Выращивание кристаллов в домашних условиях. Исследовательская работа "удивительные кристаллы" Практическая работа 4 выращивание кристаллов соли

29.01.2021

МОУ «МИТРОФАНОВСКАЯ СОШИ С КАДЕТСКИМИ КЛАССАМИ»

Тайны выращивания кристаллов

Исследовательская работа

Выполнила:

Обучающаяся 8 класса

Никитина Лада Александровна.

Руководитель:

Учитель: химии «МОУ

«Митрофановская СОШИ

С кадетскими классами»

Викторова Раиса Рашитовна

2017-2018

Введение ………………………………………………………………………….3

1. Теоретическая часть …………………………………………………………5-

1.1. Что такое кристаллы...................................................................................5-6

1.2.Формы кристаллов

1.3. Из истории кристаллов

1.4. Образование кристаллов в природе 6

1.5. Кристаллы в нашей жизни.……………………. 7

1.6. Способы выращивания кристаллов 8

2. Практическая часть ……………………………………………………….9-11

2.1. Выращивание кристаллов медного купороса…………………………9-10

2.2. Выращивание кристаллов дихромата калия 12

2.4. Результаты исследования, анализ и выводы

3.Заключение ………………………………………………………… 4. Литература

5. Приложение

Введение

Мне однажды пришлось побывать в геолого-минералогическом музее Забайкальского госуниверситета, где представлены более 20 тысяч образцов минералов. После этой экскурсии у меня в уголке души зародилось любовь к камню. Маленький кристалл или большая друза кристаллов, а сколько в них совершенства, изящества и гармонии. Кажется, что созданы они природой именно для того, чтобы привлечь к себе внимание и любовь человека. Но ведь кристаллы создаются не только природой, кристаллы широко получают в промышленности. Многие кристаллы-продукты жизнедеятельности живых организмов. Также их можно получить лабораторным путём. Я решила сама попробовать вырастить кристалл какого-либо вещества. Доступными веществами оказались поваренная соль, медный купорос, дихромат калия. Нашла литературу по интересующей меня теме, изучила и занялась работой. Как перед любым исследователем, передо мной возникли вопросы: Что такое кристалл? Какой формы бывают и как они образуются? И конечно где они используются?

Цель исследования: Вырастить кристаллы медного купороса и дихромата калия в лабораторных условиях .

Задачи:

1.Отобрать и изучить литературу по теме исследования. 2.Вырастить в лабораторных условиях кристаллы. 3.Определить благоприятные условия необходимые для выращивания кристаллов. 4.Выяснить роль кристаллов в нашей жизни 5. Составить практические рекомендации по выращиванию кристаллов.

Гипотеза:

Предполагаю, что кристаллы, выращенные разными способами и в разных условиях, будут отличны друг от друга.

Объект исследования: кристаллы.

Предмет исследования: процесс кристаллизации.

Методы исследования: работа с источниками, эксперимент, наблюдение, фотосъёмка, сравнение, обобщение.

Практическое значение исследования в том, что результаты можно использовать на уроках физики, химии, географии, во внеклассных мероприятиях, в кружковой работе в профориентации. При проведение работы формируются такие качества как наблюдательность, терпение, умения сравнивать и обобщать данные эксперимента.

О.С.ГАБРИЕЛЯН,
И.Г.ОСТРОУМОВ,
А.К.АХЛЕБИНИН

СТАРТ В ХИМИЮ

7 класс

Продолжение. Начало см. в № 1, 2, 3, 4, 5, 6, 7, 8, 9/2006

Глава 3.
Явления, происходящие с веществами

(окончание)

§ 17. Дистилляция, или перегонка

Получение дистиллированной воды

Вода из-под крана чиста, прозрачна, не имеет запаха… Но чистое ли это вещество с точки зрения химика? Загляните в чайник: в нем легко обнаруживаются накипь и коричневатый налет, которые появляются на спирали и стенках чайника в результате многократного кипячения в нем воды
(рис. 71). А известковый налет на кранах? И природная, и водопроводная вода – это однородные смеси, растворы твердых и газообразных веществ. Конечно, их содержание в воде очень мало, но эти примеси могут привести не только к образованию накипи, но и к более серьезным последствиям. Не случайно лекарства для инъекций готовят только с использованием специально очищенной воды, называемой дистиллированной .

Откуда взялось такое название? Воду и другие жидкости очищают от примесей с помощью процесса, называемого дистилляцией, или перегонкой . Сущность дистилляции состоит в том, что смесь нагревают до кипения, образующиеся пары чистого вещества отводят, охлаждают и вновь превращают в жидкость, которая уже не содержит загрязняющих примесей.

На учительском столе собрана лабораторная установка для перегонки жидкостей (рис. 72).

