня.
Если n=2, то обычно не говорят «корень второй степени», а говорят "«корень квадратный». В этом случае не пишут Это тот частный случай, который вы специально изучали в курсе алгебры 8-го класса.

Если n = 3, то вместо «корень третьей степени» часто говорят «корень кубический». Первое знакомство с кубическим корнем у вас также состоялось в курсе алгебры 8-го класса. Мы использовали кубический корень в курсе алгебры 9-го класса.

Итак, если а ≥0, n= 2,3,4,5,…, то 1) ≥ 0; 2) () n = а.

Вообще, =b и b n =а - одна и та же зависимость между неотрицательными числами а и b, но только вторая описана более простым языком (использует более простые символы), чем первая.

Операцию нахождения корня из неотрицательного числа называют обычно извлечением корня. Эта операция является обратной по отношению к возведению в соответствующую степень. Сравните:


Еще раз обратите внимание: в таблице фигурируют только положительные числа, поскольку это оговорено в определении 1. И хотя, например, (-6) 6 =36 - верное равенство, перейти от него к записи с использованием квадратного корня, т.е. написать, что нельзя. По определению - положительное число, значит = 6 (а не -6). Точно так же, хотя и 2 4 =16, т (-2) 4 =16, переходя к знакам корней, мы должны написать = 2 (и в то же время ≠-2).

Иногда выражение называют радикалом (от латинского слова гаdix - «корень»). В русском языке термин радикальный используется довольно часто, например, «радикальные изменения» - это значит «коренные изменения». Между прочим, и само обозначение корня напоминает о слове гаdix: символ - это стилизованная буква r.

Операцию извлечения корня определяют и для отрицательного подкоренного числа, но только в случае нечетного показателя корня. Иными словами, равенство (-2) 5 = -32 можно переписать в эквивалентной форме как =-2. При этом используется следующее определение.

Определение 2. Корнем нечетной степени n из отрицательного числа а (n = 3,5,...) называют такое отрицательное число, которое, будучи возведено в степень n, дает в результате число а.

Это число, как и в определении 1, обозначают , число а - подкоренное число, число n - показатель корня.
Итак, если а , n=,5,7,…,то: 1) 0; 2) () n = а.

Таким образом, корень четной степени имеет смысл (т.е. определен) только для неотрицательного подкоренного выражения; корень нечетной степени имеет смысл для любого подкоренного выражения.

5. Первичное закрепление знаний:

1. Вычислить: № № 33.5; 33.6; 33.74 33.8 устно а) ; б) ; в) ; г) .

г) В отличие от предыдущих примеров мы не можем указать точное значение числа Ясно лишь, что оно больше, чем 2, но меньше, чем 3, поскольку 2 4 =16 (это меньше, чем 17), а З 4 = 81 (это больше, чем 17). Замечаем, что 24 намного ближе к 17, чем З4, так что есть основания использовать знак приближенного равенства:
2. Найти значения следующих выражений.

Поставить около примера соответствующую букву.

Небольшая информация о великом учёном. Рене Декарт (1596-1650) французский дворянин, математик, философ, физиолог, мыслитель. Рене Декарт заложил основы аналитической геометрии, ввел буквенные обозначения x 2 , y 3 . Всем известны декартовы координаты, определяющие функцию переменной величины.

3 . Решить уравнения: а) = -2; б) = 1; в) = -4

Решение: а) Если = -2, то y = -8. Фактически обе части заданного уравнения мы должны возвести в куб. Получим: 3х+4= - 8; 3х= -12; х = -4. б) Рассуждая, как в примере а), возведем обе части уравнения в четвертую степень. Получим: х=1.

в) Здесь не надо возводить в четвертую степень, это уравнение не имеет решений. Почему? Потому, что согласно определению 1 корень четной степени - неотрицательное число.
Вашему вниманию предложено несколько заданий. Когда вы выполните эти задания, вы узнаете имя и фамилию великого учёного-математика. Этот учёный в 1637 г первым ввел знак корня.

6. Давайте немного отдохнём.

Поднимает руки класс - это «раз».

Повернулась голова – это «два».

Руки вниз, вперёд смотри – это «три».

Руки в стороны пошире развернули на «четыре»,

С силой их к рукам прижать –это «пять».

Всем ребятам надо сесть –это «шесть».

7. Самостоятельная работа:

    вариант: 2 вариант:

б) 3-. б)12 -6 .

2. Решите уравнение: а) х 4 = -16; б) 0,02х 6 -1,28=0; а) х 8 = -3; б)0,3х 9 – 2,4=0;

в) = -2; в)= 2

8. Повторение: Найдите корень уравнения = - х. Если уравнение имеет более одного корня, в ответ впишите меньший из корней.

9. Рефлексия: Чему вы научились на уроке? Что было интересным? Что было трудным?

Примеры:

\(\sqrt{16}=2\), так как \(2^4=16\)
\(\sqrt{-\frac{1}{125}}\) \(=\) \(-\frac{1}{5}\) ,так как \((-\frac{1}{5})^3\) \(=\) \(-\frac{1}{125}\)

Как вычислить корень n-ой степени?

Чтобы вычислить корень \(n\)-ой степени, надо задать себе вопрос: какое число в \(n\)-ой степени, даст под корнем?

Например . Вычислите корень \(n\)-ой степени: а)\(\sqrt{16}\); б) \(\sqrt{-64}\); в) \(\sqrt{0,00001}\); г)\(\sqrt{8000}\); д) \(\sqrt{\frac{1}{81}}\).

