Хромосомный мозаицизм у человека можно установить методом. Аномалии сочетания половых хромосом (мозаицизм)

03.07.2020


По современным оценкам, 20-30 % всех случаев трисомии в постнатальном периоде представлены мозаичными формами . У мо- заиков обычно отмечают большую продолжительность жизни и более мягкое проявление фенотипических нарушений и клинических симптомов, чем у пациентов с полной формой гетероплоидии. Так, если среди спонтанных абортусов до 28-й недели беременности встречаются, как правило, полные формы триплоидии, то новорожденные, прожившие дольше нескольких дней, являются триплоид-диплоидными мозаиками . Однако накопленные к настоящему времени многочисленные данные свидетельствуют о том, что тяжесть проявления синдромов не зависит от формы анеуплоидии (полная или мозаичная) и доли анеуплоидных клеток в исследуемой ткани. Например, при мозаичной трисомии 21, которая составляет около 5 % всех случаев синдрома Дауна , трисомная линия может быть представлена лишь в 2-10 % лимфоцитов , а клинические признаки синдрома Клайн- фельтера при полной или мозаичной форме кариотипа 47,XXY могут быть ограничены лишь нарушением сперматогенеза .
Как уже упоминалось, мозаичная форма трисомий по разным хромосомам без каких-либо фенотипических проявлений наблюдается у некоторых родителей пациентов с хромосомными синдромами (чаще - у матерей), а также у лиц с неотягощенным генетическим анамнезом . Интересно отметить, что в отличие от трисомий по половым хромосомам и ауто- сомам, мозаичная форма моносомии Х у нормальных индивидов имеет тенденцию прогрессировать с возрастом. Так, кариотип 45,Х регулярно отмечается в 2-5 % лимфоцитов периферической крови у женщин с 55, а у мужчин - с 65 лет, а доля моносомных по Х-хромосоме клеток увеличивается по мере старения .
Уникальной естественной биологической моделью для изучения механизмов возникновения структурных аберраций, нерасхождения
хромосом в мейозе и митозе, сохранения в онтогенезе межклеточного и межтканевого мозаицизма является синдром Шерешевского-Тернера. Его отличительной особенностью является многообразие нарушений половых хромосом и крайне высокая частота мозаичных вариантов кариотипа. При стандартном кариотипировании ФГА-стимулированных лимфоцитов периферической крови классическая форма синдрома (моносомия Х) регистрируется у 40-60 %, структурные перестройки Х-хромосом - у 5-10 % пациенток, остальные 30-40 % случаев представлены мозаичными вариантами анеуплоидии по нормальным или аберрантным Х- и Y-хромосомам . В настоящее время твердо установленными особенностями фенотипа синдрома Шерешевского- Тернера можно считать низкорослость и аномалии развития репродуктивной системы. Остальные фенотипические и клинические признаки синдрома носят крайне индивидуальный характер. При этом степень выраженности и сочетание отдельных симптомов не коррелируют с каким-либо определенным типом аномального кариотипа.
На основании различий в частоте рождения носителей полной и мозаичной формы моносомии Х выдвинуты гипотезы о влиянии мозаицизма на жизнеспособность эмбрионов , а также на формирование комплекса фенотипических признаков синдрома Шерешев- ского-Тернера . Исследования последних 10-15 лет позволили идентифицировать гены на Х- и Y-хромосомах, принимающие участие в развитии репродуктивной и лимфатической систем , формировании скелета . С целью выяснения роли эпигенетических факторов в развитии симптомов синдрома Ше- решевского-Тернера предпринимаются масштабные исследования по установлению родительского происхождения единственной Х-хромо- сомы . Установлено, в частности, что особенности социально-психологического статуса пациенток с синдромом Шере- шевского-Тернера с кариотипом 45,Х зависят от родительского происхождения единственной Х-хромосомы. Однако причины гибели 99 % плодов с моносомией Х по-прежнему остаются невыясненными.
Широкое применение методов ПЦР и FISH в клинико-цитогенетическом обследовании позволило не только обнаружить среди пациенток с моносомией Х «скрытых мозаиков» (не выявляемых с помощью традиционных цитогенетических исследований), но и подтвердить существование у них межтканевого мозаицизма .
Молекулярно-цитогенетический анализ, проведенный нами при обследовании 88 пациенток с синдромом Шерешевского-Тернера, позволил установить скрытый мозаицизм в 24 случаях носительства кариотипа 45,Х. Из них 6 % пациенток оказались «скрытыми мозаиками» по Y-хромосоме и 15 % - по Х-хромосоме . Согласно данным литературы, частота скрытого мозаицизма может варьировать в широких пределах - по Y-хромосоме от 0 % до 61 % , по Х-хромосоме - от 2,4 % до 90 % . Неоднозначность результатов объясняется объемом и спецификой выборки, а также разрешающей способностью методов анализа. Так, метод ПЦР, вследствие высокой чувствительности и специфичности указывает на наличие дополнительного материала, однако не позволяет оценить представительность клеточной линии. Количественная характеристика клеточных линий возможна по интерфазным ядрам методом FISH, однако, при интерпретации результатов немаловажную роль играют фоновые гибридизационные сигналы и эффективность связывания ДНК-зонда с сайтами-мишенями. Кроме того, установление второй клеточной линии методом FISH существенно зависит от избранных контрольных значений частоты спонтанной анеуплоидии.
В нашем исследовании, как и в других работах , критерием для диагностики мозаицизма методом FIHS по интерфазным ядрам в периферической крови и в буккальном эпителии было избрано наличие 5 % клеток с хромосомным набором, отличающимся от кариотипа в базисном клоне. При этом количественные характеристики уровня анеуплоидии по Х-хромосомам разных тканей могут варьировать (2-4,04 % для культивируемых лимфоцитов и 1,79 % для некультивируемых клеток буккального эпителия) . Следует отметить, что при структурных перестройках, не изменяющих число маркируемых локусов, по гибридизационным сигналам в интерфазном ядре невозможно идентифицировать аберрацию и, соответственно, выявить несущую ее клеточную линию. Поэтому результаты FISH дают основание лишь предполагать, что клеточные линии, выявляемые при метафазном анализе, идентичны регистрируемым по интерфазным ядрам. Таким образом, несмотря на высокую чувствительность методов ПЦР и FISH, исследование мозаицизма нуждается в применении метафазного анализа.
Учитывая, что установление хромосомного мозаицизма зависит не только от методов анализа и числа проанализированных клеток , но и от типа тканей, целесообразно исследовать клетки, имеющие различное эмбриональное происхождение. Результаты, полученные различными методами (табл. 7.2), свидетельствуют о том, что в 79 % случаев мозаичный кариотип присутствует во всех тканях, т. е. является истинным, или генерализованным, и в 21 % случаев ограничен одной тканью. Характерной особенностью истинного мозаицизма по половым хромосомам у пациенток с синдромом Шерешевского-Тернера является ярко выраженная межтканевая вариабельность в соотношении клеточных линий. При этом, независимо от структурных особенностей
Таблица 7.2. Характеристика мозаицизма у пациенток с синдромом Шерешевско- го-Тернера


Ссылка

Число
случаев

Анализируемая ткань

Метод
иссле
дований

Характер
мозаицизма

Характер доминирования

Истин
ный

Ограни
ченный

В двух тканях

В одной ткани


3

Фибробласты кожи и гонад

Цито-
генети
ческий

3

0

2

1


56

Кровь,
фибробласты
кожи

Цито-
генети
ческий

32

24

24

8


5

Кровь,
гонады

FISH

5

0

4

1


13

Кровь,
буккальный
эпителий

FISH

9

4

2

7


35

Кровь,
буккальный
эпителий

FISH

32

3

-

-


11

Кровь,
буккальный
эпителий

FISH

11

0

8

3


2

Кровь,
гонады

FISH

2

0

-

-


2

Кровь,
гонады

PCR

1

1

-

-


2

Кровь,
гонады

PCR

2

0

-

-


39

Кровь,
буккальный
эпителий

FISH

35

4

28

7

Всего

168



132
(79 %)

36
(21 %)

68
(72 %)

27
(28 %)

второй гоносомы (нормальной или аберрантной Х- или Y-хромосомы), доминирование одного и того же клеточного клона сохраняется в тканях, имеющих различное эмбриональное происхождение . Таким образом, результаты исследований половых хромосом в клетках разных тканей у пациенток с синдромом Шерешевского-Тернера являются экспериментальным подтверждением гипотезы о сохранении возникшей в эмбриогенезе генетической гетерогенности и их селективной нейтральности в постоянно обновляющихся тканях .

Пол будущего ребенка определяется в момент оплодотворения в зависимости от сочетания половых хромосом (XX - женский организм, XY - мужской).

При нарушении течения митоза могут образовываться необычные особи - гинандроморфы . Содержание половых хромосом в разных клетках таких особей может быть разное (мозаицизм). У человека могут быть разные случаи мозаицизма : ХХ/ХХХ, XY/XXY, ХО/ХХХ, XO/XXY и др. Степень клинического проявления зависит от количества мозаичных клеток - чем их больше, тем сильнее проявление.

При нормальном течении мейоза у женского организма образуется один тип гамет, содержащих Х-хромосому. Однако при нерасхождении половых хромосом могут образовываться еще два типа гамет - XX и 0 (не содержащая половых хромосом). У мужского организма в норме образуется два типа гамет, содержащих Х- и Y-хромосомы. При нерасхождении половых хромосом возможны варианты гамет XY и 0. Рассмотрим возможные комбинации половых хромосом в зиготе у человека (их 12) и проанализируем каждый вариант.

XX- нормальный женский организм.

XXX- синдром трисомии X. Частота встречаемости 1:1000. Кариотип 47,ХХХ. В настоящее время имеются описания тетра-и пентосомий X. Трисомия по Х-хромосоме возникает в результате нерасхождения половых хромосом в мейозе или при первом делении зиготы.

Синдрому полисемии X присущ значительный полиморфизм. Женский организм с мужеподобным телосложением. Могут быть недоразвиты первичные и вторичные половые признаки. В 75% случаев у больных наблюдается умеренная степень умственной отсталости. У некоторых из них нарушена функция яичников (вторичная аменорея, дисменорея, ранняя менопауза). Иногда такие женщины могут иметь детей. Повышен риск заболевания шизофренией. С увеличением числа дополнительных Х-хромосом нарастает степень отклонения от нормы.

