Как решить систему линейных уравнений? Решение простых линейных уравнений.

26.09.2019

Начальный уровень

Линейные уравнения. Полное руководство (2019)

Что такое «линейные уравнения»

или в устной форме - трем друзьям дали по яблок из расчета, что всего в наличии у Васи яблок.

И вот ты уже решил линейное уравнение
Теперь дадим этому термину математическое определение.

Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна . Оно выглядит следующим образом:

Где и - любые числа и

Для нашего случая с Васей и яблоками мы запишем:

- «если Вася раздаст всем троим друзьям одинаковое количество яблок, у него яблок не останется»

«Скрытые» линейные уравнения, или важность тождественных преобразований

Несмотря на то, что на первый взгляд все предельно просто, при решении уравнений необходимо быть внимательным, потому что линейными уравнениями называются не только уравнения вида, но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. Например:

Мы видим, что справа стоит, что, по идее, уже говорит о том, что уравнение не линейное. Мало того, если мы раскроем скобки, то получим еще два слагаемых, в которых будет, но не надо торопиться с выводами ! Прежде, чем судить, является ли уравнение линейным, необходимо произвести все преобразования и таким образом, упростить исходный пример. При этом преобразования могут изменять внешний вид, но никак не саму суть уравнения.

Иными словами данные преобразования должны быть тождественными или равносильными . Таких преобразований всего два, но они играют очень, ОЧЕНЬ важную роль при решении задач. Рассмотрим оба преобразования на конкретных примерах.

Перенос влево - вправо.

Допустим, нам необходимо решить такое уравнение:

Еще в начальной школе нам говорили: «с иксами - влево, без иксов - вправо». Какое выражение с иксом стоит справа? Правильно, а не как не. И это важно, так как при неправильном понимании этого, казалось бы простого вопроса, выходит неверный ответ. А какое выражение с иксом стоит слева? Правильно, .

Теперь, когда мы с этим разобрались, переносим все слагаемые с неизвестными в левую сторону, а все, что известно - в правую, помня, что если перед числом нет никакого знака, например, то значит число положительно, то есть перед ним стоит знак « ».

Перенес? Что у тебя получилось?

Все, что осталось сделать - привести подобные слагаемые. Приводим:

Итак, первое тождественное преобразование мы успешно разобрали, хотя уверена, что ты и без меня его знал и активно использовал. Главное - не забывай про знаки при числах и меняй их на противоположные при переносе через знак равенства!

Умножение-деление.

Начнем сразу же с примера

Смотрим и соображаем: что нам не нравится в этом примере? Неизвестное все в одной части, известные - в другой, но что-то нам мешает… И это что-то - четверка, так как если бы ее не было, все было бы идеально - икс равен числу - именно так, как нам и нужно!

Как можно от неё избавиться? Перенести вправо мы не можем, так как тогда нам нужно переносить весь множитель (мы же не можем ее взять и оторвать от), а переносить весь множитель тоже не имеет смысла…

Пришло время вспомнить про деление, в связи с чем разделим все как раз на! Все - это означает и левую, и правую часть. Так и только так! Что у нас получается?

Вот и ответ.

Посмотрим теперь другой пример:

Догадываешься, что нужно сделать в этом случае? Правильно, умножить левую и правую части на! Какой ты получил ответ? Правильно. .

Наверняка все про тождественные преобразования ты и так уже знал. Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего - Например, для решения нашего большого примера:

Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования. Так что начнем!

Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности. Если ты не помнишь, что это такое и как раскрываются скобки, настоятельно рекомендую почитать тему , так как эти навыки пригодятся тебе при решении практически всех примеров, встречающихся на экзамене.
Раскрыл? Сравниваем:

Теперь пришло время привести подобные слагаемые. Помнишь, как нам в тех же начальных классах говорили «не складываем мухи с котлетами»? Вот напоминаю об этом. Складываем все отдельно - множители, у которых есть, множители, у которых есть и остальные множители, в которых нет неизвестных. Как приведешь подобные слагаемые, перенеси все неизвестные влево, а все, что известно вправо. Что у тебя получилось?

