Однородные тригонометрические уравнения (10 класс). Тема урока: "Однородные тригонометрические уравнения" (10-й класс)

26.09.2019

Стоп! Давай всетаки попытаемся разобраться в этой громоздкой формуле.

На первом месте должна идти первая переменная в степени с некоторым коэффициентом. В нашем случае это

В нашем случае это. Как мы выяснили, значит здесь степень при первой переменной - сходится. И вторая переменная в первой степени - на месте. Коэффициент.

У нас это.

Первая переменная в степени, и вторая переменная в квадрате, с коэффициентом. Это последний член уравнения.

Как видишь, наше уравнение подходит под определение в виде формулы.

Давай рассмотрим вторую (словесную) часть определения.

У нас две неизвестные и. Здесь сходится.

Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.

Сумма степеней равна.

Сумма степеней равна (при и при).

Сумма степеней равна.

Как видишь, все сходится!!!

Теперь давай потренируемся в определении однородных уравнений.

Определи, какие из уравнений - однородные:

Однородные уравнения - уравнения под номерами:

Рассмотрим отдельно уравнение.

Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим

А это уравнение полностью попадает под определение однородных уравнений.

Как решать однородные уравнения?

Пример 2.

Разделим уравнение на.

У нас по условию y не может быть равен. Поэтому мы можем смело делить на

Произведя замену, мы получим простое квадратное уравнение:

Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:

Произведя обратную замену, получаем ответ

Ответ:

Пример 3.

Разделим уравнение на (по условию).

Ответ:

Пример 4.

Найдите, если.

Здесь нужно не делить, а умножать. Умножим все уравнение на:

Произведем замену и решим квадратное уравнение:

Произведя обратную замену, получим ответ:

Ответ:

Решение однородных тригонометрических уравнений.

Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше. Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел ).

Рассмотрим такие уравнения на примерах.

Пример 5.

Решите уравнение.

Мы видим типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на, рассмотрим случай, когда

В этом случае уравнение примет вид: , значит. Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому, и на него можно смело делить:

Так как уравнение приведенное, то по теореме Виета:

Ответ:

Пример 6.

Решите уравнение.

Как и в примере, нужно разделить уравнение на. Рассмотрим случай, когда:

Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому.

Сделаем замену и решим квадратное уравнение:

Сделаем обратную замену и найдем и:

Ответ:

Решение однородных показательных уравнений.

Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения - посмотри соответствующий раздел ()!

Рассмотрим несколько примеров.

Пример 7.

Решите уравнение

Представим как:

Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней. Разделим уравнение на:

Как можно заметить, произведя замену, мы получим приведенное квадратное уравнение (при этом не нужно опасаться деления на ноль - всегда строго больше нуля):

По теореме Виета:

Ответ: .

Пример 8.

Решите уравнение

Представим как:

Разделим уравнение на:

Произведем замену и решим квадратное уравнение:

Корень не удовлетворяет условию. Произведем обратную замену и найдем:

Ответ:

ОДНОРОДНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Сначала на примере одной задачки напомню что такое однородные уравнения и что из себя представляет решение однородных уравнений.

Решите задачу:

Найдите, если.

Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на, получим:

То есть, теперь нет отдельных и, - теперь переменной в уравнении является искомая величина. И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно, а сумма - это числа и.

Ответ:

Уравнения вида

называется однородным. То есть, это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна. Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:

И последующей заменой переменных: . Таким образом получаем уравнение степени с одной неизвестной:

Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:

Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю! Например, если нас просят найти, сразу понимаем, что, поскольку на делить нельзя. В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:

Решите уравнение.

Решение:

Видим здесь типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Но, прежде чем разделить на и получить квадратное уравнение относительно, мы должны рассмотреть случай, когда. В этом случае уравнение примет вид: , значит, . Но синус и косинус не могут быть одновременно равны нулю, ведь по основному тригонометрическому тождеству: . Поэтому, и на него можно смело делить:

Надеюсь, это решение полностью понятно? Если нет, прочитай раздел . Если же непонятно, откуда взялось, тебе нужно вернуться еще раньше - к разделу .

