Как решать простейшие логарифмические уравнения. Логарифмическое уравнение: основные формулы и приемы

26.09.2019

Логарифмические уравнения. От простого - к сложному.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифмическое уравнение?

Это уравнение с логарифмами. Вот удивил, да?) Тогда уточню. Это уравнение, в котором неизвестные (иксы) и выражения с ними находятся внутри логарифмов. И только там! Это важно.

Вот вам примеры логарифмических уравнений :

log 3 х = log 3 9

log 3 (х 2 -3) = log 3 (2х)

log х+1 (х 2 +3х-7) = 2

lg 2 (x+1)+10 = 11lg(x+1)

Ну, вы поняли... )

Обратите внимание! Самые разнообразные выражения с иксами располагаются исключительно внутри логарифмов. Если, вдруг, в уравнении обнаружится икс где-нибудь снаружи , например:

log 2 х = 3+х,

это будет уже уравнение смешанного типа. Такие уравнения не имеют чётких правил решения. Мы их пока рассматривать не будем. Кстати, попадаются уравнения, где внутри логарифмов только числа . Например:

Что тут сказать? Повезло вам, если попалось такое! Логарифм с числами - это какое-то число. И всё. Достаточно знать свойства логарифмов, чтобы решить такое уравнение. Знания специальных правил, приёмов, приспособленных именно для решения логарифмических уравнений, здесь не требуется.

Итак, что такое логарифмическое уравнение - разобрались.

Как решать логарифмические уравнения?

Решение логарифмических уравнений - штука, вообще-то, не очень простая. Так и раздел у нас - на четвёрку... Требуется приличный запас знаний по всяким смежным темам. Кроме того, существует в этих уравнениях особая фишка. И фишка это настолько важная, что её смело можно назвать главной проблемой в решении логарифмических уравнений. Мы с этой проблемой в следующем уроке детально разберёмся.

А сейчас - не волнуйтесь. Мы пойдём правильным путём, от простого к сложному. На конкретных примерах. Главное, вникайте в простые вещи и не ленитесь ходить по ссылкам, я их не просто так поставил... И всё у вас получится. Обязательно.

Начнём с самых элементарных, простейших уравнений. Для их решения желательно иметь представление о логарифме, но не более того. Просто без понятия логарифма, браться за решение логарифмических уравнений - как-то и неловко даже... Очень смело, я бы сказал).

Простейшие логарифмические уравнения.

Это уравнения вида:

1. log 3 х = log 3 9

2. log 7 (2х-3) = log 7 х

3. log 7 (50х-1) = 2

Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них. В простейших уравнениях этот переход осуществляется в один шаг. Потому и простейшие.)

И решаются такие логарифмические уравнения на удивление просто. Смотрите сами.

Решаем первый пример:

log 3 х = log 3 9

Для решения этого примера почти ничего знать и не надо, да... Чисто интуиция!) Что нам особо не нравится в этом примере? Что-что... Логарифмы не нравятся! Правильно. Вот и избавимся от них. Пристально смотрим на пример, и у нас возникает естественное желание... Прямо-таки непреодолимое! Взять и выкинуть логарифмы вообще. И, что радует, это можно сделать! Математика позволяет. Логарифмы исчезают, получается ответ:

Здорово, правда? Так можно (и нужно) делать всегда. Ликвидация логарифмов подобным образом - один из основных способов решения логарифмических уравнений и неравенств. В математике эта операция называется потенцирование. Есть, конечно, свои правила на такую ликвидацию, но их мало. Запоминаем:

Ликвидировать логарифмы безо всяких опасений можно, если у них:

а) одинаковые числовые основания

в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве.

Поясню последний пункт. В уравнении, скажем,

log 3 х = 2log 3 (3х-1)

убирать логарифмы нельзя. Двойка справа не позволяет. Коэффициент, понимаешь... В примере

log 3 х+log 3 (х+1) = log 3 (3+х)

тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два.

Короче, убирать логарифмы можно, если уравнение выглядит так и только так:

log а (.....) = log а (.....)

В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение. Предполагается, конечно, что решать линейные, квадратные, дробные, показательные и прочие уравнения без логарифмов вы уже умеете.)

Теперь легко можно решить второй пример:

log 7 (2х-3) = log 7 х

Собственно, в уме решается. Потенцируем, получаем:

Ну что, очень сложно?) Как видите, логарифмическая часть решения уравнения заключается только в ликвидации логарифмов... А дальше идёт решение оставшегося уравнения уже без них. Пустяшное дело.

Решаем третий пример:

log 7 (50х-1) = 2

Видим, что слева стоит логарифм:

Вспоминаем, что этот логарифм - какое-то число, в которое надо возвести основание (т.е. семь), чтобы получить подлогарифменное выражение, т.е. (50х-1).