Как ты видишь, иксы в квадрате исчезли, и мы видим совершенно обычное линейное уравнение . Осталось только найти!

И напоследок скажу еще одну очень важную вещь про тождественные преобразования - тождественные преобразования применимы не только для линейных уравнений, но и для квадратных, дробных рациональных и других. Просто нужно запомнить, что при переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число, мы умножаем/делим обе части уравнения на ОДНО и то же число.

Что еще ты вынес из этого примера? Что глядя на уравнение не всегда можно прямо и точно определить, является ли оно линейным или нет. Необходимо сначала полностью упростить выражение, и лишь потом судить, каким оно является.

Линейные уравнения. Примеры.

Вот тебе еще пару примеров для самостоятельной тренировки - определи, является ли уравнение линейным и если да, найди его корни:

Ответы:

1. Является.

2. Не является.

Раскроем скобки и приведем подобные слагаемые:

Произведем тождественное преобразование - разделим левую и правую часть на:

Мы видим, что уравнение не является линейным, так что искать его корни не нужно.

3. Является.

Произведем тождественное преобразование - умножим левую и правую часть на, чтобы избавиться от знаменателя.

Подумай, почему так важно, чтобы? Если ты знаешь ответ на этот вопрос, переходим к дальнейшему решению уравнения, если нет - обязательно загляни в тему , чтобы не наделать ошибок в более сложных примерах. Кстати, как ты видишь, ситуация, когда невозможна. Почему?
Итак, продолжаем и преобразовываем уравнение:

Если ты без труда со всем справился, поговорим о линейных уравнениях с двумя переменными.

Линейные уравнения с двумя переменными

Теперь перейдем к чуть более сложному - линейным уравнениям с двумя переменными.

Линейные уравнения с двумя переменными имеют вид:

Где, и - любые числа и.

Как ты видишь, вся разница только в том, что в уравнение добавляется еще одна переменная. А так все то же самое - здесь нет иксов в квадрате, нет деления на переменную и т.д. и т.п.

Какой бы привести тебе жизненный пример... Возьмем того же Васю. Допустим, он решил, что каждому из 3-ех друзей он даст одинаковое количество яблок, а яблока оставит себе. Сколько яблок нужно купить Васе, если каждому другу он даст по яблоку? А по? А если по?

Зависимость количества яблок, которое получит каждый человек к общему количеству яблок, которое необходимо приобрести будет выражена уравнением:

  • - количество яблок, которое получит человек (, или, или);
  • - количество яблок, которое Вася возьмет себе;
  • - сколько всего яблок нужно купить Васе с учетом количества яблок на человека.

Решая эту задачу, мы получим, что если одному другу Вася даст яблоко, то ему необходимо покупать штук, если даст яблока - и т.д.

И вообще. У нас две переменные. Почему бы не построить эту зависимость на графике? Строим и отмечаем значение наших, то есть точки, с координатами, и!

Как ты видишь, и зависят друг от друга линейно , отсюда и название уравнений - «линейные ».

Абстрагируемся от яблок и рассмотрим графически различные уравнения. Посмотри внимательно на два построенных графика - прямой и параболы, заданными произвольными функциями:

Найди и отметь на обоих рисунках точки, соответствующие.
Что у тебя получилось?

Ты видишь, что на графике первой функции одному соответствует один , то есть и линейно зависят друг от друга, что не скажешь про вторую функцию. Конечно, ты можешь возразить, что на втором графике так же соответствует икс - , но это только одна точка, то есть частный случай, так как ты все равно можешь найти такой, которому соответствует не только один. Да и построенный график никак не напоминает линию, а является параболой.

Повторюсь, еще раз: графиком линейного уравнения должна быть ПРЯМАЯ линия .