Реши сам:

  1. Найдите, если.
  2. Найдите, если.
  3. Решите уравнение.

Здесь я кратко напишу непосредственно решение однородных уравнений:

Решения:

    Ответ: .

    А здесь надо не делить, а умножать:

    Ответ:

    Если тригонометрические уравнения ты еще не проходил, этот пример можно пропустить.

    Так как здесь нам нужно делить на, убедимся сперва, сто он не равен нулю:

    А это невозможно.

    Ответ: .

ОДНОРОДНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени и дальнейшей заменой переменных.

Алгоритм:

Учитель: Синицина С.И.

МБОУ СОШ №20 им.Милевского Н.И.

Тема: Однородные тригонометрические уравнения (10 класс)

Цели: Ввести понятие однородных тригонометрических уравнений I и II степени;

Сформулировать и отработать алгоритм решения однородных тригонометрических

уравнений I и II степени;

Закрепить навыки решения всех видов тригонометрических уравнений через

развитие и совершенствование умений применять имеющиеся знания в изменённой

ситуации, через умение делать выводы и обобщение

Воспитание у учащихся аккуратности, культуры поведения.

Тип урока: урок формирования новых знаний.

Оборудование: компьютер, мультимедийный проектор, экран, доска, презентация

Ход урока

I. Организационный момент

Приветствие учащихся, мобилизация внимания.

II. Актуализация опорных знаний (Домашняя работа проверяется консультантами до урока. Учитель подводит итог выполнения домашнего задания.)

Учитель: Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений.

Устная работа

  1. Какое уравнение мы называем тригонометрическим?
  2. Назовите алгоритм решения уравнения cos t = a
  3. Назовите алгоритм решения уравнения sin t = a

III. Мотивация обучения.

Учитель: нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Разгадав кроссворд, ребята прочитают слово “однородные”.

1.Значение переменной, обращающее уравнение вверное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении?(Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций?(Окружность)

6.Какая из тригонометрических функций четная?(Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнения)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение новой темы

Учитель: Тема урока “Однородные тригонометрические уравнения”.

Запишем тему урока в тетрадь. Однородные тригонометрические уравнения бывают первой и второй степени.

Запишем определение однородного уравнения первой степени. Я на примере показываю решение такого вида уравнения, вы составляете алгоритм решения однородного тригонометрического уравнения первой степени.

Уравнение вида а sinx + b cosx = 0 называют однородным тригонометрическим уравнение первой степени.

Рассмотрим решение уравнения, когда коэффициенты а и в отличны от 0.

Пример1: 2sinx - 3cosx = 0

Разделив обе части уравнения почленно на cosx, получим

2sinx/ cosx - 3cosx/ cosx = 0

2 tgx -3 =0, tgx =3/2, x = arctg3/2 + πn, nє Z,

Внимание! Делить на одно и то же выражение можно лишь в том случае, если это выражение нигде не обращается в 0. Анализируем. Если косинус равен 0, то, чтобы всё выражение обратилось в 0, синус должен быть тоже равен 0 (учитываем, что коэффициенты отличны от 0). Но мы знаем, что синус и косинус обращаются в нуль в различных точках. Поэтому такую операцию производить можно при решении этого вида уравнений.

Уравнение вида а sin mx + b cos mx = 0 тоже называют однородным тригонометрическим уравнение первой степени и решают также делением обеих частей уравнения на cos mх.

Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 называют однородным тригонометрическим уравнением второй степени.

Пример 2: sin 2 x – 3 sinx cosx +2 cos 2 x = 0

Коэффициент а отличен от 0 и поэтому как и в предыдущем уравнении соsх 0 и поэтому можно воспользоваться способом деления обеих частей уравнения на соs 2 х.