ХО- синдром Шерешевского-Тернера (моносомия X). Частота встречаемости 1:2000-1:3000. Кариотип45,Х. У 55% девочек с этим синдромом обнаруживается кариотип 45,X, у 25% - изменение структуры одной из Х-хромосом. В 15% случаев выявляется мо-заичность в виде двух или более клеточных линий, одна из которых имеет кариотип 45,X, а другая представлена кариотипами 46,XX или 46,XY. Третья клеточная линия наиболее часто представлена кариотипом 45,Х, 46^ХХ, 47,ХХХ. Риск наследования синдрома составляет 1 случай на 5000 новорожденных. Фенотип женский.

У новорожденных и детей грудного возраста отмечаются признаки дисплазии: короткая шея с избытком кожи и крыловидными складками, лимфатический отек стоп, голеней, кистей рук и предплечий, вальгусная деформация стоп, множественные пигментные пятна, низкорослость. В подростковом возрасте выявляются отставание в росте (рост взрослых 135-145 см) и в развитии вторичных половых признаков. Для взрослых характерно низкое расположение ушных раковин, недоразвитие первичных и вторичных половых признаков, дисгенезия гонад, сопровождающаяся первичной аменореей. У 20% больных имеются пороки сердца (коарктация аорты, стеноз аорты, пороки развития митрального клапана), у 40% - пороки почек (удвоение мочевыводящих путей, подковообразная почка). У больных, имеющих клеточную линию с Y-хромосомой, может развиться го-надобластома, часто наблюдается аутоиммунный тиреоидит. Интеллект страдает редко. Недоразвитие яичников приводит к бесплодию. Для подтверждения диагноза наряду с исследованием клеток периферической крови проводятся биопсия кожи и исследование фибробластов. В некоторых случаях генетическое исследование позволяет выявить синдром Нуннан, который имеет схожие фенотипические проявления, однако этиологически не связан с синдромом Шерешевского-Тернера. В отличие от последнего при синдроме Нуннан заболеванию подвержены как мальчики, так и девочки, а в клинической картине доминирует задержка умственного развития, характерен Тернер-фенотип при нормальном мужском или женском кариотипе. У большинства больных синдромом Нуннан имеется нормальное половое развитие и сохранена фертильность. В большинстве случаев заболевание не сказывается на продолжительности жизни пациентов.

XY- нормальный мужской организм .

XXY и XXXY- синдром Клайнфелтера. Частота встречаемости 1:500. Кариотип 47,XXY у 80% мальчиков с синдромом Клайнфелтера, в 20% случаев обнаруживается мозаицизм, при котором одна из клеточных линий имеет кариотип 47,XXY. Возвратный риск для синдрома Клайнфелтера не превышает общепопу-ляционные показатели и составляет 1 случай на 2000 живорожденных детей. Фенотип мужской.

Клиника отличается широким разнообразием и неспецифичностью проявлений. У мальчиков с этим синдромом рост превышает средние показатели, характерные для данной семьи, у них длинные конечности, женский тип телосложения, гинекомастия. Слабо развит волосяной покров, снижен интеллект. Вследствие недоразвития семенников слабо выражены первичные и вторичные половые признаки, нарушено течение сперматогенеза. Половые рефлексы сохранены. Иногда эффективно раннее лечение мужскими половыми гормонами. Чем больше в наборе Х-хромосом, тем значительнее снижен интеллект. Инфантильность и поведенческие проблемы при синдроме Клайнфелтера создают трудности социальной адаптации.

YO и 00- зиготы нежизнеспособны.

Иногда возможны случаи увеличения количества Y-хромосом: XYY, XXYY и др. При этом больные имеют признаки синдрома Клайнфелтера, высокий рост (в среднем 186 см) и агрессивное поведение. Могут быть аномалии зубов и костной системы. Половые железы развиты нормально. Чем больше в наборе Y-хромосом, тем значительнее снижение интеллекта.

Мозаичность пигментации [франц. mosaique - мозаика, пестрая смесь; лат. pigmentum - краска] - нерегулярность окраски (пигментации) частей тела животных и растений.

Мозаицизм (генетический мозаицизм , хромосомный мозаицизм - mosaicism; мозаичность ; могут употребляться синонимы «мозаичная форма» , «мозаичный кариотип» ) - от фр. слова mosaique «мозаика» - наличие в тканях (растения, животного, человека) генетически различающихся клеток. Мозаицизм может быть следствием соматических мутаций, митотическогокроссинговераили нарушенийсегрегации хромосом(расхождение хромосом, например отставание одной их хромосом) в митозе.

Хромосомные аберрации и мутации одиночных генов могут локализоваться не во всех клетках организма, а только в отдельных клетках или клеточных популяциях. Если мутации возникают только в первичных половых клетках, говорят огонадном мозаицизме.-Хромосомный мозаицизмочень часто встречается у больных саномалиями половых хромосом.


к правило, клиническая картина при мозаицизме выражена не так ярко, как у лиц с полной формой болезни. Признаки хромосомного мозаицизма:асимметрия туловища или конечностей,неравномерная пигментация кожи. Эти признаки наиболее характерны для больных смозаицизмом с Х-аутосомными транслокациями. Для подтверждения диагноза мозаицизма исследуют культуры фибробластов больных. Мозаицизм у матери может влиять на развитие плода. Например, некоторые случаивнутриутробной задержки развития плодас нормальным кариотипом обусловленычастичным мозаицизмом плаценты.

— У больных с мозаицизмом с мутацией одиночного гена может наблюдаться неоднородное распределение дефекта (пример — очаговыйилисегментарный нейрофиброматоз). Если мутация доминантного гена происходит в одном из клонов первичных половых клеток родителей (гонадный мозаицизм), то она может проявиться у ребенка. Этим объясняются некоторые случаи рождения детей с моногенными болезнями от здоровых родителей.

Соматическая мозаика выражается двумя или более различными фенотипами в разных частях его тела.

У многоклеточных, каждая клетка у взрослого организма, в конечном счете, получена от одноклеточной оплодотворенной яйцеклетки. Таким образом, каждая клетка взрослого обычно имеют одну и ту же генетическую информацию. Но иногда в ходе развития организма встречается мутацияв одной из клеток, при делении клеточного ядра. Взрослый организм в результате состоит из двух типов клеток: клетки с мутацией и без мутации.


Ярчайшие примеры соматического мозаицизма это Синдром Дауна(около 2%-4% людей с синдромом Дауна наследуют дополнительные гены хромосомы 21, но не в каждой клетке тела. Это мозаичный синдром Дауна ) и наличие глаз разного цвета (например, карий и зеленый). Если мутация затрагивающая выработку меланина (животных или растительных пигментов чёрного и коричневого цветов) произошла в одной из клеток в линии клеток одного из глаз, то глаза будут иметь различные генетические возможности для синтеза меланина. В результате организм может иметь глаза двух разных цветов.

Еще примеры мозаичной пигментации:

Наиболее известна мозаичная пигментация листьев (пестролистность), обусловленная поражением вирусами (вирус табачной мозаики и т. п.); причинами,помимо вирусной инфекции, могут быть пластидные мутации и т. п.; также мозаичная пигментация иногда проявляется в окраске тканей и их производных (напр., шерсти, глаза) у животных, что может быть связано с рядом различных причин - нарушением эмбриональной миграции меланоцитов, митотическим кроссинговером и другими.

Мозаичный синдром Дауна — существует мозаичная форма синдрома Дауна. Мозаичный синдром Дауна характеризуется наличием в организме клеток с нормальным хромосомным набором и клеток с частичным набором 21 хромосомы. Соотношение нормальных клеток и с измененным набором хромосом может быть различно. Чем меньший процент патологических клеток, тем менее заметно проявление синдрома Дауна. Но частота мозаичной формы синдрома Дауна не превышает 2-3%.

Мозаицизм – что это такое?

Чтобы говорить о мозаицизме, нужно немного повторить генетику и вспомнить, что любой многоклеточный организм, имеющий половое оплодотворение, а не деление или партеногенез, происходит от одной оплодотворенной мужским генетическим материалом яйцеклетки. В ходе роста зиготы происходит многоэтапное деление, но все клетки в организме имеют один и тот же генетический набор, то есть кариотип и генотип. Но у людей с мозаицизмом может формироваться несколько генетических наборов в силу разнообразных, как правило неблагоприятных факторов. Тогда организм имеет нормальные здоровые клетки и мутировавшие клетки.

Мозаицизм имеет происхождение из Франции и берет основы от слова мозаика. От латинского «мусивум», что обозначает посвященное музам. Такое явление формируется при наличии в клетках двух разных видов генов, клеток разного генотипа. Из мифологии имеется подобие такого существа, называется оно химерой и собрано из нескольких разных животных. Этот образ является прототипом мозаицизма, который происходит от нескольких генотипов.

Генетический мозаицизм возможен не во всех хромосомах, а лишь в отдельных наборах, что приводит к неполному и неоднородному распространению поражения.


Мозаицизм может возникать в половых клетках, при непосредственном на них воздействии неблагоприятных факторов. При этом мутация наследуется рандомно, нарушая традиционное Менделевское наследование. Это ведет к тому, что патология обнаружится не у всех детей больных родителей, а избирательно. Соматические клетки также могут подвергаться мозаицизму, но он не передается в поколении, поскольку соматические хромосомы не являются носителями генной информации для поколений, они влияют на жизнь своего носителя при их проявлении. Фенотип, то есть внешние признаки генотипа, набора хромосом, формируются зависимо от проявления патологических аллелей.

Мозаицизм хромосомный распространен при аномальных патологиях половых хромосом. При этом дает свои отдельные признаки разных мозаичных заболеваний.

Плацентарный мозаицизм является отдельной формой, возможность выявления которой появилась лишь с методами внутриутробного инвазивного исследования частей плода, детского места и околоплодных вод. Проявляет себя при внутриутробном недоразвитии крохи из-за патологии плаценты, которая у матери заложена генетически вследствие мозаицизма. При этом, у плода совершенно беспрекословно нормальный кариотип, состоящий из 23-х пар хромосом, одна из которых половая и никаких иных экстрагенитальных либо акушерских проблем не выявляется.

Мозаицизм: причины

Причины мозаицизма всегда имеют свои негативные исходы или последствия. Для их понимания требуется элементарное знание молекулярной биологии и подвидов деления клеток.