С тем, что уравнение не будет линейным, если у нас идет в какой-либо степени - это понятно на примере параболы, хотя для себя ты можешь построить еще несколько простых графиков, например или. Но я тебя уверяю - ни один из них не будет представлять собой ПРЯМУЮ ЛИНИЮ.

Не веришь? Построй, а затем сравни с тем, что получилось у меня:

А что будет, если мы разделим что-то на, например, какое-то число? Будет ли линейная зависимость и? Не будем рассуждать, а будем строить! Например, построим график функции.

Как-то не выглядит построенное прямой линией… соответственно, уравнение не линейное.
Подведем итоги:

  1. Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.
  2. Линейное уравнение с одной переменной имеет вид:
    , где и - любые числа;
    Линейное уравнение с двумя переменными:
    , где, и - любые числа.
  3. Не всегда сразу можно определить, является ли уравнение линейным или нет. Иногда, чтобы понять это, необходимо произвести тождественные преобразования перенести влево/вправо подобные члены, не забыв изменить знак, или умножить/разделить обе части уравнения на одного и тоже число.

ЛИНЕЙНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

1. Линейное уравнение

Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.

2. Линейное уравнение с одной переменной имеет вид:

Где и - любые числа;

3. Линейное уравнение с двумя переменными имеет вид:

Где, и - любые числа.

4. Тождественные преобразования

Чтобы определить является ли уравнение линейным или нет, необходимо произвести тождественные преобразования:

  • перенести влево/вправо подобные члены, не забыв изменить знак;
  • умножить/разделить обе части уравнения на одного и тоже число.

Уравнений. Если сказать по-другому, решение всех уравнений начинается с этих преобразований. При решении линейных уравнений, оно (решение) на тождественных преобразованиях и заканчивается окончательным ответом.

Случай ненулевого коэффициента при неизвестной переменной.

ax+b=0, a ≠ 0

Переносим в одну сторону члены с иксом, а в другую сторону — числа . Обязательно помните, что перенося слагаемые на противоположную сторону уравнения, нужно поменять знак:

ax:(a)=-b:(a)

Сокращаем а при х и получаем:

x=-b:(a)

Это ответ. Если нужно проверить, является ли число -b:(a) корнем нашего уравнения, то нужно подставить в начальное уравнение вместо х это самое число:

a(-b:(a))+b=0 (т.е. 0=0)

Т.к. это равенство верное, то -b:(a) и правда есть корень уравнения.

Ответ: x=-b:(a), a ≠ 0.

Первый пример :

5x+2=7x-6

Переносим в одну сторону члены с х , а в другую сторону числа:

5x-7x=-6-2

-2x:(-2)=-8:(-2)

При неизвестной коэффициент сократили и получили ответ:

Это ответ. Если нужно проверить, действительно ли число 4 корнем нашего уравнения, подставляем в исходное уравнение вместо икса это число:

5*4+2=7*4-6 (т.е. 22=22)

Т.к. это равенство верное, то 4 - это корень уравнения.

Второй пример:

Решить уравнение:

5x+14=x-49

Перенеся неизвестные и числа в разные стороны, получили:

Делим части уравнения на коэффициент при x (на 4) и получаем:

Третий пример:

Решить уравнение:

Сначала избавляемся от иррациональности в коэффициенте при неизвестном, домножив все слагаемые на :

Эту форму считают упрощаемой, т.к. в числе есть корень числа в знаменателе. Нужно упростить ответ, умножив числитель и знаменатель на одинаковое число, у нас это :

Случай отсутствия решений.

Решить уравнение:

2x+3=2x+7

При всех x наше уравнение не станет верным равенством. То есть, у нашего уравнения нет корней.

Ответ: решений нет.

Частный случай — бесконечное число решений.

Решить уравнение:

2x+3=2x+3

Перенеся иксы и числа в разные стороны и приведя подобные слагаемые, получаем уравнение:

Здесь тоже не возможно разделить обе части на 0, т.к. это запрещено. Однако, подставив на место х всякое число, мы получаем верное равенство. То есть, всякое число есть решение такого уравнения. Т.о., здесь бесконечное число решений.