В перегонную колбу учитель наливает воду, подкрашенную в оранжевый цвет растворимой неорганической солью (дихроматом калия). Так вы воочию убедитесь, что в очищенной воде этого вещества не будет. Для равномерного кипения в колбу бросают 3–4 кусочка пористого фарфора или пемзы (кипелки).
В рубашку холодильника подается вода, а перегонная колба нагревается до кипения содержимого с помощью электронагревателя. Пары воды, попадая в холодильник, конденсируются, и дистиллированная вода стекает в приемник.
Какую температуру показывает термометр? Как вы думаете, через какой отвод в холодильник подается холодная вода, а через какой она сливается?

Дистиллированная вода используется не только для приготовления лекарств, но и для получения растворов, применяемых в химических лабораториях. Даже автомобилисты используют дистиллированную воду, доливая ее в аккумуляторы для поддержания уровня электролита.

А если требуется получить твердое вещество из гомогенного раствора, то используют выпаривание , или кристаллизацию.

Кристаллизация

Один из способов выделения и очистки твердых веществ – кристаллизация. Известно, что при нагревании растворимость вещества в воде увеличивается. Значит, при охлаждении раствора некоторое количество вещества выпадает в виде кристаллов. Проверим это на опыте.

Демонстрационный эксперимент. Помните красивые оранжевые кристаллы дихромата калия, которыми учитель «подкрашивал» воду для дистилляции? Возьмем примерно 30 г этой соли и «загрязним» ее несколькими кристалликами марганцовки. Как очистить основное вещество от внесенной примеси? Смесь растворяют в 50 мл кипящей воды. При охлаждении раствора растворимость дихромата резко понижается, и вещество выделяется в виде кристаллов, которые можно отделить фильтрованием, а затем промыть на фильтре несколькими миллилитрами ледяной воды. Если растворить очищенное вещество в воде, то по цвету раствора можно определить, что марганцовки оно не содержит. Марганцовка осталась в исходном растворе.

Добиться кристаллизации твердого вещества из раствора можно упариванием растворителя. Для этого и предназначены чашки для выпаривания, с которыми вы встречались во время знакомства с химической посудой.

Если испарение жидкости из раствора происходит естественным путем, то для этой цели используют специальные стеклянные толстостенные сосуды, которые так и называются – кристаллизаторы. С ними вы также знакомились в практической работе № 1.

В природе соляные озера – это своеобразные бассейны для кристаллизации. За счет испарения воды на берегах таких озер кристаллизуется гигантское количество соли, которая после очистки попадает к нам на стол.

Перегонка нефти

Дистилляцию используют не только для очистки веществ от примесей, но и для разделения смесей на отдельные порции – фракции, различающиеся температурой кипения. Например, нефть – это природная смесь очень сложного состава. При фракционной перегонке нефти получают жидкие нефтепродукты: бензин, керосин, дизельное топливо, мазут и другие. Процесс этот ведут в специальных аппаратах – ректификационных колоннах (рис. 73). Если в вашем городе есть нефтеперерабатывающий завод, вы могли видеть эти химические аппараты, которые непрерывно разделяют нефть на важные и нужные в жизни современного общества продукты (рис. 74).

Бензин – это основное топливо для легковых автомобилей. Трактора и грузовики используют в качестве такового другой нефтепродукт – дизельное топливо (солярку). Топливом для современных самолетов является главным образом керосин. На этом небольшом примере вы можете понять, насколько важен в современной жизни такой процесс, как перегонка нефти.


Рис. 74.
Нефть и нефтепродукты

Фракционная перегонка жидкого воздуха

Вы уже знаете, что любые газы смешиваются в любых соотношениях. А можно ли из смеси газов выделить отдельные компоненты? Задача не из простых. Но химики предложили очень эффективное решение. Смесь газов можно превратить в жидкий раствор и подвергнуть его дистилляции. Например, воздух при сильном охлаждении и сжатии сжижают, а затем позволяют один за другим выкипать отдельным компонентам (фракциям), поскольку они имеют различные температуры кипения. Первым из жидкого воздуха испаряется азот (рис. 75), у него самая низкая температура кипения (–196 °С). Затем из жидкой смеси кислорода и аргона можно удалить аргон (–186 °С). Остается практически чистый кислород, который вполне годится для технических целей: газовой сварки, химического производства. А вот для медицинских целей его нужно очищать дополнительно.

Азот, полученный таким способом, используют для производства аммиака, который в свою очередь идет на получение азотных удобрений, лекарственных и взрывчатых веществ, азотной кислоты и т.д.

Благородный газ аргон используют в особом виде сварки, которая так и называется – аргоновая.

1. Что такое дистилляция, или перегонка? На чем она основана?

2. Какая вода называется дистиллированной? Как ее получают? Где она применяется?

3. Какие нефтепродукты получают при перегонке нефти? Где они применяются?

4. Как разделить воздух на отдельные газы?