Генетический мозаицизм нередко может проявится при мейозе, делении, которое ведет к формированию гаплоидных, то есть имеющих половинный набор клеток. При этом происходит обычное удвоение материала в первым цикле деления, а в следующем не происходит. Но в отдельных случаях может произойти значимый сбой какой-то из фаз мейоза, что приведет к патологическому делению клеток. Это может произойти в нескольких фазах мейоза, поскольку мейоз имеет много фаз. В профазе происходит конъюгация, ведущая к сближению хромосом с появлением бивалентов, а в последующем кроссинговер. Именно на этапе кроссинговера возможно формирование сбоя, что приведет к созданию мозаичных клеток. Мозаицизм хромосомный формируется именно при таком исходе и возможен в каждой организменной клетке в целом. В верных исходах кроссинговер – нормальный процесс, необходимый для увеличения изменчивости организмов, но при неверном его исходе возможны нарушения, среди которых присутствует и мозаицизм.

Причин мутаций, ведущих к мозаицизму может быть множество, среди них и вредные привычки, и всевозможные подвиды излучений, и влияние мутагенов. Если мутация осуществляется на стадии зиготы, как слитых клеток или на внушительно ранних этапах дробления, то влияние имеется только на плод, а если в половых хромосомах, то влияние может быть на всех детей.

Но на профазе мейоза не заканчиваются опасности в появлении проблем с делением, при расхождении хромосом также возможны казусы, ведущие к подобным формам патологий. Такое неправильное деление хромосом происходит в клеточном ядре, ведь именно оно отвечает за воспроизведение клеток.


Зависимо от времени происхождения мутации, мозаицизм может затрагивать и весь плод, а может затрагивать лишь один из зародышевых листов. То есть поразить лишь экто-, мезо- или эндодерму. Это приведет в последующем к тому, что мозаицизм обнаружится только во всех образованиях из того листа. Например, при поражении эндодермы – это все органы, мезодермы – это мышцы, сосуды, кости и все соединительные ткани, а эктодермы – внешние оболочки и органы восприятия.

Плацентарный мозаицизм формируется в случаях трисомии зиготы по одной из пар хромосом, когда какая – та пара утроилась. Это называется анеуплоидия, поскольку хромосомный набор не кратный гаплоидному. При этом после трисомии часть клеток при исправлении ошибок остались нормальными, а часть утроенными. Это приведет к тому, что трофобласт, с помощью которого питается плод, будет иметь отличный от плода набор хромосом.

Мозаицизм: симптомы

Нет отдельных характерных симптомов для мозаицизма, они разнообразны и сильно варьируют от вида мутаций и подвергшихся этому клеток. Они могут выражаться в разнообразных хромосомных заболеваниях или же быть совершенно безобидными.

Плацентарный мозаицизм имеет такие характерные критерии: недоразвитие и задержка внутриутробного развития. Множество самопроизвольных выкидышей происходит по таким причинам. Нередко у таких детей бывает преждевременной рождение. Но по таким признакам хромосомные аномалии не отличить, нужно проводить генетические исследования: кариотипирование, амниоцентез, биопсия ворсинок хориона с цитогенетическим исследованием.


Генетический мозаицизм нередко проявляется в отдельных симптомах. Типичный пример – это разные глаза, с разным окрасом радужек. Также проявляется в асимметрии тела, неравномерности пигментации или конечностях разной длины. Для выявления делается кариотипирование, исследование культур фибробластов.

Мозаицизм хромосомный имеет в своей структуре множество генетических синдромов. Мозаичный синдром Клайнфелтера проявляется у мужчин, как правило выражен слабее полноценной формы болезни. При этом у них удваивается, а иногда и утраивается хромосома Х, что нередко ведет к женоподобности, бесплодию и проблемам по части мужского здоровья. Гермафродитизм также нередко имеет мозаическую природу и проявляется рождением ребенка с разными признаками полов, например внутренние половые органы мужские, а внешние женские. Бывают и другие более неблагоприятные совокупности. Синдром Шершевского-Тернера проявляется у девочек с нулевой Х хромосомой и ведет к бесплодию, отсутствию выраженности вторичных половых признаков и складок на шее. Мозаичная форма синдрома Дауна также гораздо легче своего полноценного собрата, но имеет те же симптомы: торможение в развитие, особый внешний вид, дополнительные патологии внутренних органов. Определение мозаичных форм затруднено, поскольку нужно просмотреть не одну клетку. Проявления также варьируют от степени пенетрантности генов. Именно поэтому между половыми генетическими синдромами и здоровыми людьми имеется множество переходных форм, которые имеют высокие шансы иметь потомство.

Мозаицизм: лечение

Мозаические патологии неизлечимы в силу видоизмененного генотипа, но все же улучшить многие симптомы возможно и делать это необходимо. Важно осознание, что таких родителей нужно обследовать у генетиков и такие патологии предупреждать с помощью кабинетов семейного планирования, в частности при наличии проблем с одним ребенком.

Лечение персон с мозаицизмом сильно варьирует зависимо от патологии, которую оно провоцирует. Поскольку выраженность симптоматики может проявить себя менее при мозаической форме патологии, то и лечение требуется менее интенсивное. При гермафродитизме родители однозначно должны определиться по желанию с полом ребенка. После этого производится оперативное вмешательство с формированием внутренних (при потребности, если они не однополые) и внешних половых органов, после чего следует заместительная половыми гормонами терапия в нужном возрастном промежутке и пожизненно, что позволить малышу жить нормальной жизнью определенного пола.

При синдроме Дауна все сфокусировано на симптоматику, ее купирование. При пороках сердца – это бета-блокаторы, Дигоксин, Фуросемид и оперативное вмешательство на сердечной системе. При синдромальных состояниях: синдромах Клайнфельтера и Шершевского – Тернера специфического лечения нет, но требуется немалое терпение с работой психолога у таких индивидов, в силу их значимой с иными персонами дифференциацией.

Рак как следствие генетического мозаицизма

А.В. Лихтенштейн

НИИ канцерогенеза ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России;

Россия, 115478 Москва, Каширское шоссе, 24

Контакты: Анатолий Владимирович Лихтенштейн [email protected]

Вопреки устоявшемуся мнению о стабильной ДНК как носителе наследственной информации, в нормальной (а не только раковой) клетке геном подвержен непрерывным изменениям в результате различных воздействий: ошибок копирования (в процессе репликации), дефектов сегрегации хромосом (в митозе) и прямых химических атак (активными формами кислорода). Процесс генетической диверсификации клеток стартует в эмбриональном развитии и длится всю жизнь, порождая феномен соматического мозаицизма. Новые представления о генетическом разнообразии клеток организма заставляют в ином, чем ранее, ракурсе рассматривать проблемы этиологии, патогенеза и профилактики злокачественных новообразований.

Ключевые слова: соматический мозаицизм, рак, мутагенез, канцерогенез, профилактика рака, секвенирование генома

DOI: 10.17650/2313-805X-2017-4-2-26-35

Cancer as a result of genetic mosaicism

A. V. Likhtensteyn

Research Institute of Carcinogenesis, N. N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia; 24 Kashirskoe Shosse,

Moscow 115478, Russia

Contrary to the generally accepted opinion about stable DNA as the carrier of hereditary information, in a normal (not just cancer) cell, this molecule is subject to the continuous changes as a result of copying errors (in the course of replication), defects of chromosome segregation (in mitosis) and direct chemical attacks (by reactive oxygen species). Genetic diversification of cells starts during embryonic development and lasts during whole life, generating a phenomenon of the somatic mosaicism. New data on genetic variety of somatic cells lead to a different, than earlier, perception of cancer etiology, pathogenesis and prevention.

Key words: somatic mosaicism, cancer, mutagenesis, carcinogenesis, cancer prevention, genome sequencing

Введение

Если верно утверждение о том, что ничто так не послужило расцвету физики, как война, то столь же верно и то, что ничто так не стимулировало развитие биологии, как рак. Беспрецедентные интеллектуальные и материальные усилия, направленные на борьбу с этой пандемией, чрезвычайно обогатили наши представления об основах жизни и устройстве живой клетки. Применительно к онкологии пришло осознание того, что «рак - болезнь генов» и что нестабильность генома - движущая сила канцерогенеза и ключевая особенность раковой клетки.

В неявной форме последнее утверждение подразумевает, что у нормальной клетки геном в основном стабилен. Однако лавина новых данных опровергает это убеждение. Оказалось, что сома1 человека - мозаика, составленная из триллионов генетически различных клеток (едва ли среди них найдутся 2 одинаковые) . Причина в том, что на протяжении жизни индивида множество мутагенов воздействует на его

клетки, и это ведет к их генетической диверсификации (соматическому мозаицизму2).

Поскольку, как оказалось, нестабильность генома отнюдь не является уникальным свойством раковой клетки, но присуща в той или иной мере всем клеткам организма, ряд общепринятых положений фундаментальной онкологии подлежит пересмотру. В частности, феномен генетического мозаицизма чрезвычайно расширяет круг «подозреваемых» в участии в канцерогенезе и побуждает видеть в возникновении рака «вину» не индивидуальную, а коллективную (т. е. не клетки-одиночки, а всего клеточного сообщества).

Мозаицизм - естественное и неизбежное явление

Термин «соматический мозаицизм» означает присутствие в организме, возникшем из одной оплодотворенной яйцеклетки (зиготы), 2 и более генетически различных клеточных популяций. Мозаицизм - естественное следствие всеобщего, непрерывного и длящегося всю жизнь мутагенеза. Случайные мутации

1Сома - совокупность всех (за исключением половых) клеток организма.

2Предмет данного обзора - феномен соматического мозаицизма, который включает лишь стохастические дефекты генома (программируемый мозаицизм половых клеток и клеток иммунной системы не рассматривается).

неизбежны при делении клеток из-за ошибок репликации, репарации и митоза. Кроме того, их могут вызывать некоторые факторы внешней среды.

Накопление дефектов «центрального процессора», каковым является генетический аппарат, не может не приводить к искажению нормальных функций клетки, включая ее взаимодействие с соседями. Подобно совершенной конструкции, приходящей со временем в негодность из-за эрозии составляющих ее элементов, многоклеточный организм вследствие мозаицизма становится подвержен различным патологическим процессам .