Получим tg 2 x – 3 tgx +2 = 0

Решаем путем введения новой переменной пусть tgx = а, тогда получаем уравнение

а 2 -3 а +2 = 0 а 1 = 1 а 2 = 2

Возвращаемся к замене

tgx =1, x = ¼π+ πn, nє Z tgx = 2 , x = arctg 2 + πn, nє Z

Ответ: x = ¼π + πn, nє Z, x = arctg 2 + πn, nє Z

Если коэффициент а = 0, то уравнение примет вид –3sinx cosx + 2cos 2 x = 0 решаем способом вынесения общего множителя – cosx за скобки: – cosx (3 sinx – 2cosx) = 0,

cosx = 0 или 3sinx – 2cosx = 0. Второе уравнение является однородным уравнением первой степени.

Если коэффициент с = 0, то уравнение примет вид sin 2 x -3sinx cosx = 0 решаем способом вынесения общего множителя sinx за скобки: sinx (sinx -3 cosx) = 0,

sinx = 0 или sinx -3 cosx = 0. Второе уравнение является однородным уравнением первой степени.

Алгоритм решения однородного тригонометрического уравнения второй степени:

1.Посмотреть, есть ли в уравнении член a sin 2 x.

2.Если член asin 2 x в уравнении содержится (т.е. а 0), то уравнение решается делением

обеих частей уравнения на cos 2 x и последующим введение новой переменной а = tgx

3. Если член asin 2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx.

Однородные уравнения вида a sin 2 mx + b sin mx cos mx + c cos 2 mx = 0 решаются таким же способом

V. Усвоение новых знаний

Являются ли однородными данные уравнения?

  1. sin x = 2 cos x
  2. sin 5x + cos 5x = 0
  3. sin 3x - cos 3x = 2
  4. sin 2 8x – 5 sin8x cos8x +2 cos 2 8x =0

V I. Физкультминутка

V II. Формирование навыков решения однородных тригонометрических уравнений

Открываем задачники стр.47 № 18.10(а), № 18.11 (а,б),18.12(г)

VI II. Самостоятельная работа (учащиеся выбираю дифференцированные задания по двум вариантам)

1 вариант 2 вариант

1) sinx + 2cosx = 0. 1) sinx - 4cosx = 0.

2) sin 2 x + 2sinx cosx -3 cos 2 x = 0 2) sin 2 x – 4 sinx cosx +3 cos 2 x = 0

3) 2sin 2 2x – 5 sin2x cos2x +2 cos 2 2x = 0 3) 3sin 2 3x +10 sin3x cos3x +3 cos 2 3x = 0

Правильные ответы проецируются на доску.

IX. Подведение итогов урока, выставление оценок

С каким видом тригонометрических уравнений мы познакомились на уроке?

Какие уравнения мы называем однородными?

Сформулируйте алгоритмы решения однородных тригонометрических уравнений первой и второй степени.

X. Задание на дом: Cоставить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени

«Величие человека в его способности мыслить».
Блез Паскаль.

Цели урока:

1) Обучающие – познакомить учащихся с однородными уравнениями, рассмотреть методы их решения, способствовать формированию навыков решения ранее изученных видов тригонометрических уравнений.

2) Развивающие – развивать творческую активность учащихся, их познавательную деятельность, логическое мышление, память, умение работать в проблемной ситуации, добиваться умения правильно, последовательно, рационально излагать свои мысли, расширить кругозор учащихся, повышать уровень их математической культуры.

3) Воспитательные – воспитывать стремление к самосовершенствованию, трудолюбие, формировать умение грамотно и аккуратно выполнять математические записи, воспитывать активность, содействовать побуждению интереса к математике.

Тип урока: комбинированный.

Оборудование:

  1. Перфокарты для шести учащихся.
  2. Карточки для самостоятельной и индивидуальной работы учащихся.
  3. Стенды «Решение тригонометрических уравнений», «Числовая единичная окружность».
  4. Электрифицированные таблицы по тригонометрии.
  5. Презентация к уроку (Приложение 1) .