5. Чем выпаривание (кристаллизация) отличается от перегонки (дистилляции)? На чем основаны оба способа разделения жидких смесей?

6. Чем отличаются процессы выпаривания и кристаллизации? На чем основаны оба способа выделения твердого вещества из раствора?

7. Приведите примеры из повседневной жизни, в которых применяется выпаривание и дистилляция.

8. Какую массу соли можно получить при выпаривании 250 г 5%-го раствора? Какой объем воды можно получить из этого раствора при помощи дистилляции?

ПРАКТИЧЕСКАЯ РАБОТА № 4.
Выращивание кристаллов соли
(домашний эксперимент)

Перед тем как приступить к выполнению работы, внимательно прочитайте ее описание до конца.

Прежде всего выберите подходящую для эксперимента соль. Для выращивания кристаллов подойдет любая хорошо растворимая в воде соль (медный или железный купорос, квасцы и т.д.). Подойдет и поваренная соль – хлорид натрия.

Из оборудования вам понадобятся:

Литровая банка или небольшая кастрюлька, в ней вы будете готовить раствор соли;

Деревянная ложка или палочка для перемешивания;

Воронка с ватой для фильтрования раствора;

Термос с широким горлышком вместимостью 1 л (он нужен для того, чтобы раствор остывал медленно, тогда будут расти крупные кристаллы).

Если нет воронки или нужного термоса, их можно сделать самому.

Чтобы сделать воронку, возьмите пластиковую бутылку из-под напитка и ножницами аккуратно отрежьте ей горлышко, как это показано на рис. 76.

Вместо термоса подойдет обыкновенная стеклянная литровая банка. Поставьте ее в картонную или пенопластовую коробку. Большую коробку брать не нужно, главное, чтобы в нее полностью входила банка. Щели между коробкой и банкой плотно заложите кусочками тряпки или ватой. Чтобы плотно закрыть банку, понадобится пластиковая крышка.

Приготовьте горячий насыщенный раствор соли. Для этого заполните банку наполовину горячей водой (кипяток брать не нужно, чтобы не обжечься). Порциями добавляйте соль и перемешивайте. Когда соль перестанет растворяться, оставьте раствор на одну-две минуты, чтобы нерастворившиеся кристаллы успели осесть. Отфильтруйте горячий раствор через воронку с ватой в чистый термос. Закройте термос крышкой и оставьте раствор медленно остывать два-три часа.

Раствор немного остыл. Теперь внесите в него затравку – кристаллик соли, подвешенный на нитке. После того как ввели затравку, прикройте сосуд крышкой и оставьте на продолжительное время. Чтобы вырос крупный кристалл, потребуется несколько дней или даже недель.

Обычно на нитке вырастает несколько кристаллов. Нужно периодически удалять лишние, чтобы рос один большой кристалл.

Важно записывать условия проведения эксперимента и его результат, в нашем случае это характеристики полученного кристалла. Если получилось несколько кристаллов, то приводят описание самого большого.

Изучите полученный кристалл и ответьте на вопросы.

Сколько дней вы выращивали кристалл?

Какова его форма?

Какого цвета кристалл?

Прозрачный он или нет?

Размеры кристалла: высота, ширина, толщина.

Масса кристалла.

Зарисуйте или сфотографируйте полученный кристалл.

ПРАКТИЧЕСКАЯ РАБОТА № 5.
Очистка поваренной соли

Целью данной работы является очистка поваренной соли, загрязненной речным песком.

Предложенная вам загрязненная поваренная соль представляет собой гетерогенную смесь кристаллов хлорида натрия и песка. Для ее разделения необходимо воспользоваться различием в свойствах компонентов смеси, например различной растворимостью в воде. Как известно, поваренная соль растворяется в воде хорошо, в то время как песок в ней практически нерастворим.

В химический стакан поместите выданную учителем загрязненную соль и налейте 50–70 мл дистиллированной воды. Перемешивая содержимое стеклянной палочкой, добейтесь полного растворения соли в воде.

Раствор соли от песка можно отделить фильтрованием. Для этого соберите установку как показано на рис. 77. С помощью стеклянной палочки осторожно перелейте содержимое стакана на фильтр. Прозрачный фильтрат будет стекать в чистый стакан, нерастворимые компоненты исходной смеси останутся на фильтре.

Жидкость в стакане – это водный раствор поваренной соли. Выделить из него чистую соль можно выпариванием. Для этого 5–7 мл фильтрата налейте в фарфоровую чашку, поместите чашку в кольцо штатива и осторожно нагревайте на пламени спиртовки, постоянно перемешивая содержимое стеклянной палочкой.

Сравните кристаллы соли, полученные после выпаривания раствора, с исходной загрязненной солью. Перечислите, какие приемы и операции вы использовали для очистки загрязненной соли.