Генетический мозаицизм определяют 2 фундаментальные величины: 1) частота мутаций в делящихся клетках человека (~10-8-10-9 в расчете на пару оснований и 1 клеточное деление 3); 2) размер диплоидного генома человека (6 х 109 пар оснований). Их сочетание означает, что всякий раз, когда клетка делится, в геноме каждой из ее «дочерей» появляются от 3 до 30 мутаций . Отсюда следует, что мозаицизм возникает уже при 1-м делении зиготы (ее дочерние клетки не тождественны генетически) и множится при всех последующих. На протяжении ~40 генераций эмбрионального развития мозаицизм возрастает настолько, что в каждой клетке новорожденного ребенка присут-

ствуют >120 мутаций (суммарно в организме ~7 х 1012) . Расчеты свидетельствуют о том, что к 15 годам жизни каждая из ~3,5 х 1013 клеток человека накапливает 100-1000 точковых мутаций. И это только в кодирующих генах, составляющих 1-2 % генома . Структурные перестройки (делеции, инсерции, хромосомные аберрации), которые хотя и возникают реже, но функционально более значимы, чем точковые мутации, еще более увеличивают мутационное бремя пролифериру-ющей клетки и всего организма .

Мозаицизм - процесс динамический: мутации, возникающие на всех этапах эмбрионального и постна-тального развития, с возрастом накапливаются (рис. 1). Большую роль при этом играет время их появления - чем раньше это происходит, тем большее число соматических клеток они «метят» . Таким образом, можно полагать, что все клетки организма генетически уникальны и нет двух абсолютно одинаковых . Лишь в старости мозаицизм несколько снижается из-за истощения пула стволовых клеток.

К мозаицизму ведут мутации разного типа (см. таблицу): от мелких нуклеотидных замен (single-nucleotide variants, SNVs) до крупных перестроек генома, затрагивающих хромосомы или их фрагменты (copy-number variants, CNVs). Тип и масштаб изменений могут

Терминальные мутации

Постзиготные мутации

Прогрессирующий мозаицизм

Рис. 1. Развитие соматического мозаицизма на протяжении жизни индивида. Терминальные мутации (вродительских половых клетках или зиготе) «метят» все клетки новорожденного и могут быть переданы потомству. Постзиготные соматические мутации не наследуются (исчезают из популяции со смертью носителя). Чем раньше в эмбриональном развитии возникает мутация, тем шире ее «представительство» в тканях организма и, в случае онкогенного потенциала, выше риск развития онкологического заболевания. На протяжении жизни генетический мозаицизм нарастает (показано затемнением фигур, символизирующих разные периоды жизни человека) и вносит вклад в старение. (адаптировано из ). RIP (лат. requiescat in place) - покойся с миром.

"Необходимо подчеркнуть, что такая частота мутаций характеризует нормальные клетки человека с полноценными системами репарации. Копирование ДНК не может и не должно быть абсолютно безошибочным (без мутаций невозможна была бы изменчивость клеток и, в конечном итоге, биологическая эволюция). При нарушении систем репарации, что характерно для раковых клеток, возникает часто «мута-торный» фенотип, при котором частота мутаций возрастает многократно.

Причины соматического мозаицизма

Механизм Следствие

Точковые мутации Точковые мутации (single-nucleotide variants, SNVs) и небольшие инсерции и делеции (indels) возникают в соматических клетках на протяжении всей жизни в результате ошибок репликации и воздействия внешних и внутренних мутагенов

Активация ретротранс-позонов L1 и Alu Активация в эмбриогенезе транспозонов вызывает структурные перестройки генома (copy-number variants, CNVs) в клетках головного мозга и миокарда взрослого человека

Вариабельность тандемных повторов Тринуклеотидные повторы формируют участки, в которых часто происходит «проскальзывание» ДНК полимеразы при репликации ДНК. Этот вариант мозаицизма ассоциирован с неврологическими заболеваниями

Негомологичное соединение концов Возникают небольшие (1-4 пары оснований) indels , а также инсерции свободной ДНК митохондрий или ретротранспозонов

Неаллельная гомологичная рекомбинация Возникающий вследствие повреждения ДНК обмен между негомологичными повторами чреват большими дефектами (инсерциями и делеци-ями )

Ошибки репликации ДНК Ошибки репликации ДНК могут разными путями вызывать как точковые мутации, так и большие перестройки генома

Ошибочная гомологичная рекомбинация Репарация двунитевых разрывов ДНК посредством гомологичной рекомбинации сопряжена с копированием последовательности интактной гомологичной хромосомы. В случае ошибки может произойти потеря гетерозиготности (copy-number-neutral allelic imbalance)

Неправильная сегрегация хромосом в митозе Ошибки сегрегации хромосом, ведущие к анеу-плоидии, происходят с частотой от 1:100 до 1:50 клеточных делений и могут быть 2 типов: нерасхождение сестринских хроматид в анафазе, в результате чего одна дочерняя клетка рождается с моносомией, а другая - с трисомией; задержка анафазы, обусловленная невозможностью одной или нескольких хромосом перейти в ядро дочерней клетки и имеющая следствием моносомию

определять различные сценарии канцерогенеза (см. ниже). Анализ геномно-фенотипических ассоциаций (genome-wide association studies) свидетельствует о том, что ~10 % дефектов генома имеют фенотипическое выражение . Фенотип мутации (нейтральная, негативная или позитивная) определяет судьбу клетки: «неуспешные» клетки исчезают, «успешные» порождают клоны.

Канцерогенез: «семена» и «почва»

Если судить по морфологическим изображениям, раковый (нарушающий «правила общежития», т. е., по сути, «криминальный»4) очаг возникает на фоне нормальной, по всей видимости, ткани. Феномен

соматического мозаицизма обнаруживает под этим внешним благополучием истинную картину: раковая клетка возникает всегда в той или иной степени измененной среде («мутант среди мутантов»). Возможно, именно от степени «криминогенности» этой среды зависит, быть раку или не быть (с возрастом увеличиваются и мозаицизм ткани и частота возникновения рака, что позволяет думать об ассоциации этих процессов). Возможно также, что в степени «криминоген-ности» среды (т. е. в масштабе нарушений межклеточной кооперации) кроется ответ на вопрос, почему рак так редок . Действительно, если на популяци-онном уровне впору говорить о раковой пандемии, то на клеточном - о чрезвычайной редкости раковой трансформации (лишь у части людей возникают одиночные, как правило, опухоли, при том, что в организме человека ~10-30 триллионов клеток и в каждой из них существует множество мутаций, в том числе драйверных). Видимо, проявить весь свой потенциал (породить растущую опухоль) раковая клетка может лишь при том необходимом (и редком) условии, что ее окружение этому благоприятствует. Феномен рака in situ явно об этом свидетельствует .

В 1889 г. S. Paget, объясняя органную специфичность метастазирования рака молочной железы, выдвинул концепцию «семян и почвы» . Кажется оправданным применение этой терминологии и к первичному очагу, имея при этом в виду взаимоотношения трансформированной клетки («семя») и ее тканевого окружения («почва»). На заре онкологии приоритет в этой паре отдавали «семенам», а «почве» отводили пассивную функцию селекции наиболее адаптированных к ее условиям клонов . В современных представлениях, напротив, «почве» (ткани, в которой возникла опухоль) отводится важнейшая роль . В теории TOFT (Tissue Organization Field Theory ) предполагается даже, что рак - следствие дезорганизации тканевой структуры, а мутации вторичны и особого значения не имеют (последнее утверждение - без серьезных на то оснований) .

Впечатляющее свидетельство директивной роли «почвы» в канцерогенезе представлено в классической работе B. Mintz и K. Illmensee . Показано, что клетки злокачественной тератокарциномы ведут себя по-разному в зависимости от среды их обитания: при подкожном введении вызывают смертельные опухоли, но будучи инокулированы в бластоцист беременной мыши формируют нормальный эмбрион (рис. 2). Результаты современных исследований также свидетельствуют о том, что раковый фенотип в принципе обратим .

Существуют доказательства того, что «почва» способна инициировать канцерогенез . Проводниками ее влияния служат ассоциированные с опухолью макрофаги и фибробласты, миофибробласты, нейтрофилы

4В математической теории игр для описания поведения раковой клетки используется термин "defector" - отступник .

Рис. 2. Влияние нормального окружения на опухолевый фенотип. В ходе 8-летнего эксперимента асцитная тератокарцинома черных мышей была проведена через 200 пассажей (животные погибали через 3-4 нед), после чего 5 опухолевых клеток были инокулированы в бластоцист, введенный затем в матку псевдобеременной белой мыши. Полосатая шкурка новорожденных мышей и изоферментный состав их внутренних органов доказывают полноценное участие клеток тератокарциномы в нормальном эмбриональном развитии. Мыши-«химеры» давали здоровое потомство (адаптировано из )

и адипоциты , а действующими агентами - цитокины и хемокины (в частности, TGF-P, NF-кB, TNF-a) , экзосомы и микроРНК . Мутации в клетках опухолевой стромы обнаружены на самых ранних стадиях канцерогенеза, причем «дестабилизированная» строма усиливает генетическую нестабильность в близлежащем эпителии с его последующей трансформацией и переходом в рак . Побуждать к канцерогенезу своих нормальных соседей могут также стареющие клетки, которые, как оказалось, посредством своего секретома и паракринной регуляции индуцируют воспаление и злокачественный рост .

Мозаицизм привносит в картину новый элемент, а именно неоднородность тканевой структуры. Об этом свидетельствует сам факт обнаружения данного феномена. Действительно, хотя теоретическое предполо-

жение о генетической уникальности каждой клетки организма подкрепляется результатами глубокого секвенирования тканевой ДНК и полногеномного секвенирования одиночных клеток , формально доказать его прямым экспериментом невозможно: как бы ни были высокопроизводительны существующие технологии, они не способны (и, возможно, никогда не будут способны) секвенировать геном каждой из триллионов клеток человеческого организма. Отсюда следует, что в феномене мозаицизма нам видна лишь «верхушка айсберга», а именно гетерогенность не отдельных клеток, а клеточных клонов: самое «ультраглубокое»5 секвенирование способно зарегистрировать лишь тот генетический вариант, который присущ многим клеткам и превышает фон, формируемый слабыми одиночными сигналами .

5Глубина секвенирования - среднее число прочтений данного нуклеотида в исследуемой последовательности ДНК.

Таким образом, констатация существования соматического мозаицизма - одновременно свидетельство того, что за внешней (морфологической) однородностью нормальной ткани скрывается ее клональная гетерогенность («ячеистость»). Порождаемая генетическим мозаицизмом комбинаторика случайных клеточных мутаций приводит, по-видимому, к всевозможным девиантным (не предусмотренным нормальным геномом) межклеточным взаимодействиям и, тем самым, к множеству различных сочетаний «семян» и «почвы». Расшатывая строго упорядоченную структуру ткани и формируя ее «ячеистость», мозаицизм создает к тому же возможность появления той уникально «комплементарной» пары («семени» и «почвы»), которая способна расти, эволюционировать и создавать опухоль . Вероятно, именно из-за отсутствия в большинстве случаев такой «комплементарности» очаги клональной клеточной экспансии останавливаются на разных стадиях развития, порождая лишь абортивные и «дремлющие» т situ-формы .