Но это число равно двум! По уравнению. Стало быть:

Вот, в сущности, и всё. Логарифм исчез, осталось безобидное уравнение:

Мы решили это логарифмическое уравнение исходя только из смысла логарифма. Что, ликвидировать логарифмы всё-таки проще?) Согласен. Между прочим, если из двойки логарифм сделать, можно этот пример и через ликвидацию решить. Из любого числа можно логарифм сделать. Причём, такой, какой нам надо. Очень полезный приём в решении логарифмических уравнений и (особо!) неравенств.

Не умеете из числа логарифм делать!? Ничего страшного. В разделе 555 этот приём подробно описан. Можете освоить и применять его на полную катушку! Он здорово уменьшает количество ошибок.

Совершенно аналогично (по определению) решается и четвёртое уравнение:

Вот и все дела.

Подведём итоги этого урока. Мы рассмотрели на примерах решение простейших логарифмических уравнений. Это очень важно. И не только потому, что такие уравнения бывают на контрольных-экзаменах. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим!

Собственно, простейшие уравнения - это финишная часть решения любых уравнений. И эту финишную часть надо понимать железно! И ещё. Обязательно дочитайте эту страничку до конца. Есть там сюрприз...)

Решаем теперь самостоятельно. Набиваем руку, так сказать...)

Найти корень (или сумму корней, если их несколько) уравнений:

ln(7х+2) = ln(5х+20)

log 2 (х 2 +32) = log 2 (12x)

log 16 (0,5х-1,5) = 0,25

log 0,2 (3х-1) = -3

ln(е 2 +2х-3) = 2

log 2 (14х) = log 2 7 + 2

Ответы (в беспорядке, разумеется): 42; 12; 9; 25; 7; 1,5; 2; 16.

Что, не всё получается? Бывает. Не горюйте! В разделе 555 решение всех этих примеров расписано понятно и подробно. Там уж точно разберётесь. Да ещё и полезные практические приёмы освоите.

Всё получилось!? Все примеры "одной левой"?) Поздравляю!

Пришло время открыть вам горькую правду. Успешное решение этих примеров вовсе не гарантирует успех в решении всех остальных логарифмических уравнений. Даже простейших, подобных этим. Увы.

Дело в том, что решение любого логарифмического уравнения (даже самого элементарного!) состоит из двух равноценных частей. Решение уравнения, и работа с ОДЗ. Одну часть - решение самого уравнения - мы освоили. Не так уж и трудно, верно?

Для этого урока я специально подобрал такие примеры, в которых ОДЗ никак на ответе не сказывается. Но не все такие добрые, как я, правда?...)

Посему надо обязательно освоить и другую часть. ОДЗ. Это и есть главная проблема в решении логарифмических уравнений. И не потому, что трудная - эта часть ещё проще первой. А потому, что про ОДЗ просто забывают. Или не знают. Или и то, и другое). И падают на ровном месте...

В следующем уроке мы расправимся с этой проблемой. Вот тогда можно будет уверенно решать любые несложные логарифмические уравнения и подбираться к вполне солидным заданиям.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


Примеры:

\(\log_{2}{⁡x} = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡{(x^2-3)}=\log_3⁡{(2x)}\)
\(\log_{x+1}{(x^2+3x-7)}=2\)
\(\lg^2⁡{(x+1)}+10=11 \lg⁡{(x+1)}\)

Как решать логарифмические уравнения:

При решении логарифмического уравнения нужно стремиться преобразовать его к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), после чего сделать переход к \(f(x)=g(x)\).

\(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) \(⇒\) \(f(x)=g(x)\).


Пример: \(\log_2⁡(x-2)=3\)

Решение:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Проверка: \(10>2\) - подходит по ОДЗ
Ответ: \(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Очень важно! Этот переход можно делать только если:

Вы написали для исходного уравнения, и в конце проверите, входят ли найденные в ОДЗ. Если это не сделать, могут появиться лишние корни, а значит – неверное решение.

Число (или выражение) в слева и справа одинаково;

Логарифмы слева и справа - «чистые», то есть не должно быть никаких , умножений, делений и т.д. – только одинокие логарифмы по обе стороны от знака равно.

Например:

Заметим, что уравнения 3 и 4 можно легко решить, применив нужные свойства логарифмов.

Пример . Решить уравнение \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Решение :

Напишем ОДЗ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Слева перед логарифмом стоит коэффициент, справа сумма логарифмов. Это нам мешает. Перенесем двойку в показатель степени \(x\) по свойству: \(n \log_b{⁡a}=\log_b⁡{a^n}\). Сумму логарифмов представим в виде одного логарифма по свойству: \(\log_a⁡b+\log_a⁡c=\log_a{⁡bc}\)

\(\log_8⁡{x^2}=\log_8⁡25\)

Мы привели уравнение к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) и записали ОДЗ, значит можно выполнить переход к виду \(f(x)=g(x)\).

Получилось . Решаем его и получаем корни.