Цель работы :наблюдение за процессом роста кристалла хлористого натрия и сравнение полученных кристаллов с моделями кристаллических решеток,проверить анизотропию прочности путем раскалывания.

Ход работы:

Чтобы вырастить кристаллы в домашних условиях,нужно приготовить перенасыщенный раствор соли.В качестве исходного вещества выбрали соль,которые использует человек очень часто, это поваренная соль.

Налила в стакан горячей воды и посыпала в него поваренную соль,все время помешивая.Сыпала до тех пор,пока соль не перестала растворяться и на дне образовался осадок,не исчезающий при помешивании.Затем взяла кусочек тонкой проволоки и обмотала его шерстяной ниткой.На стакан сверху положила палочку и к ней подвесила обмотанную проволочку на нитке.Рассол постепенно остыл,потом вода из него начала испаряться.Через три дня (можно дольше) вытянула проволочку.Соль осела на шерстинках маленькими правильными кубиками.

Нужно периодически измерять размеры некоторых граней.Грани кристалликов изменяют свои размеры,они растут,углы между соответственными гранями остаются постоянными.

Сравнили формы полученных кристаллов с формами моделей кристаллических решеток. У поваренной соли NaCl грани должны иметь форму квадратов,а кристаллы –кубов.Выращенный кристалл соответствует этим требования

Вывод

Выбрала наиболее удобный, приемлемый способ выращивания кристаллов в домашних условиях и вырастила кристаллы поваренной соли.По мере роста кристаллов проводила наблюдение. Сравнила формы полученных кристаллов с формами их кристаллических решеток,они соответствуют формам кристаллам-кубам.

Силы притяжения,возникающие между плоскостями состоящие только из одного типа ионов Na+ или Cl-(образующие грани октаэдра) в пять раз больше чем между плоскостями параллельными граням куба,в каждом из которых лежат и те и другие ионы, и Na+,и Cl- .Вот почему кристалл Na Cl гораздо легче расколоть по плоскостям куба,чем по плоскостям октаэдра.Поэтому он и кристаллизуется,образуя кубы.Кристалл фактически состоит из ионов противоположных знаков.

Заключение

Монокристаллы - твердые тела,частицы которых образуют единую кристаллическую решетку.

Внешняя форма монокристаллов одного вида может быть различной,но углы между

соответствующими гранями у них остаются постоянными.Это закон постоянства углов сформулировал французский естествоиспытатель Ж.Б.Роме де Лиля.Он сделал важный вывод: правильная форма кристаллов связана с закономерным размещением частиц, образующих кристалл.Монокристаллами являются большинство минералов.Однако крупные природные монокристаллы встречаются довольно редко.В настоящее время многие монокристаллы выращиваются искусственно.

Кристаллы характеризуются наличием значительных сил межмолекулярного взаимодействия.. Силы взаимодействия между атомами в кристаллах по разным направлениям неодинаковы Силы притяжения,возникающие между плоскостями образующие грани октаэдра в кристаллах поваренной соли состоящих из ионов одного типа,в пять раз больше,чем силы между плоскостями,параллельными граням куба,в каждой из которых лежат и те и другие ионы,и Na+,и Cl-.В этом можно проследить действие закона анизотропии..Суть его в том, что многие свойства твердых тел зависят от направления,в котором эти свойства измеряются.Мы исследовали анизотропию прочности на поваренной соли. Если кристаллы поваренной соли,имеющие кубическую форму,раскалывать,то мелкие осколки будут иметь преимущественно форму прямоугольных параллелепипедов. Это значит,что в направлениях, параллельных граням,прочность кристалла поваренной соли гораздо меньше,чем в диагональных и других направлениях. Исследовать другие физические свойства мы не смогли из-за ограниченности приборов и материалов.Например,теплопровдность кристалла,измеренная в различных направлениях,может оказаться неодинаковой.Она будет одинаковой лишь в параллельных и симметричных направлениях. То же можно сказать об электропроводности,твердости, и других свойствах.Иначе говоря,симметрия внешней формы сопровождается и симметрией физических свойств кристаллов.

практическая работа

1.3 Опыты по выращиванию кристаллов

Цель: получить насыщенный раствор поваренной соли.

Оборудование: соль, вода, стакан.

Ход работы:

Приготовил ёмкость-стакан отмерил две части воды и одну часть поваренной соли. Попросил взрослого нагреть мне две части воды. Залил горячей водой одну часть поваренной соли в стеклянный стакан и помешивал до тех пор, пока она не перестала растворяться. В стакане растворилась только часть соли. Дальнейшие добавки соли у меня не растворялись и легли на дно стакана в виде осадка. Когда соль совсем перестала растворяться я слил получившийся раствор в другой стакан, чтобы на дно стакана с раствором не попало ни одной крупинки.

Вывод: я получил насыщенный раствор для опыта.

Цель: выращивание кристаллов.