Сценарии канцерогенеза

Участие мозаицизма начинают подозревать также в процессах (в частности, в воспалительных реакциях и при атеросклерозе ), в которых генетической составляющей прежде не предполагали. Что касается рака, роль мозаицизма в его возникновении несомненна (см. таблицу). Так, генетические дефекты, ассоциированные с клеточной трансформацией, очень часто обнаруживают в геноме внешне нормальных клеток. Мутации ЖТСН1, ЖТСН2, ШТСНЗ и ТР53 найдены в 18-32 % нормальных клеток кожи (плотность «драй-верных» мутаций ~140/см2), что свидетельствует о кло-нальной экспансии частично трансформированных клеток задолго до клинических проявлений. В облученной солнечным светом, но внешне неизмененной коже постоянно находят мутации FGFR3, HRAS и КЯЛ8, а также большие структурные перестройки . В спер-матогониях пожилых мужчин часто встречаются мутации FGFR2, FGFR3 и HRAS . В организме каждого здорового новорожденного есть, по крайней мере, 1 клон клеток с онкогенной мутацией; многие солидные опухоли инициированы, по-видимому, еще на стадии эмбриона . Особо велика роль первой «драйвер-ной» мутации .

Секвенирование «ракового» генома позволяет построить «генеалогическое древо» опухоли и получить представление о ее клональной эволюции. Главное открытие этого направления состоит в том, что сценарий многостадийного канцерогенеза, считавшийся до последнего времени единственно возможным, таковым не является. Установлено существование, по крайней мере, 2 альтернативных путей обретения клеткой опухолевого фенотипа.

Многостадийный канцерогенез, по аналогии с теорией Дарвина, обусловлен последовательными циклами мутации - селекции. В результате длительного

(на протяжении десятилетий) накопления мелких дефектов (мутаций, делеций, инсерций) нормальная клетка превращается в раковую (рис. 3). Поступательный характер процесса проявляется в характерных и предшествующих опухоли гистологических изменениях (предрак) . Ранняя теория предполагала при этом линейный характер эволюции, т. е. вытеснение менее приспособленных клонов наиболее «продвинутым», и следовательно, гомогенность опухоли на последовательных этапах ее развития . Однако оказалось, что опухолевые клоны чаще претерпевают не «линейную», но «ветвящуюся» (branched) эволюцию и что большинство опухолей клонально гете-рогенны . Последнее является, видимо, главным препятствием для успешной терапии рака.

Теория Дарвина (эволюционный «градуализм») в середине прошлого века была подвергнута пересмотру, поскольку палеонтологические исследования не обнаружили переходных форм между отдельными видами. Появилась концепция прерывистого равновесия (punctuated equilibrium), согласно которой биологическое развитие может происходить скачками (квантами), перемежающимися длительными периодами покоя . С некоторым запозданием такая же смена парадигм произошла и в фундаментальной онкологии . Так, полногеномное секвенирование «раковых» геномов обнаруживает наряду с «медленным» сценарием (в русле концепции многостадийного канцерогенеза) еще и «быстрый» (в соответствии с концепцией прерывистого равновесия) (см. рис. 3).

Если «медленный» сценарий (генетический градуализм) реализуется на протяжении многих лет посредством накопления мелких дефектов, то «быстрый» (генетический пунктуализм) является следствием одномоментных клеточных катастроф, возникающих из-за сбоев в процессах репликации, транскрипции и митоза. Они приводят к анеуплоидии (структурным перестройкам генома, вариациям числа хромосом или их фрагментов) . Так, укороченные теломеры порождают циклы слияний и разрывов хромосом (breakage-fusion-bridge cycles) , ошибки сегрегации хромосом - хромотрипсис (расщепление хромосомы или ее части на множество фрагментов с последующим их случайным соединением) , двунитевые разрывы ДНК в участках активной транскрипции - хромоплексию (внутри- и межхромосомные перестройки, затрагивающие несколько хромосом) , аберрантно активированные противовирусные цитозиндезаминазы семейства APOBEC - категис (кластеры точковых мутаций C^-T) . Одномоментные катастрофы обычно завершаются гибелью клетки. Однако случайно выжившая клетка, «прыжком» преодолевшая последовательные стадии трансформации, на что обычно уходят многие годы, способна в короткие сроки породить опухоль.

Кроме упомянутых существует еще недарвиновский сценарий «большого взрыва» ("big bang"),

Градуализм (Дарвин)

Пунктуализм (Гулд и Элдридж)

AAATGCCGТААТ TAGC AAATGCCG ТААТ TAGC AAA Т GCCG СААТ TAGC AAATGCCGCAATTAGC AAA Т GCCG СААТ TAGC

Точковые мутации, делеции и инсерции

Структурные перестройки генома (хромотрипсис, хромоплексия и т. п.)

Рис. 3. Генотипическая и фенотипическая эволюция опухолевых клонов по Дарвину (многостадийный канцерогенез) и S.J. Gould, N. Eldredge (прерывистое равновесие) (адаптировано из )

не предполагающий селекции и эволюции клонов . Анализ 349 биоптатов из 15 опухолей толстой кишки показал, что главные события происходят в самом начале развития опухоли (в очаге из 104-105 клеток объемом <0,1 мм3). Все клоны, изначально присутствующие в опухоли, по мере ее роста увеличиваются в размерах параллельно, т. е. без изменения количественных соотношений. По-видимому, такому сценарию следуют относительно немногие опухоли. Предполагается, что у опухолевого клона есть альтернатива: быть «лучшим» или «первым» . Выбор зависит от обстоятельств. «Лучший» побеждает в условиях сильной конкуренции и селективного давления со стороны окружения (например, в опухоли, растущей в толще

органа и испытывающей пространственные ограничения). Напротив, в отсутствие конкуренции и пространственных ограничений (как в опухоли, растущей в просвет полого органа) доминирует «первый»: все клоны растут беспрепятственно, но у первого из них есть преимущество во времени и следовательно, в размере. Возможно, в реальности имеет место сочетание разных сценариев.

Профилактика рака: возможности и перспективы

Идея профилактики рака возникла под влиянием ранних исследований, искавших и находивших этиологические факторы исключительно во внешней среде.

Если рак - инфекционное заболевание (см. вирусо-генетическую теорию Л.А. Зильбера ), то естественно предположить, что устранение онкогенных вирусов из среды обитания человека предотвратит (сделает невозможным) возникновение рака также, как устранение малярийного плазмодия предотвращает малярию. Аналогичная логика применима и в отношении окружающих человека химических канцерогенов - главной, по мнению Л.М. Шабада, причины рака .

Многое изменилось за последние 50 лет. Оказалось, во-первых, что канцерогеном является любой гено-токсический фактор (не только онкогенные вирусы и химические канцерогены, но и ультрафиолетовое облучение, ионизирующая радиация, хроническое воспаление, бактериальная инфекция). Во-вторых, широкое применение секвенирования следующего поколения (Next Generation Sequencing, NGS) показало, что постоянно действующий и мощный генератор мутаций - внутренняя среда организма (см. таблицу и раздел «Мозаицизм - естественное и неизбежное явление»). В-третьих, анализ эпидемиологических, генетических и биохимических данных не подтверждает популярную ранее гипотезу о том, что факторы внешней среды вносят существенный вклад в мутагенез человека . Накапливаются сведения о превалировании «внутреннего» источника над «внешним» . Именно внутренняя среда, по имеющимся данным, генерирует большинство мутаций, тогда как внешние факторы, в случае их присутствия, вносят лишь дополнительный вклад в процесс трансформации и ускоряют его.

Открытие мозаицизма как естественного феномена еще более ограничивает роль профилактики как главного средства противораковой борьбы. Действительно, одно дело - небольшое число внешних факторов, в отношении которых вполне реальны превентивные меры, и принципиально иное - обилие внутренних процессов, далеко до конца не исследованных и не поддающихся контролю. Хотя ни в одной из приведенных выше работ реальность мутагенов внешней среды не ставилась под сомнение (речь шла лишь о неоправданном завышении их удельного веса), происходящая смена парадигм воспринята многими исследователями как ущемление профилактического направления, что привело к беспрецедентной по накалу полемике .

Сегодня ясно, что у мутагенеза есть 2 составляющие: постоянная и переменная. Первая обусловлена неотменяемыми и постоянно действующими внутренними процессами (если судить по масштабу мозаицизма, она количественно доминирует), 2-я - непостоянными и варьирующими по степени интенсивности факторами внешней среды (их устранение может снизить мутагенную «нагрузку» на организм, замедлить канцерогенез и отсрочить развитие рака, но никак не предотвратить его) . Здесь уместна аналогия со старением - родственным раку феноменом :

исключение неблагоприятных внешних факторов может замедлить этот процесс (что удавалось многим), но вовсе отменить старение не удалось никому.

Профилактика рака, состоящая в снижении (насколько это возможно) мутагенной нагрузки на организм, безусловно, важна, необходима и может быть весьма эффективной в отношении определенных групп риска. Вместе с тем необходимо признать, что справиться с пандемией рака она не способна: показатели онкологической заболеваемости, несмотря на все профилактические усилия, не обнаруживают на протяжении многих десятилетий сколько-нибудь устойчивой тенденции к снижению . При сохранении в будущем наблюдаемых сегодня мировых тенденций можно предвидеть рост общей онкологической заболеваемости с 12,7 млн новых случаев в 2008 г. до 22,2 млн в 2030 г. .

Более эффективной может оказаться профилактика рака, ориентированная на внутреннюю среду организма (Летор^еПйп) . Ее стратегия - предотвращение хронического воспаления, ожирения, неоангиоге-неза и тканевой гипоксии; ее мишени - элементы стромы (макрофаги, нейтрофилы, гранулоциты, лимфоциты, эндотелиоциты, фибробласты) и регуляторные молекулы (в частности, NF-кB и Н№-1). Положительными примерами хемопрофилактики служат статины и метформин, снижающие риск возникновения ряда опухолей, и нестероидные противовоспалительные препараты, уменьшающие риск развития рака толстой кишки и молочных желез. Сегодня проходят испытания многие другие перспективные препараты.