Ход урока

1. Организационный этап (2 минуты)

Взаимное приветствие; проверка подготовленности учащихся к уроку (рабочее место, внешний вид); организация внимания.

Учитель сообщает учащимся тему урока, цели (слайд 2) и поясняет, что во время урока будет использоваться тот раздаточный материал, который находится на партах.

2. Повторение теоретического материала (15 минут)

Задания на перфокартах (6 человек). Время работы по перфокартам – 10 мин (Приложение 2)

Решив задания, учащиеся узнают, где применяются тригонометрические вычисления. Получаются такие ответы: триангуляция (техника, позволяющая измерять расстояния до недалеких звезд в астрономии), акустика, УЗИ, томография, геодезия, криптография.

(слайд 5)

Фронтальный опрос.

  1. Какие уравнения называются тригонометрическими?
  2. Какие виды тригонометрических уравнений вы знаете?
  3. Какие уравнения называются простейшими тригонометрическими уравнениями?
  4. Какие уравнения называются квадратными тригонометрическими?
  5. Сформулировать определение арксинуса числа а.
  6. Сформулировать определение арккосинуса числа а.
  7. Сформулировать определение арктангенса числа а.
  8. Сформулировать определение арккотангенса числа а.

Игра «Отгадайте зашифрованное слово»

Когда-то Блез Паскаль сказал, что математика – наука настолько серьёзная, что нельзя упускать случая, сделать её немного более занимательной. Поэтому я предлагаю поиграть. Решив примеры, определите последовательность цифр, по которой составлено зашифрованное слово. По латыни это слово означает «синус». (слайд 3)

2) arc tg (-√3)

4) tg (arc cos (1/2))

5) tg (arc ctg √3)

Ответ: «Изгиб»

Игра «Рассеянный математик »

На экран проектируются задания для устной работы:

Проверьте правильность решения уравнений. (правильный ответ появляется на слайде после ответа учащегося). (слайд 4)

Ответы с ошибками

Правильные ответы

х = ±π/6 +2πn

х = ±π/3 +2πn

х = π/3 +πn

х = (-1) nπ/3 +πn

tg x = π/4

х = 1 +πn

tg x =1, х = π/4+πn

х = ±π/6+π n

х = ±π/6 +n

х = (-1)n arcsin1/3+ 2πn

х = (-1)n arcsin1/3+ πn

х = ±π/6 +2πn

х = ±5π/6 +2πn

cos x = π/3

х = ±1/2 +2πn

cos x = 1/2, х = ±π/3 +2πn

Проверка домашнего задания.

Преподаватель установливает правильность и осознанность выполнения домашнего задания всеми учащимися; выявляет пробелы в знаниях; совершенствует знания, умения и навыки учащихся в области решения простейших тригонометрических уравнений.

1 уравнение. Учащийся комментирует решение уравнения, строки которого появляются на слайде в порядке следования комментария). (слайд 6)

√3tg2x = 1;

tg2x =1/√3 ;

2х= arctg 1/√3 +πn, n Z.

2х= π/6 +πn, n Z.

х= π/12 + π/2 n, n Z .

2 уравнение . Решение з аписывается учащимся на доске.

2 sin 2 x + 3 cosx = 0.

3. Актуализация новых знаний (3 минуты)

Учащиеся по просьбе учителя вспоминают способы решения тригонометрических уравнений. Они выбирают те уравнения, которые уже умеют решать, называют способ решения уравнения и получившийся результат. Ответы появляются на слайде. (слайд 7) .

Введение новой переменной:

№1. 2sin 2 x – 7sinx + 3 = 0.

Пусть sinx = t, тогда:

2t 2 – 7t + 3 = 0.