\(x_1=5\) \(x_2=-5\)

Проверяем подходят ли корни под ОДЗ. Для этого в \(x>0\) вместо \(x\) подставляем \(5\) и \(-5\). Эту операцию можно выполнить устно.

\(5>0\), \(-5>0\)

Первое неравенство верное, второе – нет. Значит \(5\) – корень уравнения, а вот \(-5\) – нет. Записываем ответ.

Ответ : \(5\)


Пример : Решить уравнение \(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\)

Решение :

Напишем ОДЗ: \(x>0\).

\(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\) ОДЗ: \(x>0\)

Типичное уравнение, решаемое с помощью . Заменяем \(\log_2⁡x\) на \(t\).

\(t=\log_2⁡x\)

Получили обычное . Ищем его корни.

\(t_1=2\) \(t_2=1\)

Делаем обратную замену

\(\log_2{⁡x}=2\) \(\log_2{⁡x}=1\)

Преобразовываем правые части, представляя их как логарифмы: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) и \(1=\log_2⁡2\)

\(\log_2{⁡x}=\log_2⁡4\) \(\log_2{⁡x}=\log_2⁡2 \)

Теперь наши уравнения имеют вид \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), и мы можем выполнить переход к \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Проверяем соответствие корней ОДЗ. Для этого в неравенство \(x>0\) вместо \(x\) подставляем \(4\) и \(2\).

\(4>0\) \(2>0\)

Оба неравенства верны. Значит и \(4\) и \(2\) корни уравнения.

Ответ : \(4\); \(2\).

Алгебра 11 класс

Тема: «Методы решения логарифмических уравнений»

Цели урока:

образовательная: формирование знаний о разных способах решения логарифмических уравнений, умений применять их в каждой конкретной ситуации и выбирать для решения любой способ;

развивающая: развитие умений наблюдать, сравнивать, применять знания в новой ситуации, выявлять закономерности, обобщать; формирование навыков взаимоконтроля и самоконтроля;

воспитательная: воспитание ответственного отношения к учебному труду, внимательного восприятия материала на уроке, аккуратности ведения записей.

Тип урока : урок ознакомления с новым материалом.

«Изобретение логарифмов, сократив работу астронома, продлило ему жизнь».
Французский математик и астроном П.С. Лаплас

Ход урока

I. Постановка цели урока

Изученные определение логарифма, свойства логарифмов и логарифмической функции позволят нам решать логарифмические уравнения. Все логарифмические уравнения, какой бы сложности они не были, решаются по единым алгоритмам. Эти алгоритмы рассмотрим сегодня на уроке. Их немного. Если их освоить, то любое уравнение с логарифмами будет посильно каждому из вас.

Запишите в тетради тему урока: «Методы решения логарифмических уравнений». Приглашаю всех к сотрудничеству.

II. Актуализация опорных знаний

Подготовимся к изучению темы урока. Каждое задание вы решаете и записываете ответ, условие можно не писать. Работайте в парах.

1) При каких значениях х имеет смысл функция:

(По каждому слайду сверяются ответы и разбираются ошибки)

2) Совпадают ли графики функций?

3) Перепишите равенства в виде логарифмических равенств:

4) Запишите числа в виде логарифмов с основанием 2:

5) Вычислите:

6) Попытайтесь восстановить или дополнить недостающие элементы в данных равенствах.

III. Ознакомление с новым материалом

Демонстрируется на экране высказывание:

«Уравнение - это золотой ключ, открывающий все математические сезамы».
Современный польский математик С. Коваль

Попробуйте сформулировать определение логарифмического уравнения. (Уравнение, содержащее неизвестное под знаком логарифма).

Рассмотрим простейшее логарифмическое уравнение: log а x = b (где а>0, a ≠ 1). Так как логарифмическая функция возрастает (или убывает) на множестве положительных чисел и принимает все действительные значения, то по теореме о корне следует, что для любого b данное уравнение имеет, и притом только одно, решение, причем положительное.

Вспомните определение логарифма. (Логарифм числа х по основанию а - это показатель степени, в которую надо возвести основание а, чтобы получить число х). Из определения логарифма сразу следует, что а в является таким решением.

Запишите заголовок: Методы решения логарифмических уравнений

1. По определению логарифма .

Так решаются простейшие уравнения вида .

Рассмотрим № 514(а ): Решить уравнение

Как вы предлагаете его решать? (По определению логарифма)

Решение. , Отсюда 2х - 4 = 4; х = 4.

В этом задании 2х - 4 > 0, так как > 0, поэтому посторонних корней появиться не может, и проверку нет необходимости делать. Условие 2х - 4 > 0 в этом задании выписывать не надо.

2. Потенцирование (переход от логарифма данного выражения к самому этому выражению).

Рассмотрим №519(г): log5(x2+8)-log5(x+1)=3log5 2

Какую особенность вы заметили? (Основания одинаковы и логарифмы двух выражений равны). Что можно сделать? (Потенцировать).