Заключение

Длительное время считалось, что движущей силой канцерогенеза является трансформированная клетка-одиночка: преодолевая сопротивление нормальной среды, она размножается, эволюционирует, порождает клоны и колонизирует организм. Открытия последнего времени (в частности феномена мозаицизма) позволяют предположить, что значительная, если не основная, доля «вины» за канцерогенез лежит на «криминогенной» тканевой среде, порождающей раковую клетку и благоприятствующей ее развитию.

Помимо теоретических, новые знания имеют практический аспект.

Они позволяют, во-первых, определять приоритеты и принимать обоснованные решения относительно стратегии противораковой борьбы .

Во-вторых, они дают возможность прогнозировать течение заболевания и чувствительность к противоопухолевой терапии. В частности, геномное профилирование позволило установить, что «быстрый» сценарий канцерогенеза, по которому развиваются многие опухоли , имеет обычно неблагоприятный прогноз , но при низком уровне анеуплоидии и большом числе несинонимичных точковых мутаций (порождающих неоантигены) иммунотерапия посредством

блокады контрольных точек иммунитета PD-1 и СПА-4 может быть весьма эффективной .

В-третьих, феномен мозаицизма побуждает вводить в геномное профилирование и мутационное сканирование количественные показатели. Дело в том, что, с одной стороны, очевидна необходимость всемерно повышать чувствительность методов анализа, поскольку раковые клоны, отличающиеся особо высокой злокачественностью (например резистентностью к терапии), могут быть поначалу очень малы. Однако с другой

стороны, искомая чувствительность не должна превышать разумные пределы, поскольку из-за естественного мозаицизма возможны ложноположительные результаты, т. е. выявление мутаций, не имеющих клинического значения (в образце тканевой ДНК массой ~0,5 мкг можно найти мутацию практически любого гена).

В заключение можно выразить надежду на то, что уже в не столь отдаленном будущем громадное количество научных знаний перейдет в более высокое качество практической онкологии.

ЛИТЕРАТУРА/REFERENCES

1. Fernandez L.C., Torres M., Real F.X. Somatic mosaicism: on the road to cancer. Nat Rev Cancer 2016;16(1):43-55.

2. Forsberg L.A., Gisselsson D., Dumanski J.P. Mosaicism in health and disease - clones picking up speed. Nat Rev Genet 2017;18(2):128-42.

3. Collins R.L., Brand H., Redin C.E. et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol 2017;18(1):1-21.

4. McCulloch S. D., Kunkel T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008;18(1):148-61.

5. Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A 2010;107(3):961-8.

6. Lynch M. Evolution of the mutation rate. Trends Genet 2010;26(8):345-52.

7. Ju Y.S., Martincorena I., Gerstung M.

et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 2017;543(7647):714-8.

8. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 2016;14(8):e1002533.

9. Bianconi E., Piovesan A., Facchin F. et al. An estimation of the number of cells

in the human body. Ann Hum Biol 2013;40(6):463-71.

10. Frank S.A., Nowak M.A. Cell biology: developmental predisposition to cancer. Nature 2003;422(6931):494.

11. Tomasetti C., Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015;347(6217):78-81.

12. Kurnosov A.A., Ustyugova S.V., Nazarov V.I. et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One 2015;10(2):e0117854.

13. Coufal N.G., Garcia-Perez J.L., Peng G.E. et al. L1 retrotransposition

in human neural progenitor cells. Nature 2009;460(7259):1127-31.

14. Gonitel R., Moffitt H., Sathasivam K.

et al. DNA instability in postmitotic neurons. Proc Natl Acad Sci USA 2008;105(9):3467-72.

15. Lieber M.R., Gu J., Lu H. et al. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem 2010;50:279-96.

16. Hastings P.J., Lupski J.R., Rosenberg S.M., Ira G. Mechanisms

of change in gene copy number. Nat Rev Genet 2009;10(8):551-64.

17. Leslie R., O"Donnell C.J., Johnson A.D. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 2014;30(12):185-94.

18. Nowak M.A. Five rules for the evolution of cooperation. Science 2006;314(5805):1560-3.

19. Bissell M.J., Hines W.C. Why don"t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011;17(3):320-9.

20. Greaves M. Does everyone develop covert cancer? Nat Rev Cancer 2014;14(4): 209-10.

21. Folkman J., Kalluri R. Cancer without disease. Nature 2004;427(6977):787.

22. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;133:571-3.

23. Gupta G.P., Massague J. Cancer metastasis: building a framework. Cell 2006;127(4):679-95.

24. Armitage P., Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 1954;8:1-12.

25. Nowell P.C. The clonal evolution of tumor cell populations. Science 1976; 194(4260):23-8.

26. Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21(3):309-22.

27. DeClerck Y. A., Pienta K.J., Woodhouse E.C. et al. The tumor microenvironment at a turning point knowledge gained over the last decade, and challenges and opportunities ahead: a white paper

from the NCI TME Network. Cancer Res 2017;77(5):1051-9.

28. Sonnenschein C., Soto A.M., Rangarajan A. et al. Competing views on cancer. J Biosci 2014;39(2):281-302.

29. Sonnenschein C., Soto A.M. The aging of the 2000 and 2011 Hallmarks of Cancer reviews: a critique. J Biosci 2013;38(3):651-63.

30. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant ter-atocarcinoma cells. Proc Natl Acad Sci USA 1975;72(9):3585-9.

31. Shachaf C.M., Kopelman A.M., Arvanitis C. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004;431(7012):1112-7.

32. Hendrix M.J., Seftor E.A., Seftor R.E. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 2007;7(4):246-55.

33. Telerman A., Amson R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 2009;9(3):206-16.

34. Maffini M.V., Soto A.M., Calabro J.M. et al. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 2004;117(Pt 8):1495-502.

35. Albini A., Sporn M.B. The tumour microenvironment as a target for chemo-prevention. Nat Rev Cancer 2007;7(2):139-47.

36. Bhowmick N.A., Chytil A., Plieth D. et al. TGF-ß signaling in fibroblasts modulates the oncogenic potential of adjacent epithe-lia. Science 2004;303(5659):848-51.

37. Olumi A.F., Grossfeld G.D., Hay-ward S.W. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999;59(19):5002-11.

38. Hayward S.W., Wang Y., Cao M. et al. Malignant transformation in a nontumorigen-ic human prostatic epithelial cell line. Cancer Res 2001;61(22):8135-42.

39. Witz I.P. Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Research 2008;68(1):9-13.

40. Rak J. Extracellular vesicles - biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 2013;4:21.

41. Zhang L., Zhang S., Yao J. et al. Microen-vironment-induced PTEN loss by exo-somal microRNA primes brain metastasis outgrowth. Nature 2015;527(7576): 100-4.

42. Bindra R.S., Glazer P.M. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 2005;569(1-2):75-85.

43. Ishiguro K., Yoshida T., Yagishita H. et al. Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 2006;55(5):695-702.

44. Kim B.G., Li C., Qiao W. et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006;441(7096):1015-9.

45. Weber F., Shen L., Fukino K. et al. Totalgenome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet 2006;78(6):961-72.

46. Parrinello S., Coppe J.P., Krtolica A., Campisi J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 2005;118(Pt 3):485-96.

47. Coppe J.P., Patil C.K., Rodier F. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions

of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008;6(12):2853-68.

48. Abyzov A., Mariani J., Palejev D. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 2012;492(7429):438-42.

49. Cai X., Evrony G.D., Lehmann H.S. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 2014;8(5):1280-9.

50. Lodato M.A., Woodworth M.B., Lee S. et al. Somatic mutation in single human neurons tracks developmental and tran-scriptional history. Science 2015;350(6256):94-8.

51. Taylor T.H., Gitlin S.A., Patrick J.L. et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 2014;20(4):571-81.

52. Sims D., Sudbery I., Ilott N.E. et al. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014;15(2):121-32.

53. Moreno E., Rhiner C. Darwin"s multicel-lularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol 2014;31:16-22.

54. Burrell R.A., McGranahan N., Bartek J. et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013;501(7467):338-45.

55. Ghajar C.M., Peinado H., Mori H. et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 2013;15(7):807-17.

56. Martincorena I., Roshan A., Gerstung M. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015;348(6237):880-6.

57. Goriely A., Hansen R.M., Taylor I.B.

et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 2009;41(11):1247-52.

58. Hao D., Wang L., Di L.J. Distinct mutation accumulation rates among tissues determine the variation in cancer risk. Sci Rep 2016;6:19458.

59. Шабад Л.М. Некоторые общие сопоставления и закономерности развития предраковых изменений. В кн.: Пред-рак в экспериментально-морфологическом аспекте. М.: Медицина, 1967.

C. 352-373. .

60. Fisher R., Pusztai L., Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 2013;108(3):479-85.

61. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Research 2012;72(19):4875-82.

62. Gerlinger M., Rowan A.J., Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366(10):883-92.

63. Gould S.J., Eldredge N. Punctuated equilibrium comes of age. Nature 1993;366(6452):223-7.

64. Eldredge N., Gould S.J. On punctuated equilibria. Science 1997;276(5311):338-41.

65. Stepanenko A.A., Kavsan V.M. Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. Biopolymer Cell 2012;28:267-80.

66. Sato F., Saji S., Toi M. Genomic tumor evolution of breast cancer. Breast Cancer 2016;23(1):4-11.

67. Baca S.C., Prandi D., Lawrence M.S. et al. Punctuated evolution of prostate cancer genomes. Cell 2013;153(3):666-77.

68. Kim T.M., Xi R., Luquette L.J. et al. Functional genomic analysis of chromosomal aberrations in a compendium

of 8000 cancer genomes. Genome Res 2013;23(2):217-27.

69. Kloosterman W.P., Koster J., Molenaar J.J. Prevalence and clinical implications of chromothripsis in cancer genomes. Curr Opin Oncol 2014;26(1):64-72.

70. Cross W.C., Graham T.A.,

Wright N.A. New paradigms in clonal evolution: punctuated equilibrium in cancer. J Pathol 2016;240(2):126-36.

71. Graham T.A., Sottoriva A. Measuring cancer evolution from the genome. J Pathol 2017;241(2):183-91.

72. Martincorena I., Campbell P.J. Somatic mutation in cancer and normal cells. Science 2015;349(6255):1483-9.

73. Bunting S.F., Nussenzweig A. End-joining, translocations and cancer. Nat Rev Cancer 2013;13(7):443-54.

74. Forment J.V., Kaidi A., Jackson S.P. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 2012;12(10):663-70.

75. Stephens P.J., Greenman C.D., Fu B. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011;144(1):27-40.

76. Shen M.M. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell 2013;23(5):567-9.

77. Swanton C., McGranahan N., Starrett G.J. et al. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 2015;5(7):704-12.