Ответ: бесконечное число решений.

Случай равенства двух полных форм.

ax+b=cx+d

ax-cx=d-b

(a-c)x=d-b

x=(d-b):(a-c)

Ответ: x=(d-b):(a-c) , если d≠b и a≠c , иначе бесконечно много решений, но, если a=c , а d≠b , то решений нет.

Научиться решать уравнения — это одна из главных задач, которые ставит алгебра перед учениками. Начиная с простейшего, когда оно состоит из одной неизвестной, и переходя ко все более сложным. Если не усвоены действия, которые нужно выполнить с уравнениями из первой группы, будет трудно разобраться с другими.

Для продолжения разговора нужно договориться об обозначениях.

Общий вид линейного уравнения с одной неизвестной и принцип его решения

Любое уравнение, которое можно привести к записи такого вида:

а * х = в ,

называется линейным . Это общая формула. Но часто в заданиях линейные уравнения записаны в неявном виде. Тогда требуется выполнить тождественные преобразования, чтобы получить общепринятую запись. К этим действиям относятся:

  • раскрытие скобок;
  • перемещение всех слагаемых с переменной величиной в левую часть равенства, а остальных — в правую;
  • приведение подобных слагаемых.

В случае когда неизвестная величина стоит в знаменателе дроби, нужно определить ее значения, при которых выражение не будет иметь смысла. Другими словами, полагается узнать область определения уравнения.

Принцип, по которому решаются все линейные уравнения, сводится к тому, чтобы разделить значение в правой части равенства на коэффициент перед переменной. То есть «х» будет равен в/а.

Частные случаи линейного уравнения и их решения

Во время рассуждений могут возникать такие моменты, когда линейные уравнения принимают один из особых видов. Каждый из них имеет конкретное решение.

В первой ситуации:

а * х = 0 , причем а ≠ 0.

Решением такого уравнения всегда будет х = 0.

Во втором случае «а» принимает значение равное нулю:

0 * х = 0 .

Ответом такого уравнения будет любое число. То есть у него бесконечное количество корней.

Третья ситуация выглядит так:

0 * х = в , где в ≠ 0.

Это уравнение не имеет смысла. Потому что корней, удовлетворяющих ему, не существует.

Общий вид линейного уравнения с двумя переменными

Из его названия становится ясно, что неизвестных величин в нем уже две. Линейные уравнения с двумя переменными выглядят так:

а * х + в * у = с .

Поскольку в записи встречаются две неизвестные, то ответ будет выглядеть как пара чисел. То есть недостаточно указать только одно значение. Это будет неполный ответ. Пара величин, при которых уравнение превращается в тождество, является решением уравнения. Причем в ответе всегда первой записывают ту переменную, которая идет раньше по алфавиту. Иногда говорят, что эти числа ему удовлетворяют. Причем таких пар может быть бесконечное количество.

Как решить линейное уравнение с двумя неизвестными?

Для этого нужно просто подобрать любую пару чисел, которая окажется верной. Для простоты можно принять одну из неизвестных равной какому-либо простому числу, а потом найти вторую.

При решении часто приходится выполнять действия для упрощения уравнения. Они называются тождественными преобразованиями. Причем для уравнений всегда справедливы такие свойства:

  • каждое слагаемое можно перенести в противоположную часть равенства, заменив у него знак на противоположный;
  • левую и правую части любого уравнения разрешено делить на одно и то же число, если оно не равно нулю.

Примеры заданий с линейными уравнениями

Первое задание. Решить линейные уравнения: 4х = 20, 8(х — 1) + 2х = 2(4 — 2х); (5х + 15) / (х + 4) = 4; (5х + 15) / (х + 3) = 4.

В уравнении, которое идет в этом списке первым, достаточно просто выполнить деление 20 на 4. Результат будет равен 5. Это и есть ответ: х=5.