Разложение на множители:

№2. 3sinx cos4x – cos4x = 0;

сos4x(3sinx – 1) = 0;

cos4x = 0 или 3 sinx – 1 = 0; …

№3. 2 sinx – 3 cosx = 0,

№4. 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Преподаватель: Последние два вида уравнений вы решать еще не умеете. Оба они одного вида. Их нельзя свести к уравнению относительно функций sinx или cosx. Называются однородными тригонометрическими уравнениями. Но только первое – однородное уравнение первой степени, а второе – однородное уравнение второй степени. Сегодня на уроке предстоит познакомиться с такими уравнениями и научиться их решать.

4. Объяснение нового материала (25 минут)

Преподаватель дает учащимся определения однородных тригонометрических уравнений, знакомит со способами их решения.

Определение. Уравнение вида a sinx + b cosx =0, где a ≠ 0, b ≠ 0 называется однородным тригонометрическим уравнением первой степени. (слайд 8)

Примером такого уравнения является уравнение №3. Выпишем общий вид уравнения и проанализируем его.

а sinx + b cosx = 0.

Если cosx = 0, то sinx = 0.

– Может ли получиться такая ситуация?

– Нет. Получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cosx:

а · tgx + b = 0

tgx = –b / а – простейшее тригонометрическое уравнение.

Вывод: Однородные тригонометрические уравнения первой степени решаются делением обеих частей уравнения на cosx (sinx).

Например: 2 sinx – 3 cosx = 0,

Т.к. cosx ≠ 0, то

tgx = 3/2;

х = arctg (3/2) +πn, n ∈Z.

Определение. Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 , где a ≠ 0, b ≠ 0, c ≠ 0 называется тригонометрическим уравнением второй степени. (слайд 8)

Примером такого уравнения является уравнение №4. Выпишем общий вид уравнения и проанализируем его.

a sin 2 x + b sinx cosx + c cos 2 x = 0.

Если cosx = 0, то sinx = 0.

Опять получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cos 2 x:

а tg 2 x + b tgx + c = 0 – уравнение, сводящееся к квадратному.

Вывод: О днородные тригонометрические уравнения второй степени решаются делением обеих частей уравнения на cos 2 x (sin 2 x).

Например: 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то

3tg 2 x – 4 tgx + 1 = 0 (Предложить ученику выйти к доске и дорешать уравнение самостоятельно).

Замена: tgx = у. 3у 2 – 4 у + 1 = 0

D = 16 – 12 = 4

y 1 = 1 или y 2 = 1/3

tgx = 1 или tgx = 1/3

x = arctg (1/3) + πn, n ∈Z.

х = arctg1 + πn, n ∈Z.

x = π/4 + πn, n ∈Z.

5. Этап проверки понимания учащимися нового материала (1 мин.)

Выберите лишнее уравнение:

sinx = 2cosx; 2sinx + cosx = 2;

√3sinx + cosx = 0; sin 2 x – 2 sinx cosx + 4cos 2 x = 0;

4cosx + 5sinx = 0; √3sinx – cosx = 0.

(слайд 9)

6. Закрепление нового материала (24 мин).

Учащиеся вместе с отвечающими у доски решают уравнения на новый материал. Задания написаны на слайде в виде таблицы. При решении уравнения открывается соответствующая часть картинки на слайде. В результате выполнения 4-х уравнений перед учащимися открывается портрет математика, оказавшего значительное влияние на развитие тригонометрии. (ученики узнают портрет Франсуа Виета – великого математика, внесшего большой вклад в тригонометрию, открывшего свойство корней приведенного квадратного уравнения и занимавшегося криптографией). (слайд 10)

1) √3sinx + cosx = 0,

Т.к. cosx ≠ 0, то

√3tgx + 1 = 0;

tgx = –1/√3;

х = arctg (–1/√3) + πn, n ∈Z.

х = –π/6 + πn, n ∈Z.

2) sin 2 x – 10 sinx cosx + 21cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то tg 2 x – 10 tgx + 21 = 0

Замена: tgx = у.