Оборудование: два стакана: стакан №1 с насыщенным раствором поваренной соли, стакан №2 со слабым (ненасыщенным)раствором поваренной соли, две нитки с кристалликами- «затравками».

Ход работы:

Помещаем в каждый стакан нитки с кристалликами- «затравками и начинаем вести наблюдение.

Дневник наблюдений:

1. Что происходит в стакане № 1, определить пока трудно.

2. В стакане № 2 происходит процесс растворения кристалла - «затравки», так как в стакане находится ненасыщенный раствор соли.

1. В стакане № 1 идет процесс кристаллизации.

2. В стакане № 2 кристалл-«затравка» растворился, то есть закончился процесс растворения.

3. Понижение уровня раствора в стаканах связано с испарением воды.

1. Испарением воды продолжается.

Периоды наблюдений

Описание действий

Полученные результаты

Конец 4-й недели

наблюдение

В стакане № 1 кристаллики увеличиваются.

В обоих стаканах уровень воды понижается.

Конец 5-й недели

наблюдение

На нитке в насыщенном растворе кристаллики увеличиваются,появляются новые.

Уровень раствора в стаканах понижается. На стенках налёт.

Конец 6-й недели

наблюдение

1.В стакане №1 идёт увеличение размеров кристаллов и их количество.

2.В обоих стаканах уровень воды понижается. На освобождающихся стенках стаканов появился налет.

Выводы: 1. В стакане № 1 идет процесс кристаллизации.

2.В обоих стаканах испарение воды продолжается.

3.В стакане №2 тоже начался процесс кристаллизации, но позднее, когда раствор стал насыщенным, и выразился в образовании налёта на стенках стакана.

1. Стакан № 1. Прошёл процесс кристаллизации, выразившийся в образовании кристалликов на нитке и на стенках стакана.

2. Стакан № 2. Образование кристалликов на стенках стакана.

Общие выводы:

1.Поваренная соль состоит из кристаллов.

2.При соприкосновении кристаллов соли с водой, они растворяются.

3.Быстрее всего кристаллы соли могут образовываться в насыщенном растворе поваренной соли.

4.По мере того как вода испаряется, соль снова образует кристаллы.

5.В домашних условиях можно вырастить кристаллы при необходимых условиях. Условиями образования кристаллов соли в домашних условиях являются:

А) наличие насыщенного солевого раствора;

Б) ниточки с затравкой.

Кристаллизация растворов на примере выращивания кристаллов поваренной соли

Опыт 1. Цель: изучить строение соли путем рассматривания её под лупой. Оборудование: лупа, щепотка соли. Ход работы: Щепотку соли насыпал на блюдце, поднес лупу к соли и увидел мелкие кристаллики. Вывод: поваренная соль состоит из кристаллов...

В природе кристаллы образуются при различных геологических процессах из растворов, расплавов, газовой или твердой фазы. Значительная часть минеральных видов произошла путем кристаллизации из водных растворов...

Кристаллогенезис - возникновение, рост и разрушение кристаллов

Существенный вклад в решение вопросов о механизме роста кристаллов внесли разработанные теории роста идеальных кристаллов. В конце XIX в. американским физиком Дж. Гиббсом (1839-1903), французским физиком П. Кюри и русским кристаллографом Г.В...

Кристаллогенезис - возникновение, рост и разрушение кристаллов

При различных отклонениях от идеальных условий кристаллизации (например, в вязких, загрязненных или сильно пересыщенных средах) вырастают экзотические образования. Опыт показывает...

Кристаллогенезис - возникновение, рост и разрушение кристаллов

Нарушение правильности в расположении частиц, слагающие структуры реальных кристаллов, т.е. отклонения от их идеальной структуры, порождают дефекты. Для исследователя дефект - это источник информации о событиях, произошедших с кристаллом...

Лавуазье – один из основателей научной химии

Одна из первых по времени, наиболее важных работ Лавуазье посвящена решению вопроса, можно ли воду превратить в землю. Вопрос этот занимал в то время многих исследователей и оставался нерешённым, когда к нему приступил Лавуазье...

Микрокристаллоскопия

При малых концентрациях искомого иона (микрокомпонента) осадок может не образоваться. В этом случае можно добавить подходящий ион (макрокомпонент), который будет реагировать с реактивом...

Большинство природных или технических твёрдых материалов являются поликристаллическими, т.е. они состоят из множества отдельных, беспорядочно ориентированных, мелких кристаллических зёрен, иногда называемых кристаллитами...

Описание, изложение, образование кристаллов и структура свойств в области применения кристаллов

Никто не видел, как образуется зародыш кристалла в растворе или расплаве. Можно высказать предположение, что беспорядочно движущиеся атомы или молекулы случайно могут расположиться в таком порядке...