78. Sottoriva A., Kang H., Ma Z. et al. A Big Bang model of human colorectal tumor growth. Nat Genet 2015;47(3):209-16.

79. Robertson-Tessi M., Anderson A.R. Big Bang and context-driven collapse. Nat Genet 2015;47(3):196-7.

80. Zilber L.A. On the interaction between tumor viruses and cells: a virogenetic concept of tumorigenesis. J Natl Cancer Inst 1961;26:1311-9.

81. Shabad L.M. Studies in the USSR on the distribution, circulation,

and fate of carcinogenic hydrocarbons in the human environment and the role of their deposition in tissues in carcinogenesis: a review. Cancer Res 1967;27(6):1132-7.

82. Thilly W.G. Have environmental mutagens caused oncomutations in people? Nat Genet 2003;34(3):255-9.

83. Lichtenstein A.V. Cancer: bad luck

or punishment? Biochemistry(Moscow) 2017;82(1):75-80.

84. Tomasetti C., Vogelstein B. Musings

on the theory that variation in cancer risk among tissues can be explained by the number of divisions of normal stem cells. arXiv:1501.05035 2015.

85. Tomasetti C., Li L., Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017;355(6331):1330-4.

86. Tomasetti C., Vogelstein B. Cancer risk: role of environment-response. Science 2015;347(6223):729-31.

87. Ashford N.A., Bauman P., Brown H.S. et al. Cancer risk: role of environment. Science 2015;347(6223):727.

88. Albini A., Cavuto S., Apolone G., Noon-an D.M. Strategies to prevent "bad luck" in cancer. J Natl Cancer Inst 2015;107(10):1-7.

89. Song M., Giovannucci E.L. Cancer risk: many factors contribute. Science 2015;347(6223):728-9.

90. Tarabichi M., Detours V. Comment

on "Variation in cancer risk among tissues can be explained by the number of stem cell divisions". bioRxiv 2015. DOI: http://dx.doi.org/10.1101/024497.

91. Potter J.D., Prentice R.L. Cancer risk: tumors excluded. Science 2015;347(6223):727.

92. Gotay C., Dummer T., Spinelli J. Cancer risk: prevention is crucial. Science 2015;347(6223):728.

93. Couzin-Frankel J. Biomedicine. The bad luck of cancer. Science 2015;347(6217):12.

94. Rozhok A.I., Wahl G.M., DeGregori J. A critical examination of the "bad luck" explanation of cancer risk. Cancer Prev Res(Phila) 2015;8:762-4.

95. Ledford H. Cancer studies clash over mechanisms of malignancy. Nature 2015;528(7582):317.

96. Couzin-Frankel J. Science communication. Backlash greets "bad luck" cancer study and coverage. Science 2015;347(6219):224.

97. O"Callaghan M. Cancer risk: accuracy

of literature. Science 2015;347(6223):729.

98. Wu S., Powers S., Zhu W. et al. Substantial contribution of extrinsic risk factors

to cancer development. Nature 2016;529(7584):43-7.

99. Alderton G.K. Cancer risk: debating the odds. Nat Rev Cancer 2016;16(2):68.

100. Blokzijl F., de Ligt J., Jager M. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016;538(7624):260-4.

101. Zhu L., Finkelstein D., Gao C. et al. Multi-organ mapping of cancer risk. Cell 2016;166(5):1132-46.

102. Alekseenko I.V., Kuzmich A.I., Pleshkan V.V. et al. The cause of cancer mutations: improvable bad life or inevitable stochastic replication errors? Mol Biol (Mosk) 2016;50(6):906-21.

103. Nowak M.A., Waclaw B. Genes, environment, and "bad luck". Science 2017;355(6331):1266-7.

104. Manskikh V.N. Do external or internal factors lead to tumor development?

It is still unknown. Biochemistry (Mosc) 2017;82(1):81-5.

105. Lichtenstein A.V. Response to comments by V.N. Manskikh: "Do external or internal factors lead to tumor development?

It is still unknown". Biochemistry (Mosc) 2017;82(1):86-7.

106. Manskikh V.N. Remark to response

of A.V. Lichtenstein. Biochemistry (Mosc) 2017;82(1):88-9.

107. Zhao A.H. Stem cells, environment, and cancer risk. Stem Cell Investig 2015;2:24.

108. Campisi J. Aging and cancer: the double-edged sword of replicative senescence.

J Am Geriatr Soc 1997;45(4):482-8.

109. Campisi J. Cancer and ageing: rival demons? Nat Rev Cancer 2003;3(5): 339-49.

110. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005;120(4):513-22.

111. Siegel R., Ma J., Zou Z., Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64(1):9-29.

112. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017;67(1):7-30.

113. Bray F., Jemal A., Grey N. et al. Global cancer transitions according to the Human Development Index(2008-2030): a population-based study. Lancet Oncol 2012;13(8):790-801.

114. Nones K., Waddell N., Wayte N. et al. Genomic catastrophes frequently arise

in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 2014;5:5224.

115. Notta F., Chan-Seng-Yue M., Lemire M. et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 2016;538(7625):378-82.

116. Davoli T., Uno H., Wooten E.C., Elledge S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017;355(6322):1-16.

117. Zanetti M. Chromosomal chaos silences immune surveillance. Science 2017;355(6322):249-50.

118. Zhao X., Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res 2017;77(4):817-22.

Краткий ответ:

Геном человека - совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомные хромосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований.

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК. Полное секвенирование выявило, что человеческий геном содержит 20 000-25 000 генов.

Ген – участок молекулы ДНК, несущий информацию об одном белке, а следовательно об одном признаке.

Полный ответ:

базовые регуляторные элементы генома

Также в отдельную группу элементов генома принято выделять регуляторные участки. В эту группу входят как базовые элементы, такие как промоторы, так и не менее важные дополнительные регуляторные элементы энхансеры, сайленсеры, инсуляторы. В геноме человека их насчитывается несколько сотен тысяч, что составляет порядка 10% генома.

Геномные мутации характеризуются изменением числа хромосом. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия.

Полиплоидия - увеличение числа наборов хромосом, кратное гаплоидному (Зn, 4n, 5n и т.д.). Причины: двойное оплодотворение и отсутствие первого мейотического деления. У человека полиплоидия, а также большинство анеуплоидий приводят к формированию леталей.

Анеуплоидия - изменение (уменьшение - моносомия, увеличение - трисомия) числа хромосом в диплоидном наборе, т.е. не кратное гаплоидному (2n+1, 2n-1 и т.д.). Механизмы возникновения: нерасхождение хромосом (хромосомы в анафазе отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая - без одной хромосомы) и «анафазное отставание» (в анафазе одна из передвигаемых хромосом отстаёт от всех других).

Трисомия - наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре - синдрома Эдвардса; по 13-й паре - синдрома Патау).

Моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека - по хромосоме X - приводит к развитию синдрома Шерешевского-Тернера (45,Х0)

113.Генетическая мозаичность клеток организма. Механизмы возникновения.

Краткий ответ:

1-Мозаицизм (генетический мозаицизм, хромосомный мозаицизм, «мозаичная форма», «мозаичный кариотип») - наличие в тканях (растения, животного, человека) генетически различающихся клеток.

2-генетический мозаицизм-сочетание в тканях индивидуума клеточных линий с различным хромосомным набором. При этом смесь клеток с нормальным и аномальным кариотипами может быть представлена во всех тканях организма или ограничена клетками какой-либо одной ткани.

Полный ответ:

Многоклеточный организм, клеточные популяции которого различны по генетической конституции, именуется мозаик.

Понятие мозаицизма связано с понятиями трисомии и анеуплоидии.

Может возникать в результате:

1)перераспределения (кроссинговер) в соматических клетках,
2)соматических мутаций в зиготе или на ранних стадиях дробления;
3)Сегрегации (процесс продольного расщепления хромосом на хроматиды (дочерние хромосомы) в митозе с последующим их расхождением к разным полюсам)хромосом при делении клеточного ядра (митозе).

114. Лайонизация. Механизм и биологическое значение.

Лайонизация – процесс инактивации одной из двух Х-хромосом в клетках женского организма, с образованием неактивного гетерохроматина (полового хроматина). Этот процесс обеспечивает дозовую компенсацию генов в женских клетках, чтобы с двух Х-хромосом не образовывалось вдвое больше РНК, чем в клетках мужского организма, имеющих только одну Х-хромосому.

Механизм. На неактивной Х-хромосоме экспрессируется специальный ген (XIST). Продукт экспрессии этого гена (Белок-некодирующая РНК) накапливается и распределяется по Х-хромосоме, образуя вокруг нее оболочку. Это происходит на уровне низкого ацетилирования гистонов и их замещения на другие гистоны. Хромосома инактивируется.

Полный ответ:

Лайонизация (lyonisation) [по имени М. Лайон] - гипотетический механизм компенсации дозы генов X-хромосомы, выражающийся в инактивации одной из двух Х-хромосом у женщин. Согласно гипотезе М. Лайон (1962 г.), по имени которой назван этот механизм, инактивация X-хромосомы происходит в раннем эмбриогенезе, осуществляется случайным образом (инактивированной может быть либо отцовская, либо материнская X-хромосома), затрагивает целиком всю X-хромосому и характеризуется устойчивостью, передаваясь клеточным потомкам.

Фенотипическое проявление Х-сцепленных признаков у женщин сильно зависит от случайнойинактивации одной из Х-хромосом. На ранней стадии развития эмбриона в каждой соматической клетке инактивируется одна Х-хромосома, которая может быть с равной вероятностью отцовской или материнской. Инактивация устойчива, поэтому все потомство исходной клетки наследует те же активную и неактивную Х-хромосомы. Таким образом, организм каждой женщины мозаичен, причем в среднем половина клеток экспрессирует отцовскую Х-хромосому, а половина - материнскую.

Если одна из Х-хромосом несет мутантный ген, то примерно половина клеток будет иметь нормальный фенотип, а другая половина - измененный. Это соотношение может стать иным, если вероятность выживания одного из клонов выше.

У гетерозиготной женщины наличие и степень тяжести болезни определяется соотношением клеток с активными мутантными и нормальными Х-хромосомами в каждой ткани.