При этом надо учитывать, что любое решение содержится среди всех х, для которых логарифмируемые выражение положительны.

Решение: ОДЗ:

X2+8>0 лишнее неравенство

log5(x2+8) =log5 23+ log5(x+1)

log5(x2+8)= log5 (8 x+8)

Потенцируем исходное уравнение

получим уравнение x2+8= 8x+8

Решаем его: x2-8x=0

Ответ: 0; 8

В общем виде переходом к равносильной системе :

Уравнение

(Система содержит избыточное условие - одно из неравенств можно не рассматривать).

Вопрос классу : Какое из этих трех решений вам больше всего понравилось? (Обсуждение способов).

Вы имеете право решать любым способом.

3. Введение новой переменной .

Рассмотрим № 520(г) . .

Что вы заметили? (Это квадратное уравнение относительно log3x) Ваши предложения? (Ввести новую переменную)

Решение. ОДЗ: х > 0.

Пусть , тогда уравнение примет вид:. Дискриминант D > 0. Корни по теореме Виета:.

Вернемся к замене: или .

Решив простейшие логарифмические уравнения, получим:

Ответ: 27;

4. Логарифмирование обеих частей уравнения.

Решить уравнение:.

Решение: ОДЗ: х>0, прологарифмируем обе части уравнения по основанию 10:

Применим свойство логарифма степени:

(lgx + 3) lgx = 4

Пусть lgx = y, тогда (у + 3)у = 4

, (D > 0) корни по теореме Виета: у1 = -4 и у2 = 1.

Вернемся к замене, получим: lgx = -4,; lgx = 1, .

Ответ: 0,0001; 10.

5. Приведение к одному основанию.

№ 523(в). Решите уравнение:

Решение: ОДЗ: х>0. Перейдем к основанию 3.

6. Функционально-графический метод.

509(г). Решить графически уравнение: = 3 - x.

Как вы предлагаете решать? (Строить по точкам графики двух функций у = log2x и y = 3 - x и искать абсциссу точек пересечения графиков).

Посмотрите ваше решение на слайде.

Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функций у = f(x)возрастает, а другая y = g(x) убывает на промежутке Х, то уравнение f(x)= g(x) имеет не более одного корня на промежутке Х .

Если корень имеется, то его можно угадать.

В нашем случае функция возрастает при х>0, а функция y = 3 - x убывает при всех значениях х, в том числе и при х>0, значит, уравнение имеет не более одного корня. Заметим, что при х = 2 уравнение обращается в верное равенство, так как .

«Правильному применению методов можно научиться,
только применяя их на различных примерах».
Датский историк математики Г. Г. Цейтен

I V. Домашнее задание

П. 39 рассмотреть пример 3, решить № 514(б), № 529(б), №520(б), №523(б)

V. Подведение итогов урока

Какие методы решения логарифмических уравнений мы рассмотрели на уроке?

На следующих уроках рассмотрим более сложные уравнения. Для их решения пригодятся изученные методы.

Демонстрируется последний слайд:

«Что есть больше всего на свете?
Пространство.
Что мудрее всего?
Время.
Что приятнее всего?
Достичь желаемого».
Фалес

Желаю всем достичь желаемого. Благодарю за сотрудничество и понимание.

Этим видео я начинаю длинную серию уроков про логарифмические уравнения. Сейчас перед вами сразу три примера, на основе которых мы будем учиться решать самые простые задачи, которые так и называются — простейшие .

log 0,5 (3x − 1) = −3

lg (x + 3) = 3 + 2 lg 5

Напомню, что простейшим логарифмическим уравнением называется следующее:

log a f (x ) = b

При этом важно, чтобы переменная х присутствует только внутри аргумента, т. е. только в функции f (x ). А числа а и b являются именно числами, а ни в коем случае не функциями, содержащими переменную х.

Основные методы решения

Существует множество способов решения таких конструкций. Например, большинство учителей в школе предлагают такой способ: Сразу выразить функцию f (x ) по формуле f (x ) = a b . Т. е. когда вы встречаете простейшую конструкцию, сразу без дополнительных действий и построений можете перейти к решению.

Да, безусловно, решение получится правильным. Однако проблема этой формулы состоит в том, что большинство учеников не понимают , откуда она берется и почему именно букву а мы возводим в букву b .

В результате я часто наблюдаю очень обидные ошибки, когда, например, эти буквы меняются местами. Данную формулу нужно либо понять, либо зубрить, причем второй способ приводит к ошибкам в самые неподходящие и самые ответственные моменты: на экзаменах, контрольных и т. д.

Именно поэтому всем своим ученикам я предлагаю отказаться от стандартной школьной формулы и использовать для решения логарифмических уравнений второй подход, который, как вы уже наверняка догадались из названия, называется канонической формой .