Описание, изложение, образование кристаллов и структура свойств в области применения кристаллов

Развитие науки и техники привело к тому, что многие драгоценные камни или просто редко встречающиеся в природе кристаллы стали очень нужными для изготовления деталей приборов и машин, для выполнения научных исследований...

Описание, изложение, образование кристаллов и структура свойств в области применения кристаллов

Рассматривая различные кристаллы мы видим, что все они разные по форме, но любой из них представляет симметричное тело. И действительно, симметричность - это одно из основных свойств кристаллов. Симметричными мы называем тела...

Описание, изложение, образование кристаллов и структура свойств в области применения кристаллов

Первым, кто обнаружил жидкие кристаллы, был австрийский ученый-ботаник Рейнитцер. Исследуя новое синтезированное им вещество холестерилбензоат, он обнаружил, что при температуре 145°С кристаллы этого вещества плавятся, образуя мутную...

Описание, изложение, образование кристаллов и структура свойств в области применения кристаллов

В зависимости от вида упорядочения осей молекул жидкие кристаллы разделяются на три разновидности: нематические, смектические и холестерические. Нематические кристаллы. В молекулах, имеющих ярко выраженную анизотропную форму...

Определение аскорбиновой кислоты в реальном препарате

Для анализа мною было сделаны опыты, которые описывают два метода: йодометрия и кулонометрия. 1) Йодометрия. Аскорбиновая кислота (витамин C, C6H8O6, ниже обозначается как AscH2) - слабая кислота, которая диссоциирует по двум ступеням: AscH2 AscH? + H+ Ka1 = 6...

Процесс выращивания кристаллов

Существует три способа образования кристаллов: кристаллизация из расплава, из раствора и из газовой фазы. Примером кристаллизации из расплава может служить образование льда из воды (ведь вода - это расплавленный лёд)...

МОУ «Печниковская СОШ»

Каргопольского района

Архангельской области

Научно-практическая работа

«Кристаллы. Выращивание кристаллов».

Выполнили учащиеся 8 класса

Вешнякова Кристина, Волынкина Мария.

Научный руководитель

учитель физики

Колегичева М.А.

Печниково

2011 – 2012 учебный год
Оглавление . Стр

  1. Введение. Что мы знали о кристаллах? 3

    1. 1.1. Актуальность работы

    2. 1.2. Цель и задачи работы

    3. 1.3. Практическое значение работы

  1. Литературный обзор

    1. 2.1. Что такое кристаллы 3

    2. 2.2. Структура кристаллов 4

    3. 2.3. Кристаллы во Вселенной 4

    4. 2.4. Применение кристаллов 4

    5. 2.5. Кристаллы льда и воды 5

  2. Практическая часть
3.1.Выращивание кристаллов соли 6

3.2.Выращивание кристаллов воды 6


  1. Выводы 6
5. Литература 7

Введение. Что мы знали о кристаллах?
Кристаллы… да ведь это красивые редко встречающиеся камни. Они бывают разных цветов, в большинстве своём прозрачны, и, что самое замечательное, они обладают красивой правильной формой. Обычно кристаллы представляют собой многогранники, стороны (грани) их идеально плоские, рёбра строго прямые. Они радуют глаз чудесной игрой света в гранях, удивительной правильностью строения…

Всё сказанное действительно справедливо, но… кристаллы – совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строим дома и делаем станки, вещества, которые мы употребляем в быту, – почти все они относятся к кристаллам.


Актуальность работы.

Современная наука стремится познать новое, заглянуть за пределы Вселенной, разгадать тайны микромира. Но, за великими целями забывается то, что находится рядом, без чего мы не можем обойтись, и используем каждый день. Актуальность работы заключается в том, чтобы находить интересное и необычное рядом, в том, что доступно для наблюдения и изучения, не требует особых усилий и затрат. Например, соль. Соль, которая есть на каждом столе, в каждом доме, известная и знакомая, непознанная и таинственная! Или снег. Снег, который лежит у нас под ногами.

Цель работы:

научиться выращивать кристаллы в домашних условиях.


Задачи работы:

· выяснить, что такое кристаллы и где они встречаются;


· узнать о применении кристаллов;
· вырастить кристаллы в домашних условиях;
· изучить условия образования кристаллов, их формы;
Практическое значение работы в том, что она может быть использована на уроках физики по данной теме или на уроках технологии для выполнения творческих работ.

Литературный обзор.