Третье уравнение требует того, чтобы было выполнено тождественное преобразование. Оно будет заключаться в раскрытии скобок и приведении подобных слагаемых. После первого действия уравнение примет вид: 8х — 8 + 2х = 8 — 4х. Потом нужно перенести все неизвестные в левую часть равенства, а остальные — в правую. Уравнение станет выглядеть так: 8х + 2х + 4х = 8 + 8. После приведения подобных слагаемых: 14х = 16. Теперь оно выглядит так же, как и первое, и решение его находится легко. Ответом будет х=8/7. Но в математике полагается выделять целую часть из неправильной дроби. Тогда результат преобразится, и «х» будет равен одной целой и одной седьмой.

В остальных примерах переменные находятся в знаменателе. Это значит, что сначала нужно узнать, при каких значениях уравнения определены. Для этого нужно исключить числа, при которых знаменатели обращаются в ноль. В первом из примеров это «-4», во втором оно «-3». То есть эти значения нужно исключить из ответа. После этого нужно умножить обе части равенства на выражения в знаменателе.

Раскрыв скобки и приведя подобные слагаемые, в первом из этих уравнений получится: 5х + 15 = 4х + 16, а во втором 5х + 15 = 4х + 12. После преобразований решением первого уравнения будет х = -1. Второе оказывается равным «-3», это значит, что последнее решений не имеет.

Второе задание. Решить уравнение: -7х + 2у = 5.

Предположим, что первая неизвестная х = 1, тогда уравнение примет вид -7 * 1 + 2у = 5. Перенеся в правую часть равенства множитель «-7» и поменяв у него знак на плюс, получится, что 2у = 12. Значит, у=6. Ответ: одно из решений уравнения х = 1, у = 6.

Общий вид неравенства с одной переменной

Все возможные ситуации для неравенств представлены здесь:

  • а * х > в;
  • а * х < в;
  • а * х ≥в;
  • а * х ≤в.

В общем, оно выглядит как простейшее линейное уравнение, только знак равенства заменен на неравенство.

Правила тождественных преобразований неравенства

Так же как линейные уравнения, и неравенства можно видоизменять по определенным законам. Они сводятся к следующему:

  1. к левой и правой частям неравенства можно прибавить любое буквенное или числовое выражение, причем знак неравенства останется прежним;
  2. также можно и умножить или разделить на одно и то же положительное число, от этого опять знак не изменяется;
  3. при умножении или делении на одно и то же отрицательное число равенство останется верным при условии смены знака неравенства на противоположный.

Общий вид двойных неравенств

В задачах могут быть представлены такие варианты неравенств:

  • в < а * х < с;
  • в ≤ а * х < с;
  • в < а * х ≤ с;
  • в ≤ а * х ≤ с.

Двойными оно называется, потому что ограничено знаками неравенства с двух сторон. Оно решается с помощью тех же правил, что и обычные неравенства. И нахождение ответа сводится к ряду тождественных преобразований. Пока не будет получено простейшее.

Особенности решения двойных неравенств

Первой из них является его изображение на координатной оси. Использовать этот способ для простых неравенств нет необходимости. А вот в сложных случаях он может быть просто необходимым.

Для изображения неравенства нужно отметить на оси все точки, которые получились во время рассуждений. Это и недопустимые значения, которые обозначаются выколотыми точками, и значения из неравенств, получившиеся после преобразований. Здесь тоже важно правильно нарисовать точки. Если неравенство строгое, то есть < или >, то эти значения выколотые. В нестрогих неравенствах точки нужно закрашивать.

Потом полагается обозначить смысл неравенств. Это можно сделать с помощью штриховки или дуг. Их пересечение укажет ответ.

Вторая особенность связана с его записью. Здесь предлагается два варианта. Первый — это окончательное неравенство. Второй — в виде промежутков. Вот с ним бывает, что возникают трудности. Ответ промежутками всегда выглядит как переменная со знаком принадлежности и скобок с числами. Иногда промежутков получается несколько, тогда между скобками нужно написать символ «и». Эти знаки выглядят так: ∈ и ∩. Скобки промежутков тоже играют свою роль. Круглая ставится тогда, когда точка исключена из ответа, а прямоугольная включает это значение. Знак бесконечности всегда стоит в круглой скобке.