Идея канонической формы проста. Давайте еще раз посмотрим на нашу задачу: слева у нас есть log a , при этом под буквой a имеется в виду именно число, а ни в коем случае не функция, содержащая переменную х. Следовательно, на эту букву распространяются все ограничения, которые накладываются на основание логарифма. а именно:

1 ≠ a > 0

С другой стороны, из того же самого уравнения мы видим, что логарифм должен быть равен числу b , и вот на эту букву никаких ограничений не накладывается, потому что он может принимать любые значения — как положительные, так и отрицательные. Все зависит от того, какие значения принимает функция f (x ).

И вот тут мы вспоминаем наше замечательное правило, что любое число b может быть представлено в виде логарифма по основанию а от а в степени b :

b = log a a b

Как запомнить эту формулу? Да очень просто. Давайте запишем следующую конструкцию:

b = b · 1 = b · log a a

Разумеется, что при этом возникают все ограничения, которые мы записали вначале. А теперь давайте воспользуемся основным свойством логарифма, и внесем множитель b в качестве степени а. Получим:

b = b · 1 = b · log a a = log a a b

В результате исходное уравнение перепишется в следующем виде:

log a f (x ) = log a a b → f (x ) = a b

Вот и все. Новая функция уже не содержит логарифма и решается стандартными алгебраическими приемами.

Конечно, кто-то сейчас возразит: а зачем вообще было придумывать какую-то каноническую формулу, зачем выполнять два дополнительных ненужных шага, если можно было сразу перейти от исходной конструкции к итоговой формуле? Да уже хотя бы затем, что большинство учеников не понимают, откуда берется эта формула и, как следствие, регулярно допускают ошибки при ее применении.

А вот такая последовательность действий, состоящая из трех шагов, позволяет вам решить исходное логарифмическое уравнение, даже если вы не понимаете, откуда берется та самая итоговая формула. Кстати, канонической формулой называется именно эта запись:

log a f (x ) = log a a b

Удобство канонической формы состоит еще и в том, что ее можно применять для решения очень широкого класса логарифмических уравнений, а не только простейших, которые мы рассматриваем сегодня.

Примеры решения

А теперь давайте рассмотрим реальные примеры. Итак, решаем:

log 0,5 (3x − 1) = −3

Давайте перепишем его следующим образом:

log 0,5 (3x − 1) = log 0,5 0,5 −3

Многие ученики торопятся и пытаются сразу возвести число 0,5 в степень, которая пришла к нам из исходной задачи. И действительно, когда вы уже хорошо натренируетесь в решении подобных задач, вы можете сразу выполнять этот шаг.

Однако если сейчас вы только приступаете к изучению этой темы, лучше никуда не торопиться, чтобы не допускать обидных ошибок. Итак, перед нами каноническая форма. Имеем:

3x − 1 = 0,5 −3

Это уже не логарифмическое уравнение, а линейное относительно переменной х. Чтобы решить его, давайте для начала разберемся с числом 0,5 в степени −3. Заметим, что 0,5 — это 1/2.

(1/2) −3 = (2/1) 3 = 8

Все десятичные дроби переводите в обычные, когда вы решаете логарифмическое уравнение.

Переписываем и получаем:

3x − 1 = 8
3x = 9
x = 3

Все, мы получили ответ. Первая задача решена.

Вторая задача

Переходим ко второй задаче:

Как видим, это уравнение уже не является простейшим. Уже хотя бы потому, что слева стоит разность, а не один-единственный логарифм по одному основанию.

Следовательно, нужно каким-то образом избавиться от этой разности. В данном случае все очень просто. Давайте внимательно посмотрим на основания: слева стоит число под корнем:

Общая рекомендация: во всех логарифмических уравнениях старайтесь избавиться от радикалов, т. е. от записей с корнями и переходить к степенным функциям, просто потому что показатели этих степеней легко выносятся за знак логарифма и в конечном счета такая запись существенно упрощает и ускоряет вычисления. Вот давайте так и запишем:

Теперь вспоминаем замечательное свойство логарифма: из аргумента, а также из основания можно выносить степени. В случае с основаниями происходит следующее:

log a k b = 1/k loga b

Другими словами, число, которое стояло в степени основания, выносится вперед и при этом переворачивается, т. е. становится обратным числом. В нашем случае стояла степень основания с показателем 1/2. Следовательно, мы можем вынести ее как 2/1. Получим:

5 · 2 log 5 x − log 5 x = 18
10 log 5 x − log 5 x = 18

Обратите внимание: ни в коем случае нельзя избавляться от логарифмов на этом шаге. Вспомните математику 4—5 класса и порядок действий: сначала выполняется умножение, а лишь затем — сложение и вычитание. В данном случае мы из 10 элементов вычитаем один такой же:

9 log 5 x = 18
log 5 x = 2

Теперь наше уравнение выглядит как надо. Это простейшая конструкция, и мы решаем его с помощью канонической формы:

log 5 x = log 5 5 2
x = 5 2
x = 25

Вот и все. Вторая задача решена.