    1. Что такое кристаллы
Название «кристалл» произошло от двух греческих слов – «холод» и «застывать», т.е. означало во времена Гомера «застывший лед» и относилось к кристаллам горного хрусталя, считавшимися окаменевшим льдом. Слова «кристалл» звучит почти одинаково во всех европейских языках. Много веков назад среди вечных снегов в Альпах, на территории современной Швейцарии, нашли очень красивые, совершенно бесцветные кристаллы, очень напоминающие чистый лед. Древние натуралисты так их и назвали – «кристаллос», по-гречески – лед; это слово происходит от греческого «криос» – холод, мороз. Полагали, что лед, находясь длительное время в горах, на сильном морозе, окаменевает и теряет способность таять. Один из самых авторитетных античных философов Аристотель писал, что «кристаллос рождается из воды, когда она полностью утрачивает теплоту». Римский поэт Клавдиан 390 году до нашей эры то же самое описал стихами:

Ярой альпийской зимой лед превращается в камень.

Солнце не в силах затем камень такой растопить.

Аналогичный вывод сделали в древности в Китае и Японии – лед и горный хрусталь обозначали там одним и тем же словом. И даже в 19 в. поэты нередко соединяли воедино эти образы. Например, А.С.Пушкин в своем произведении «К Овидию» писал:

Едва прозрачный лед, над озером тускнея,

Кристаллом покрывал недвижные струи.


    1. Структура кристаллов
Вначале этим термином называли только прозрачные ограненные природные тела, впоследствии он был распространен на непрозрачные и даже неограненные образования. В конце 17 в. было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением. В конце концов кристаллами стали называть все твердые вещества, имеющие естественную форму правильных многогранников. Большинство природных и искусственных твердых материалов являются поликристаллическими, одиночные кристаллы называются монокристаллами. Естественная форма кристаллов является следствием упорядоченного расположения в кристалле атомов. В 1784 французским аббатом Р.Гаюи была написана книга, в которой он выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал «молекулярными блоками». Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие «кирпичики». Различия в форме разных веществ он объяснил разницей как в форме «кирпичиков», так и в способе их укладки.

Трёхмерно-периодическую пространственную укладку назвали кристаллической решёткой.

Основная особенность кристаллической структуры заключается в её повторяемости через строго одинаковые расстояния. Кристаллические решётки очень разнообразны. Однако свойства, общие для всех кристаллов, безупречно объясняются решетчатым строением кристаллов.

Кристаллы во Вселенной

В облаках, в глубинах Земли, на вершинах гор, в песчаных пустынях, в озерах, морях и океанах, в доменных печах, в аппаратах химических заводов, в научных лабораториях, в клеточках растений, в живых и мертвых организмах - везде встречаем мы кристаллы. Многие кристаллы –продукты жизнедеятельности организмов. Способностью наращивать на инородных телах, попавших в раковину, перламутр, обладают некоторые виды моллюсков. Через 5-10 лет образуется жемчуг. Кристаллами являются алмазы, рубины, сапфиры и другие драгоценные камни. Нет такого места на Земле, где бы не было кристаллов, где бы не происходили все время возникновение, рост и разрушение кристаллов. Метеориты, посланцы из звездного мира, тоже состоят из кристаллов. В космических пришельцах - метеоритах - встречаются кристаллы, известные на Земле, и кристаллы минералов, на Земле не встречающихся.


    1. Применение кристаллов.

  • Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями.

  • Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах «на счастье» и «своих камнях», соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита.

  • Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.

  • Кристаллы- основа множества современных устройств: компьютеров, генераторов и приёмников излучений, устройств магнитной записи, бытовой электроники, солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, для лазерной техники и т.п.

  • Кристаллические порошки (соль,сахар, лекарства, минер удобрения,взрывчатые вещества и др) широко применяются в пищевой, фармацевтической промышленности, сельском хозяйстве, металлургии и др. областях

  • Искусственные кристаллы. С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма «Дженерал электрик» и Физический институт АН СССР сообщили об изготовлении искусственных алмазов, которых в природе вообще не существуют. Например, фианиты – их название происходит от сокращения ФИАН – Физический институт Академии наук, где они впервые были получены. Фианиты – кристаллы кубического оксида циркония ZrO2, которые внешне очень похожи на бриллианты.
Например, подшипники для часов и других точных приборов уже давно делают из искусственных рубинов.

Кристаллы льда и снега

Кристаллы замершей воды, т.е. лед и снег, известны всем. Эти кристаллы почти полгода (а в полярных областях и круглый год) покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах.

Ледяной покров реки, массив ледника или айсберга - это, конечно, не один большой кристалл, он состоит из множества отдельных кристаллов. Их не всегда различишь, потому что они мелкие, и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду, например, в льдинках весеннего ледохода на реке. Тогда видно, что лед состоит как бы из "карандашиков", сросшихся вместе, как в сложенной пачке карандашей:

Ледяные иголочки достигают длины в 1-2см, а иной раз доходят до 10-12см.

В морозные дни, когда солнце еще не успело уничтожить следы ночных заморозков, деревья и кусты покрыты инеем. На ветках видны пучки тонких шестигранных иголочек - кристалликов льда. Сказочным богатством кристаллов, хрустальным нарядом украшен лес. Каждый отдельный кристаллик льда, каждая снежинка хрупка и мала.