Примеры решения неравенств

1. Решить неравенство 7 - 5х ≥ 37.

После несложных преобразований получается: -5х ≥ 30. Разделив на «-5» можно получить такое выражение: х ≤ -6. Это уже ответ, но его можно записать и по-другому: х ∈ (-∞; -6].

2. Решите двойное неравенство -4 < 2x + 6 ≤ 8.

Сначала нужно везде вычесть 6. Получится: -10 < 2x ≤ 2. Теперь нужно разделить на 2. Неравенство примет вид: -5 < x ≤ 1. Изобразив ответ на числовой оси, сразу можно понять, что результатом будет промежуток от -5 до 1. Причем первая точка исключена, а вторая включена. То есть ответ у неравенства такой: х ∈ (-5; 1].

Линейные уравнения. Решение, примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Линейные уравнения.

Линейные уравнения - не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся?)

Обычно линейное уравнение определяется, как уравнение вида:

ax + b = 0 где а и b – любые числа.

2х + 7 = 0. Здесь а=2, b=7

0,1х - 2,3 = 0 Здесь а=0,1, b=-2,3

12х + 1/2 = 0 Здесь а=12, b=1/2

Ничего сложного, правда? Особенно, если не замечать слова: "где а и b – любые числа" ... А если заметить, да неосторожно задуматься?) Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение:

Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное:

Что напрягает и подрывает доверие к математике, да...) Особенно на экзаменах. А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать. В этом уроке.

Как узнать линейное уравнение по внешнему виду? Это, смотря какой внешний вид.) Фишка в том, что линейными уравнениями называются не только уравнения вида ax + b = 0 , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. А кто ж его знает, сводится оно, или нет?)

Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное , это важно! А деление на число, или дробь числовая – это пожалуйста! Например:

Это линейное уравнение. Здесь есть дроби, но нет иксов в квадрате, в кубе и т.д., и нет иксов в знаменателях, т.е. нет деления на икс . А вот уравнение

нельзя назвать линейным. Здесь иксы все в первой степени, но есть деление на выражение с иксом . После упрощений и преобразований может получиться и линейное уравнение, и квадратное, и всё, что угодно.

Получается, что узнать линейное уравнение в каком-нибудь замудрёном примере нельзя, пока его почти не решишь. Это огорчает. Но в заданиях, как правило, не спрашивают о виде уравнения, правда? В заданиях велят уравнения решать. Это радует.)

Решение линейных уравнений. Примеры.

Всё решение линейных уравнений состоит из тождественных преобразований уравнений. Кстати, эти преобразования (целых два!) лежат в основе решений всех уравнений математики. Другими словами, решение любого уравнения начинается с этих самых преобразований. В случае линейных уравнений, оно (решение) на этих преобразованиях и заканчивается полноценным ответом. Имеет смысл по ссылке сходить, правда?) Тем более, там тоже примеры решения линейных уравнений имеются.

Для начала рассмотрим самый простой пример. Безо всяких подводных камней. Пусть нам нужно решить вот такое уравнение.

х - 3 = 2 - 4х

Это линейное уравнение. Иксы все в первой степени, деления на икс нету. Но, собственно, нам без разницы, какое это уравнение. Нам его решать надо. Схема тут простая. Собрать всё, что с иксами в левой части равенства, всё, что без иксов (числа) - в правой.