а) Какое число в \(4\)-ой степени, даст \(16\)? Очевидно, \(2\). Поэтому:

б) Какое число в \(3\)-ей степени, даст \(-64\)?

\(\sqrt{-64}=-4\)

в) Какое число в \(5\)-ой степени, даст \(0,00001\)?

\(\sqrt{0,00001}=0,1\)

г) Какое число в \(3\)-ей степени, даст \(8000\)?

\(\sqrt{8000}=20\)

д) Какое число в \(4\)-ой степени, даст \(\frac{1}{81}\)?

\(\sqrt{\frac{1}{81}}=\frac{1}{3}\)

Мы рассмотрели самые простые примеры с корнем \(n\)-ой степени. Для решения более сложных задач с корнями \(n\)-ой степени – жизненно необходимо знать их .

Пример. Вычислите:

\(\sqrt 3\cdot \sqrt{-3} \cdot \sqrt{27} \cdot \sqrt{9} -\) \(=\)

В данный момент ни один из корней нельзя вычислить. Поэтому применим свойства корня \(n\)-ой степени и преобразуем выражение.
\(\frac{\sqrt{-64}}{\sqrt{2}}\) \(=\)\(\sqrt{\frac{-64}{2}}\) \(=\)\(\sqrt{-32}\) т.к. \(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\) \(=\)\(\sqrt[n]{\frac{a}{b}}\)

\(=\sqrt{3}\cdot \sqrt{-3}\cdot \sqrt{27}\cdot \sqrt{9}-\sqrt{-32}=\)

Переставим множители в первом слагаемом так, что бы квадратный корень и корень \(n\)-ой степени стояли рядом. Так легче будет применять свойства т.к. большинство свойств корней \(n\)-ой степени работают только с корнями одинаковой степени.
И вычислим корень 5-ой степени.

\(=\sqrt{3} \cdot \sqrt{27} \cdot \sqrt{-3}\cdot \sqrt{9}-(-5)=\)

Применим свойство \(\sqrt[n]{a}\cdot \sqrt[n]{b}=\sqrt[n]{a\cdot b}\) и раскроем скобку

\(=\sqrt{81}\cdot \sqrt{-27}+5=\)

Вычисли \(\sqrt{81}\) и \(\sqrt{-27}\)

\(=9\cdot(-3)+5 =-27+5=-22\)


Корень n-ой степени и квадратный корень связаны?

В любом случае, любой корень любой степени - это просто число, пусть и записанное в непривычном вам виде.

Особенность корня n-ой степени

Корень \(n\)-ой степени с нечетными \(n\) может извлекаться из любого числа, даже отрицательного (см. примеры в начале). Но если \(n\) - четное (\(\sqrt{a}\), \(\sqrt{a}\),\(\sqrt{a}\)…), то такой корень извлекается только если \(a ≥ 0\) (кстати, у квадратного корня так же). Это связано с тем, что извлечение корня – действие, обратное возведению в степень.


А возведение в четную степень делает даже отрицательное число положительным. Действительно, \((-2)^6=(-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)=64\). Поэтому мы не можем получить под корнем четной степени отрицательного числа. А значит, и извлечь такой корень из отрицательного числа – не можем.


Нечетная же степень таких ограничений не имеет – отрицательное число, возведенное в нечетную степень останется отрицательным: \((-2)^5=(-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)=-32\). Поэтому под корнем нечетной степени можно получить отрицательное число. А значит и извлечь его из отрицательного числа – тоже можно.


Видеоурок 2: Свойства корня степени n > 1

Лекция: Корень степени n > 1 и его свойства

Корень


Предположим, Вы имеете уравнение вида:

Решением данного уравнения будет х 1 = 2 и х 2 = (-2). В качестве ответа подходят оба решения, поскольку числа с равными модулями при возведении в четную степень дают одинаковый результат.


Это был простой пример, однако, что мы можем сделать в том случае, если, например,

Давайте попробуем построить график функции y=x 2 . Её графиком является парабола:

На графике необходимо найти точки, которым соответствует значение у = 3. Данными точками является:

Это означает, что данное значение нельзя назвать целым числом, но можно представить в виде корня квадратного.


Любой корень - это иррациональное число . К иррациональным числам относятся корни, непериодические бесконечные дроби.


Квадратный корень - это неотрицательное число "а", подкоренное выражение которого равно данному числу "а" в квадрате.

Например,


То есть в результате мы получим только положительное значение. Однако в качестве решения квадратного уравнения вида

Решением будет х 1 = 4, х 2 = (-4).

Свойства квадратного корня

1. Какое бы значение не принимала величина x, данное выражение верно в любом случае:

2. Сравнение чисел, содержащих квадратный корень. Чтобы сравнить данные числа, необходимо и одно, и второе число внести под знак корня. То число будет больше, чье подкоренное выражение больше.

Вносим число 2 под знак корня

А теперь давайте внесем число 4 под знак корня. В результате этого получим

И только теперь два полученных выражения можно сравнить:

3. Вынесение множителя из под корня.

Если подкоренное выражение может разложиться на два множителя, один из которых можно вынести из под знака корня, то необходимо пользоваться данным правилом.


4. Существует свойство, обратное данному - внесение множителя под корень. Этим свойством мы заведомо воспользовались во втором свойстве.



Похожие статьи