у 2 – 10 у + 21 = 0

у 1 = 7 или у 2 = 3

tgx = 7 или tgx = 3

х = arctg7 + πn, n ∈Z

х = arctg3 + πn, n ∈Z

3) sin 2 2x – 6 sin2x cos2x + 5cos 2 2x = 0.

Т.к. cos 2 2x ≠ 0, то 3tg 2 2x – 6tg2x +5 = 0

Замена: tg2x = у.

3у 2 – 6у + 5 = 0

D = 36 – 20 = 16

у 1 = 5 или у 2 = 1

tg2x = 5 или tg2x = 1

2х = arctg5 + πn, n ∈Z

х = 1/2 arctg5 + π/2 n, n ∈Z

2х = arctg1 + πn, n ∈Z

х = π/8 + π/2 n, n ∈Z

4) 6sin 2 x + 4 sin(π-x) cos(2π-x) = 1.

6sin 2 x + 4 sinx cosx = 1.

6sin 2 x + 4 sinx cosx – sin 2 x – cos 2 x = 0.

5sin 2 x + 4 sinx cosx – cos 2 x = 0.

Т.к. cos 2 x ≠0, то 5tg 2 x + 4 tgx –1 = 0

Замена: tg x = у.

5у 2 + 4у – 1 = 0

D = 16 + 20 = 36

у 1 = 1/5 или у 2 = –1

tg x = 1/5 или tg x = –1

х = arctg1/5 + πn, n ∈Z

х = arctg(–1) + πn, n ∈Z

х = –π/4 + πn, n ∈Z

Дополнительно (на карточке):

Решить уравнение и, выбрав один вариант из четырех предложенных, отгадать имя математика, который вывел формулы приведения:

2sin 2 x – 3 sinx cosx – 5cos 2 x = 0.

Варианты ответов:

х = arctg2 + 2πn, n ∈Z х = –π/2 + πn, n ∈Z – П.Чебышев

х = arctg 12,5 + 2πn, n ∈Z х = –3π/4 + πn, n ∈Z – Евклид

х = arctg 5 + πn, n ∈Z х = –π/3 + πn, n ∈Z – Софья Ковалевская

х = arctg2,5 + πn, n ∈Z х = –π/4 + πn, n ∈Z – Леонард Эйлер

Правильный ответ: Леонард Эйлер.

7. Дифференцированная самостоятельная работа (8 мин.)

Великий математик и философ более 2500 лет назад подсказал способ развития мыслительных способностей. «Мышление начинается с удивления» – сказал он. В правильности этих слов мы сегодня неоднократно убеждались. Выполнив самостоятельную работу по 2-м вариантам, вы сможете показать, как усвоили материал и узнать имя этого математика. Для самостоятельной работы используйте раздаточный материал, который находится у вас на столах. Вы можете сами выбрать одно из трех предложенных уравнений. Но помните, что решив уравнение, соответствующее желтому цвету, вы сможете получить только «3»,решив уравнение, соответствующее зеленому цвету – «4», красному цвету – «5». (Приложение 3)

Какой бы уровень сложности не выбрали учащиеся, после правильного решения уравнения у первого варианта получается слово «АРИСТ», у второго – «ОТЕЛЬ». На слайде получается слово: «АРИСТ-ОТЕЛЬ». (слайд 11)

Листочки с самостоятельной работой сдаются на проверку. (Приложение 4)

8. Запись домашнего задания (1 мин)

Д/з: §7.17. Составить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени (используя для составления теорему Виета). (слайд 12)

9. Подведение итогов урока, выставление оценок (2 минуты)

Учитель еще раз обращает внимание, на те типы уравнений и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их.

Учащиеся отвечают на вопросы:

  1. С каким видом тригонометрических уравнений мы познакомились?
  2. Как решаются эти уравнения?

Учитель отмечает наиболее успешную работу на уроке отдельных учащихся, выставляет отметки.

Тип урока: обяснение нового материала. Работа проходит в группах. В каждой группе есть эксперт, который контролирует и направляет работу учащихся. Помогает слабым учащимся поверить в свои силы при решении данных уравнений.