Для этого нужно перенести - 4х в левую часть, со сменой знака, разумеется, а - 3 - в правую. Кстати, это и есть первое тождественное преобразование уравнений. Удивлены? Значит, по ссылке не ходили, а зря...) Получим:

х + 4х = 2 + 3

Приводим подобные, считаем:

Что нам не хватает для полного счастья? Да чтобы слева чистый икс был! Пятёрка мешает. Избавляемся от пятёрки с помощью второго тождественного преобразования уравнений. А именно - делим обе части уравнения на 5. Получаем готовый ответ:

Пример элементарный, разумеется. Это для разминки.) Не очень понятно, к чему я тут тождественные преобразования вспоминал? Ну ладно. Берём быка за рога.) Решим что-нибудь посолиднее.

Например, вот это уравнение:

С чего начнём? С иксами - влево, без иксов - вправо? Можно и так. Маленькими шажочками по длинной дороге. А можно сразу, универсальным и мощным способом. Если, конечно, в вашем арсенале имеются тождественные преобразования уравнений.

Задаю вам ключевой вопрос: что вам больше всего не нравится в этом уравнении?

95 человек из 100 ответят: дроби ! Ответ правильный. Вот и давайте от них избавимся. Поэтому начинаем сразу со второго тождественного преобразования . На что нужно умножить дробь слева, чтобы знаменатель сократился напрочь? Верно, на 3. А справа? На 4. Но математика позволяет нам умножать обе части на одно и то же число . Как выкрутимся? А умножим обе части на 12! Т.е. на общий знаменатель. Тогда и тройка сократится, и четвёрка. Не забываем, что умножать надо каждую часть целиком . Вот как выглядит первый шаг:

Раскрываем скобки:

Обратите внимание! Числитель (х+2) я взял в скобки! Это потому, что при умножении дробей, числитель умножается весь, целиком! А теперь дроби и сократить можно:

Раскрываем оставшиеся скобки:

Не пример, а сплошное удовольствие!) Вот теперь вспоминаем заклинание из младших классов: с иксом – влево, без икса – вправо! И применяем это преобразование:

Приводим подобные:

И делим обе части на 25, т.е. снова применяем второе преобразование:

Вот и всё. Ответ: х =0,16

Берём на заметку: чтобы привести исходное замороченное уравнение к приятному виду, мы использовали два (всего два!) тождественных преобразования – перенос влево-вправо со сменой знака и умножение-деление уравнения на одно и то же число. Это универсальный способ! Работать таким образом мы будем с любыми уравнениями! Совершенно любыми. Именно поэтому я про эти тождественные преобразования всё время занудно повторяю.)

Как видим, принцип решения линейных уравнений простой. Берём уравнение и упрощаем его с помощью тождественных преобразований до получения ответа. Основные проблемы здесь в вычислениях, а не в принципе решения.

Но... Встречаются в процессе решения самых элементарных линейных уравнений такие сюрпризы, что могут и в сильный ступор вогнать...) К счастью, таких сюрпризов может быть только два. Назовём их особыми случаями.

Особые случаи при решении линейных уравнений.

Сюрприз первый.

Предположим, попалось вам элементарнейшее уравнение, что-нибудь, типа:

2х+3=5х+5 - 3х - 2

Слегка скучая, переносим с иксом влево, без икса - вправо... Со сменой знака, всё чин-чинарём... Получаем:

2х-5х+3х=5-2-3

Считаем, и... опаньки!!! Получаем:

Само по себе это равенство не вызывает возражений. Нуль действительно равен нулю. Но икс-то пропал! А мы обязаны записать в ответе, чему равен икс. Иначе, решение не считается, да...) Тупик?

Спокойствие! В таких сомнительных случаях спасают самые общие правила. Как решать уравнения? Что значит решить уравнение? Это значит, найти все значения икса, которые, при подстановке в исходное уравнение, дадут нам верное равенство.

Но верное равенство у нас уже получилось! 0=0, куда уж вернее?! Остаётся сообразить, при каких иксах это получается. Какие значения икса можно подставлять в исходное уравнение, если эти иксы всё равно посокращаются в полный ноль? Ну же?)