Третий пример

Переходим к третьей задаче:

lg (x + 3) = 3 + 2 lg 5

Напомню следующую формулу:

lg b = log 10 b

Если вас по каким-либо причинам смущает запись lg b , то при выполнении всех вычислений вы можете записать просто log 10 b . С десятичными логарифмами можно работать так же, как и с другими: выносить степени, складывать и представлять любые числа в виде lg 10.

Вот именно этими свойствами мы сейчас и воспользуемся для решения задачи, поскольку она не является простейшей, которую мы записали в самом начале нашего урока.

Для начала заметим, что множитель 2, стоящий перед lg 5, может быть внесен и станет степенью основания 5. Кроме того, свободное слагаемое 3 также представимо в виде логарифма — это очень легко наблюдать из нашей записи.

Судите сами: любое число можно представить в виде log по основанию 10:

3 = log 10 10 3 = lg 10 3

Перепишем исходную задачу с учетом полученных изменений:

lg (x − 3) = lg 1000 + lg 25
lg (x − 3) = lg 1000 · 25
lg (x − 3) = lg 25 000

Перед нами снова каноническая форма, причем мы получили ее, минуя стадию преобразований, т. е. простейшее логарифмическое уравнение у нас нигде не всплывало.

Именно об этом я и говорил в самом начале урока. Каноническая форма позволяет решать более широкий класс задач, нежели стандартная школьная формула, которую дают большинство школьных учителей.

Ну и все, избавляемся от знака десятичного логарифма, и получаем простую линейную конструкцию:

x + 3 = 25 000
x = 24 997

Все! Задача решена.

Замечание по поводу области определения

Тут бы хотелось привести важное замечание по поводу области определения. Наверняка сейчас найдутся ученики и учителя, которые скажут: «Когда мы решаем выражения с логарифмами, необходимо обязательно помнить, что аргумент f (x ) должен быть больше нуля!» В связи с этим возникает логичный вопрос: почему ни в одной из рассмотренных задач мы не требовали, чтобы это неравенство выполнялось?

Не переживайте. Никаких лишних корней в этих случаях не возникнет. И это еще одна замечательная хитрость, которая позволяет ускорить решение. Просто знайте, что если в задаче переменная х встречается лишь в одном месте (а точнее — в одном-единственном аргументе одного-единственного логарифма), и больше нигде в нашем случае нет переменной х, то записывать область определения не нужно , потому что она будет выполняться автоматически.

Судите сами: в первом уравнении мы получили, что 3х − 1, т. е. аргумент должен быть равен 8. Это автоматически означает, что 3х − 1 будет больше нуля.

С тем же успехом мы можем записать, что во втором случае х должен быть равен 5 2 , т. е. он заведомо больше нуля. А в третьем случае, где х + 3 = 25 000, т. е. опять же заведомо больше нуля. Другими словами, область определения выполняется автоматически, но только при условии, что х встречается лишь в аргументе лишь одного логарифма.

Вот и все, что нужно знать для решения простейших задач. Уже одно это правило вместе с правилами преобразования позволит вам решать очень широкий класс задач.

Но давайте будем честными: для того, чтобы окончательно разобраться с этим приемом, чтобы научиться применять каноническую форму логарифмического уравнения, недостаточно просто посмотреть один видеоурок. Поэтому прямо сейчас скачайте варианты для самостоятельного решения, которые прилагаются к данному видеоуроку и начните решать хотя бы одну из этих двух самостоятельных работ.

Времени у вас уйдет буквально несколько минут. А вот эффект от такого обучения будет намного выше по сравнению с тем, если бы вы просто просмотрели данный видеоурок.

Надеюсь, этот урок поможет разобраться вам с логарифмическими уравнениями. Применяйте каноническую форму, упрощайте выражения с помощью правил работы с логарифмами — и никакие задачи вам будут не страшны. А у меня на сегодня все.

Учет области определения

Теперь поговорим об области определения логарифмической функции, а также о том, как это влияет на решение логарифмических уравнений. Рассмотрим конструкцию вида

log a f (x ) = b

Такое выражение называется простейшим — в нем лишь одна функция, а числа а и b — это именно числа, а ни в коем случае не функция, зависящая от переменной х. Решается оно очень просто. Достаточно лишь использовать формулу:

b = log a a b

Данная формула является одним из ключевых свойств логарифма, и при подстановке в наше исходное выражение мы получим следующее:

log a f (x ) = log a a b

f (x ) = a b

Это уже знакомая формула из школьных учебников. У многих учеников наверняка возникнет вопрос: поскольку в исходном выражении функция f (x ) стоит под знаком log, на нее накладываются следующие ограничения:

f (х) > 0

Это ограничение действует потому, что логарифм от отрицательных чисел не существует. Так, может быть, вследствие этого ограничения следует ввести проверку на ответы? Быть может, их нужно подставлять в исходник?