Скачать:


Предварительный просмотр:

Урок по теме

" Однородные тригонометрические уравнения"

(10-й класс)

Цель:

  1. ввести понятие однородных тригонометрических уравнений I и II степени;
  2. сформулировать и отработать алгоритм решения однородных тригонометрических уравнений I и II степени;
  3. научить учащихся решать однородные тригонометрических уравнений I и II степени;
  4. развивать умение выявлять закономерности, обобщать;
  5. стимулировать интерес к предмету, развивать чувство солидарности и здорового соперничества.

Тип урока : урок формирования новых знаний.

Форма проведения : работа в группах.

Оборудование: компьютер, мультимедийная установка

Ход урока

I. Организационный момент

На уроке рейтинговая система оценки знаний (учитель поясняет систему оценки знаний, заполнение оценочного листа независимым экспертом, выбранным учителем из числа учащихся). Урок сопровождается презентацией. Приложение 1.

Оценочный лист№

п\п

Фамилия имя

Домашнее задание

Познавательная активность

Решение уравнений

Самостоятельная

работа

Оценка

II. Актуализация опорных знаний..

Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений. Вспомним основные виды простейших тригонометрических уравнений. Поставьте с помощью стрелок соответствии между выражениями.

III. Мотивация обучения.

Нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Учащиеся отгадывают, независимый эксперт заносит в оценочный лист баллы отвечающим учащимся.

Разгадав кроссворд, ребята прочитают слово “однородные”.

Кроссворд.

Если вписать верные слова, то получится название одного из видов тригонометрических уравнений.

1.Значение переменной, обращающее уравнение в верное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении? (Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций? (Окружность)

6.Какая из тригонометрических функций четная? (Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнение)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение нового материала.

Тема урока “Однородные тригонометрические уравнения”. (Презентация)

Примеры:

  1. sin x + cos x = 0
  2. √3cos x + sin x = 0
  3. sin 4x = cos 4x
  4. 2sin 2 x + 3 sin x cos x + cos 2 x = 0
  5. 4 sin 2 x – 5 sin x cos x – 6 cos 2 x = 0
  6. sin 2 x + 2 sin x cos x – 3cos 2 x + 2 = 0
  7. 4sin 2 x – 8 sin x cos x + 10 cos 2 x = 3
  8. 1 + 7cos 2 x = 3 sin 2x
  9. sin 2x + 2cos 2x = 1

V. Самостоятельная работа

Задачи: всесторонне проверить знания учащихся при решении всех видов тригонометрических уравнений, стимулировать учащихся к самоанализу, самоконтролю.
Учащимся предлагается выполнить письменную работу на 10 минут.
Учащиеся выполняют на чистых листочках под копировку. По истечении времени собираются вершки самостоятельной работы, а решения под копировку остаются у учащихся.
Проверка самостоятельной работы (3 мин) проводится взаимопроверкой.
. Учащиеся цветной ручкой проверяют письменные работы своего соседа и записывают фамилию проверяющего. Затем сдают листочки.

Потом сдают независимому эксперту.

1 вариант: 1) sin x = √3cos x

2) 3sin 2 x – 7sin x cos x + 2 cos 2 x = 0

3) 3sin x – 2sin x cos x = 1

4) sin 2x⁄sin x =0

2 вариант: 1) cosx + √3sin x = 0

2)2sin 2 x + 3sin x cos x – 2 cos 2 x = 0

3)1 + sin 2 x = 2 sin x cos x

4) cos 2x ⁄ cos x = 0

VI. Подведение итогов урока

VII. Задание на дом:

Домашнее задание – 12 баллов (на дом было задано 3 уравнения 4 х 3 = 12)

Активность уч-ся – 1ответ – 1 балл (4 балла максимально)

Решение уравнений 1 балл

Самостоятельная работа – 4 балла




Похожие статьи