В каждой клетке женского организма неактивную Х-хромосому можно выявить как плотное скопление хроматина - тельце Барра. Неактивная Х-хромосома реплицируется позднее, и ее ДНК метилирована в большей степени. Полагают, что метилирование ДНК играет роль в поддержании инактивации Х-хромосомы. Ген XIST транскрибируется только с неактивной Х-хромосомы и также необходим для инактивации, однако молекулярный механизм этого явления не изучен.

Случайный характер инактивации Х-хромосомы - важнейший фактор, определяющий проявление многих Х-сцепленных болезней у женщин. Выявление фенотипических изменений у гетерозигот зависит от того, насколько тщательно проведено обследование, и иногда от возраста обследуемого. Например, недостаточность орнитинкарбамоилтрансферазы у гетерозигот может протекать бессимптомно, иногда выявляют незначительную непереносимость белков, но у других больных периодически возникает гипераммонийная кома, которая может привести к летальному исходу. У гетерозиготных женщин иногда выявляются симптомы болезни при миопатии Дюшенна,гемофилии A и болезни Фабри. У гемизиготных мужчин симптомы болезни более устойчивы и выражены сильнее, чем у гетерозиготных женщин. Иногда биохимические нарушения происходят только в некоторых клетках, приводя к мозаицизму, например при хориоидеремии и некоторых формах Х-спепленного глазного альбинизма. Если при этом изменен продукт клеточной секреции, то степень проявления дефекта, например активность фактора свертывания VIII пригемофилии A , зависит от соотношения пораженных и нормальных клеток во всей ткани.

Вопрос №115

В чём заключаются трудности и преимущества изучения генетики человека?

Изучение генетики человека связано с биологическими и социально-этическими трудностями.

Биологические:

1) позднее половое созревание

2) малочисленное потомство у одной пары родителей
3) в основном моноплодная беременность (исключение - близнецы)

4) большой срок беременности

5) медленная смена поколений (20 - 25 лет)

6) особенности кариотипа (большое число хромосом и др.)

7) фенотипический полиморфизм (многообразие фенотипов).

Социально-этические:

1) невозможность направленных скрещиваний в интересах исследователя (невозможность применения гибридологического метода)

2) отсутствие точной регистрации наследственных признаков (проводится не всегда и не везде)

3) невозможность создания одинаковых условий жизни для всех людей.

Однако у человека есть и преимущества перед другими генетическими объектами:

1) способность воспринимать информацию и абстрактно мыслить

2) высокая численность популяций, доступных для изучения

3) возможность регистрации наследственных признаков в течение длительного времени

4) использование гибридизации соматических клеток для генетического анализа.

_____________________________________________________________________________

Антропогенетика (генетика человека) - раздел генетики, изучающий наследственность и изменчивость у человека. Из генетики человека выделяется медицинская генетика, исследующая механизмы развития наследственных болезней, возможности их лечения и профилактики.

116.Клинико-гениалогический метод.

Клинико-генеалогический метод включает три основных этапа: клиническое обследование, составление родословной и генеалогический анализ. При составлении родословных принято использовать унифицированные символы. При составлении родословной желательно получить сведения о максимальном количестве родственников 3-4 поколений. Далее, внизу под родословной записывается легенда (данные о состоянии здоровья родственников, причинах и возрасте смерти и др.) и указывается дата составления этого документа. Использование клинико-генеалогического метода предполагает плательное клиническое обследование всех членов родословной с целью выявлена у них стертых или атипичных признаков заболевания. Сбор анамнестических данных проводится по определенной схеме:

Полученные данные записываются в этой последовательности в медико-генетическую карту. При составлении родословных необходимо учитывать наличие и характер профессиональных вредностей (особенно для родителей, имеющих детей с врожденными пороками развития или хромосомной патологией), факторов, влияющих на возникновение патологии плода и новорожденного (прием лекарственных препаратов, заболевания матери, воздействие химических и радиационных мутагенов), время их действия (до или во время беременности). Заключительный этап - анализ родословной.

Полный ответ:

Клинико-генеалогический метод включает три основных этапа: клиническое обследование, составление родословной и генеалогический анализ. При составлении родословных принято использовать унифицированные символы. Составление родословной начинается с пробанда (от англ. probe - зондирование), т.е. с лица, первым попавшего в поле зрения исследователя. Чаще всего им оказывается больной или носитель признака. Однако им может быть и любой родственник больного, обратившийся за медико-генетической консультацией. Всех детей одной супружеской пары называют сибсами (от англ. аббревиатуры SIBS: Sisters - BrotherS). Если общим у братьев и сестер является только один из родителей, их называют полусибсами. В родословной сибсы располагаются в порядке рождения горизонтально слева направо, начиная со старшего. При составлении родословной желательно получить сведения о максимальном количестве родственников 3-4 поколений. Чаще всего родословная бывает представлена последовательными, соединенными между собой горизонтальными рядами, однако, втом случае, если членов родословной оказывается очень много, эти ряды могут быть представлены в виде концентрических окружностей. Все члены одного поколения располагаются строго в одном ряду. Ряды поколений обозначают римскими цифрами. Представители одного поколения нумеруются арабскими цифрами, последовательно - слева направо. Таким образом, каждый член родословной имеет свой шифр двоичной системы, например- 1-1,II-1, II-2 и т.д. Необходимо указывать возраст всех членов родословной, так как некоторые заболевания проявляются в различные периоды жизни. Супруги родственников пробанда, если они здоровы, могут не изображаться. При рассмотрении нескольких признаков прибегают к буквенным или штриховым изображениям внутри символов. Далее, внизу под родословной записывается легенда (данные о состоянии здоровья родственников, причинах и возрасте смерти и др.) и указывается дата составления этого документа. Использование клинико-генеалогического метода предполагает плательное клиническое обследование всех членов родословной с целью выявлена у них стертых или атипичных признаков заболевания. Иногда это оказывается возможным только с помощью дополнительных параклинических методов исследования (например, рентгенологических, биохимических, электрофизилогических, морфологических и других). При невозможности обследования всех членов родословной сбор информации о наличии в семье пробанда заболеваний или признаков, указывающих на таковое, можно проводить разными методами. Например, путем опроса или анкетирования. К сожалению, в настоящее время составление родословных представляет собой сложную задачу, вследствие того, что люди зачастую имеют скудные, отрывочные или неточные сведения о своих родственниках и состоянии их здоровья. Все это затрудняет постановку диагноза. Сбор анамнестических данных проводится по определенной схеме:

1. Сведения о пробанде - анамнез заболевания, включающий начальные признаки и возраст их манифестации, последующее течение болезни; если это ребенок - сведения о раннем психомоторном и последующем умственном и физическом развитии.

2. Данные о сибсах (братьях и сестрах) и родителях пробанда - возраст, здоровы или больны, проведение аналогии с заболеванием пробанда в случае болезни.

3. Сведения о родственниках со стороны матери (родители, их дети, внуки).

4. Сведения о родственниках со стороны отца (родители, их дети, внуки).

Полученные данные записываются в этой последовательности в медико-генетическую карту. Чем больше родственников пробанда будет непосредственно опрошено или обследовано, тем выше шансы на получение более достоверных и полезных сведений, так как наследственные заболевания в семье часто скрываются или неправильно диагностируются. Необходимо внимательно анализировать сообщения об инфекциях и травмах, характер течения которых может указывать на сопутствующее наследственное заболевание или предрасположенность к нему. Важно учитывать генетическую гетерогенность и варьирующую экспрессивность наследственных заболеваний. При сборе анамнестических данных необходимо выяснять акушерский анамнез у женщин: как протекала беременность, на каком фоне она наступила, подробности о всех случаях спонтанных абортов, мертворождений, наличии бесплодных браков и ранней детской смертности, что наиболее важно при подозрении на хромосомную патологию. Следует отмечать девичьи фамилии женщин и место жительства семьи и предков, национальность, что помогает выявить кровно-родственные браки, которые увеличивают вероятность рождения детей с АР наследственным заболеванием. Если родители пробанда родом из одного небольшого по числу жителей населенного пункта (особенно изолированного геофафически), можно предположить, что они имеют общих предков, а, следовательно, и общие патологические гены (случайный инбридинг). При составлении родословных необходимо учитывать наличие и характер профессиональных вредностей (особенно для родителей, имеющих детей с врожденными пороками развития или хромосомной патологией), факторов, влияющих на возникновение патологии плода и новорожденного (прием лекарственных препаратов, заболевания матери, воздействие химических и радиационных мутагенов), время их действия (до или во время беременности). Заключительный этап - анализ родословной - требует хорошего знания критериев типов наследования, которые представлены в наших статьях. Кроме того, необходимо учитывать возможность фенокопий наследственных заболеваний.

117. Современные методы цитогенетики.

Краткий обзор:

Цитогенетика - раздел генетики, изучающий закономерности наследственности во взаимосвязи со строением и функциями органоидов, в особенности хромосом. Методы цитогенетики включают в себя анализ G-бэндинга, флуоресцентную in situ гибридизацию, сравнительную геномную гибридизацию и другие. Часто задачей цитогенетического анализа является определение патологического кариотипа.

Полный ответ:

Цитогенетический метод исследования – анализ, с помощью которого можно установить имеющиеся изменения в хромосомном аппарате. В первую очередь выясняются аномалии в самом наборе хромосом, а также наличие разнообразных структурных перестроек. Такое цитогенетическое исследование чаще всего применяется для своевременной диагностики врожденных и опасных приобретенных заболеваний.

К стандартным процедурам цитогенетического анализа крови относится кариотипирование. С его помощью выявляют нарушения в количестве и структуре хромосом. Для анализа кариотип, забор клеток крови держат в питательной среде на протяжении 3 суток. Затем происходит фиксация полученного материала и изучение под микроскопом. На данных этапах нужно тщательно проследить за качеством специальных окрашивающих препаратов и уровнем подготовки персонала. Существует также цитогенетическое исследование плода, его назначают при различных подозрениях на генетические отклонения или при неправильном раннем внутриматочном развитии. Цитогенетическое исследование костного мозга назначают пациентам с различными видами злокачественных заболеваний в органах системы кроветворения. Во время этого анализа оценивается не менее 20 клеток. На ранних сроках беременности может потребоваться цитогенетическое исследование хориона. Его проводят на 10-14 неделе беременности с целью исключения хромосомных болезней плода, таких как синдром Дауна, болезнь Хантера, b-талассемия и еще около 50 различных отклонений и заболеваний.



Похожие статьи