Нет, в простейших логарифмических уравнениях дополнительная проверка излишня. И вот почему. Взгляните на нашу итоговую формулу:

f (x ) = a b

Дело в том, что число а в любом случае больше 0 — это требование тоже накладывается логарифмом. Число а является основанием. При этом на число b никаких ограничений не накладывается. Но это и неважно, потому что в какую бы степень мы бы не возводили положительное число, на выходе мы все равно получим положительное число. Таким образом, требование f (х) > 0 выполняется автоматически.

Что действительно стоит проверять, так это область определения функции, стоящей под знаком log. Там могут встречаться довольно непростые конструкции, и в процессе решения за ними обязательно нужно следить. Давайте посмотрим.

Первая задача:

Первый шаг: преобразуем дробь справа. Получим:

Избавляемся от знака логарифма и получаем обычное иррациональное уравнение:

Из полученных корней нас устраивает только первый, так как второй корень меньше нуля. Единственным ответом будет число 9. Все, задача решена. Никаких дополнительных проверок того, что выражение под знаком логарифма больше 0, не требуется, потому что оно не просто больше 0, а по условию уравнения оно равно 2. Следовательно, требование «больше нуля», выполняется автоматически.

Переходим ко второй задаче:

Здесь все то же самое. Переписываем конструкцию, заменяя тройку:

Избавляемся от знаков логарифма и получаем иррациональное уравнение:

Возводим обе части в квадрат с учетом ограничений и получаем:

4 − 6x − x 2 = (x − 4) 2

4 − 6x − x 2 = x 2 + 8x + 16

x 2 + 8x + 16 −4 + 6x + x 2 = 0

2x 2 + 14x + 12 = 0 |:2

x 2 + 7x + 6 = 0

Решаем полученное уравнение через дискриминант:

D = 49 − 24 = 25

x 1 = −1

x 2 = −6

Но x = −6 нас не устраивает, потому что если мы подставим это число в наше неравенство, то получим:

−6 + 4 = −2 < 0

В нашем же случае требуется, чтобы было больше, чем 0 или в крайнем случае равно. А вот x = −1 нам подходит:

−1 + 4 = 3 > 0

Единственным ответом в нашем случае будет x = −1. Вот и все решение. Давайте вернемся в самое начало наших вычислений.

Основной вывод из этого урока: проверять ограничения для функции в простейших логарифмических уравнениях не требуется. Потому что в процессе решения все ограничения выполняются автоматически.

Однако это ни в коем случае не означает, что о проверке можно вообще забыть. В процессе работы над логарифмическим уравнением вполне может перейти в иррациональное, в котором будут свои ограничения и требования к правой части, в чем мы сегодня и убедились на двух различных примерах.

Смело решайте такие задачи и будьте особо внимательные, если в аргументе стоит корень.

Логарифмические уравнения с разными основаниями

Продолжаем изучать логарифмические уравнения и разберем еще два довольно интересных приема, с помощью которых модно решать более сложные конструкции. Но для начала вспомним, как решаются простейшие задачи:

log a f (x ) = b

В этой записи а и b являются именно числами, а в функции f (x ) должна присутствовать переменная х, и только там, т. е. х должен находиться только в аргументе. Преобразовывать такие логарифмические уравнения мы будем с помощью канонической формы. Для этого заметим, что

b = log a a b

Причем a b — это именно аргумент. Давайте перепишем это выражение следующим образом:

log a f (x ) = log a a b

Мы именно этого и добиваемся, чтобы и слева, и справа стоял логарифм по основанию а. В этом случае мы можем, образно говоря, зачеркнуть знаки log, а с точки зрения математики мы можем сказать, что мы просто приравниваем аргументы:

f (x ) = a b

В результате мы получим новое выражение, которое будет решаться намного проще. Давайте применим это правило к нашим сегодняшним задачам.

Итак, первая конструкция:

Прежде всего, отмечу, что справа стоит дробь, в знаменателе которой находится log. Когда вы видите такое выражение, не лишним будет вспомнить замечательное свойство логарифмов:

Переводя на русский язык, это означает, что любой логарифм может быть представлен в виде частного двух логарифмов с любым основанием с. Разумеется, 0 < с ≠ 1.

Так вот: у этой формулы есть один замечательный частный случай, когда переменная с равна переменной b . В этом случае мы получим конструкцию вида:

Именно такую конструкцию мы наблюдаем от знака справа в нашем уравнении. Давайте заменим эту конструкцию на log a b , получим:

Другими словами, в сравнении с исходным заданием, мы поменяли местами аргумент и основание логарифма. Взамен нам пришлось перевернуть дробь.