Да!!! Иксы можно подставлять любые! Какие хотите. Хоть 5, хоть 0,05, хоть -220. Они всё равно сократятся. Если не верите - можете проверить.) Поподставляйте любые значения икса в исходное уравнение и посчитайте. Всё время будет получаться чистая правда: 0=0, 2=2, -7,1=-7,1 и так далее.

Вот вам и ответ: х - любое число.

Ответ можно записать разными математическими значками, суть не меняется. Это совершенно правильный и полноценный ответ.

Сюрприз второй.

Возьмём то же элементарнейшее линейное уравнение и изменим в нём всего одно число. Вот такое будем решать:

2х+1=5х+5 - 3х - 2

После тех же самых тождественных преобразований мы получим нечто интригующее:

Вот так. Решали линейное уравнение, получили странное равенство. Говоря математическим языком, мы получили неверное равенство. А говоря простым языком, неправда это. Бред. Но тем, не менее, этот бред - вполне веское основание для правильного решения уравнения.)

Опять соображаем, исходя из общих правил. Какие иксы, при подстановке в исходное уравнение, дадут нам верное равенство? Да никакие! Нет таких иксов. Чего ни подставляй, всё посократится, останется бред.)

Вот вам и ответ: решений нет.

Это тоже вполне полноценный ответ. В математике такие ответы частенько встречаются.

Вот так. Сейчас, надеюсь, пропажа иксов в процессе решения любого (не только линейного) уравнения вас нисколько не смутит. Дело уже знакомое.)

Теперь, когда мы разобрались со всеми подводными камнями в линейных уравнениях, имеет смысл их порешать.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени : без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

– Решение системы линейных уравнений методом подстановки («школьный метод») ;
– Решение системы методом почленного сложения (вычитания) уравнений системы ;
– Решение системы по формулам Крамера ;
– Решение системы с помощью обратной матрицы ;
– Решение системы методом Гаусса .

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Решение системы линейных уравнений методом подстановки

Данный метод также можно назвать «школьным методом» или методом исключения неизвестных. Образно говоря, его еще можно назвать «недоделанным методом Гаусса».

Пример 1


Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений) .Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.

Существует графический метод решения системы, с которым можно ознакомиться на уроке Простейшие задачи с прямой . Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.

Решаем : из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:

Раскрываем скобки, приводим подобные слагаемые и находим значение :

Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:

Ответ :

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку (устно, на черновике либо калькуляторе) . Благо, делается это легко и быстро.

1) Подставляем найденный ответ в первое уравнение :

– получено верное равенство.

2) Подставляем найденный ответ во второе уравнение :

– получено верное равенство.

Или, если говорить проще, «всё сошлось»

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не .
Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов – выразить из второго уравнения:

Получаются дроби, а оно зачем? Есть более рациональное решение.

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаю Ваше вниманиена то, КАК я записал выражение. Не так: , и ни в коем случае не так: .

Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных неправильных дробях .

Именно , а не или !

Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.

Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:

Любое задание следует стремиться выполнить самым рациональным способом . Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.

Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не подумает, что ты лох снизит оценку за использование «школьного метода».
Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.

Пример 2

Решить систему линейных уравнений с тремя неизвестными

Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции . Рассматриваемая система взята мной как раз оттуда.

При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.

Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:

Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач.

Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:

Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или .

Далее, выражение для подставляем во второе и третье уравнения системы:

Раскрываем скобки и приводим подобные слагаемые:

Третье уравнение делим на 2:

Из второго уравнения выразим и подставим в третьей уравнение:

Практически всё готово, из третьего уравнения находим:
Из второго уравнения:
Из первого уравнения:

Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:

1)
2)
3)

Получены соответствующие правые части уравнений, таким образом, решение найдено верно.

Пример 3

Решить систему линейных уравнений с 4 неизвестными

Это пример для самостоятельного решения (ответ в конце урока).

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Пример 4

Решить систему линейных уравнений:

Я взял ту же систему, что и первом примере.
Анализируя систему уравнений, замечаем, что коэффициенты при переменной одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.
Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных .



Похожие статьи