Морозные узоры на оконных стеклах - это, по сути, то же самое, что и иней, который образуется на земле и на ветвях деревьев. Механизм образования инея и этих узоров одинаков.

Узоры на стеклах появляются в связи с образованием кристаллов из переохлаждённых капель воды.

Качество и вид получившегося рисунка зависит от влажности воздуха, разницы и перепадов температуры внутри и снаружи, поверхности стекла, направления, силы и скорости ветра. Именно поэтому рисунки получаются всегда разными и не похожими один на другой.

Ученые насчитали огромное количество видов ледяных узоров. Очень часто встречаются узоры - дендриты и трихиты. Дендриты на окнах вырастают в виде древовидных форм. В свою очередь ледяные узоры - трихиты выглядят в виде волокнистых образований.

Узоры дендриты появляются на окнах при условии - высокой влажности и положительной температуры внутри помещения. Сначала на стеклах появляется тонкая пленка воды, а затем происходит кристаллизация. Так как в нижней части на окнах толщина пленки воды больше, то здесь происходит образование ледяных " деревьев ". А вот при недостатке влаги на окнах появляются миниатюрные дендриты

На острых краях стекол, где частенько образуются сколы и трещины как правило образуются узоры трихиты. В большинстве случаев как основное волокно, так и прилегающие к нему тонкие полоски инея слегка изогнуты.

Практическая часть

1.Выращивание кристаллов поваренной соли

Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе – из раствора, расплава или из паров. Самые простые опыты по выращиванию кристаллов можно провести с поваренной солью.

Самые простые опыты по выращиванию кристаллов можно провести с поваренной солью. Что мы и сделали.

Мы сделали насыщенный раствор поваренной соли: для этого в теплую воду добавляли соль и перемешивали до тех пор, пока соль уже не будет растворяться и будет оседать на дно кружки. Опустили в кружку шерстяную ниточку и поставили в теплое место.

Кристаллы соли начали свой рост. Соль образовалась даже на кружке с внешней стороны, но это было мало похоже на кристаллы. Красивые кристаллы образовались на ниточке и на дне кружки

Кристаллы можно вырастить, взяв затравку. т.е небольшой кристалл и привязав его к ниточке, опустить в раствор соли.

Кристаллы соли можно вырастить и на веточках лиственницы. Для этого их нужно опустить в раствор соли и затем через некоторое время вынуть и дать обсохнуть. На веточках образуется кристаллический иней из соли. Эти веточки можно применять для составления букетов.

2. Выращивание кристаллов льда

Опыт 1 . В небольшое глубокое чайное блюдце налить воды. Блюдце поставить в снег. Через некоторое время температура воды станет равной 0°С, но вода будет отдавать теплоту и дальше. Теряя тепло, вода при 0°С в блюдце начнёт замерзать. На поверхности воды появятся прозрачные, вытянутые в длину игольчатые кристаллы льда. Появившись по отдельности, они быстро соединяются в группы и дадут твёрдую корочку льда на поверхности воды. При рассмотрении в лупу кристаллы льда имеют форму сильно удлинённых шестиугольных призмочек. Между ними много шестилучевых "звёздочек". Это иголочки, сложившиеся в прихотливую группу и образовавшие тонкое строение звёздочки. Увеличиваясь и разрастаясь, ледяные иголочки встречаются одна с другой, ветвятся. Так образуются узоры мороза на стеклах окон. Для образования дендритов необходимо быстрое охлаждение.

Опыт 2 . На небольшое чистое стёклышко поместить большую каплю воды. Сильно охладить стёклышко, прижав его к снегу или охладительной смеси. Замерзая, капля воды даст прекрасные кристаллы в виде разнообразных звёздочек. Такие кристаллические звёздочки образуются в капельках воды, унесённых движением воздуха на значительную высоту. В холодное время года звёздочки-снежинки падают вниз и достигают земли. Мы говорим: "Идёт снег".
Выводы. Итак, в ходе работы мы больше узнали о кристаллах, выяснили, что вокруг нас много интересного и необычного, и это доступно для наблюдения и изучения, не требует особых усилий и затрат. Мы попробовали вырастить кристаллы, и у нас это получилось.

Литература.


  1. Большая российская энциклопедия.16 том. М - Научное издательство «Большая российская энциклопедия» 2010.

  2. М.П.Шаскольская. Кристаллы. М- «Наука»1985.
3. Материал из GeoWiki - открытой энциклопедии по наукам о Земле.

4. http://course-crystal.narod.ru/p36aa1.html

5. http://www.novate.ru/blogs/131008/10496/

6. Современная кристаллография. М.,1979-1981.Т.1-4;Чупрунов Е.В., Хохлов А.Ф.,Фадеев М.А. Кристаллография. М., 2000;



Похожие статьи