Вспоминаем, что любую степень можно выносить из основания по следующему правилу:

Другими словами, коэффициент k , который является степенью основания, выносится как перевернутая дробь. Давайте вынесем ее как перевернутую дробь:

Дробный множитель нельзя оставлять спереди, потому что в этом случае мы не сможем представить данную запись как каноническую форму (ведь в канонической форме перед вторым логарифмом никакой дополнительный множитель не стоит). Следовательно, давайте внесем дробь 1/4 в аргумент в виде степени:

Теперь мы приравниваем аргументы, основания которых одинаковые (а основания у нас действительно одинаковые), и записываем:

x + 5 = 1

x = −4

Вот и все. Мы получили ответ к первому логарифмическому уравнению. Обратите внимание: в исходной задаче переменная х встречается лишь в одном log, причем стоит в его аргументе. Следовательно, проверять область определения не требуется, и наше число х = −4 действительно является ответом.

Теперь переходим ко второму выражению:

lg 56 = lg 2 log 2 7 − 3lg (x + 4)

Здесь помимо обычных логарифмов, нам придется работать с lg f (x ). Как решать такое уравнение? Неподготовленному ученику может показаться, что это какая-то жесть, но на самом деле все решается элементарно.

Внимательно посмотрите на слагаемое lg 2 log 2 7. Что мы можем о нем сказать? Основания и аргументы log и lg совпадают, и это должно наводить на некоторые мысли. Давайте еще раз вспомним, как выносятся степени из-под знака логарифма:

log a b n = nlog a b

Другими словами, то, что являлось степенью при числе b в аргументе, становится множителем перед самим log. Давайте применим эту формулу для выражения lg 2 log 2 7. Пусть вас не пугает lg 2 — это самое обычное выражение. Можно переписать его следующим образом:

Для него справедливы все правила, которые действуют для любого другого логарифма. В частности, множитель, стоящий спереди, можно внести в степень аргумента. Давайте запишем:

Очень часто ученики в упор не видят это действие, потому что нехорошо вносить один log под знак другого. На самом деле ничего криминального в этом нет. Более того, мы получаем формулу, которая легко считается, если помнить важное правило:

Эту формулу можно рассматривать и как определение, и как одно из его свойств. В любом случае, если вы преобразуете логарифмическое уравнение, эту формулу вы должны знать точно так же, как и представление любого числа в виде log.

Возвращаемся к нашей задаче. Переписываем его с учетом того факта, что первое слагаемое справа от знака равенства будет равно просто lg 7. Имеем:

lg 56 = lg 7 − 3lg (x + 4)

Давайте перенесем lg 7 влево, получим:

lg 56 − lg 7 = −3lg (x + 4)

Вычитаем выражения слева, потому что они имеют одно и то же основание:

lg (56/7) = −3lg (x + 4)

Теперь давайте внимательно посмотрим на уравнение, которое мы получили. Оно практически является канонической формой, однако справа присутствует множитель −3. Давайте внесем его в аргумент правого lg:

lg 8 = lg (x + 4) −3

Перед нами каноническая форма логарифмического уравнения, поэтому мы вычеркиваем знаки lg и приравниваем аргументы:

(x + 4) −3 = 8

x + 4 = 0,5

Вот и все! Мы решили второе логарифмическое уравнение. При этом никаких дополнительных проверок не требуется, потому что в исходной задаче х присутствовал лишь в одном аргументе.

Перечислю еще раз ключевые моменты этого урока.

Главная формула, которая изучается во всех уроках на этой странице, посвященной решению логарифмических уравнений — это каноническая форма. И пусть вас не пугает то, что в большинстве школьных учебников вас учат решать подобные задачи по-другому. Данный инструмент работает очень эффективно и позволяет решать гораздо более широкий класс задач, нежели простейшие, которые мы изучали в самом начале нашего урока.

Кроме того, для решения логарифмических уравнений полезно будет знать основные свойства. А именно:

  1. Формулу перехода к одному основанию и частный случай, когда мы переворачиваем log (это очень пригодилось нам в первой задаче);
  2. Формулу внесения и вынесения степеней из-под знака логарифма. Здесь многие ученики зависают и в упор не видят, что выносимая и вносимая степень сама может содержать log f (x ). Ничего страшного в этом нет. Мы можем вносить один log по знак другого и при этом существенно упрощать решение задачи, что мы и наблюдаем во втором случае.

В заключении хотел бы добавить, что проверять область определения в каждом из этих случае не требуется, потому что везде переменная х присутствует только в одном знаке log, и при этом находится в его аргументе. Как следствие, все требования области определения выполняются автоматически.

Задачи с переменным основанием

Сегодня мы рассмотрим логарифмические уравнения, которые для многих учеников кажутся нестандартными, а то и вовсе нерешаемыми. Речь идет об выражениях, в основании которых стоят не числа, а переменные и даже функции. Решать такие конструкции мы будем с помощью нашего стандартного приема, а именно через каноническую форму.

Для начала вспомним, как решаются простейшие задачи, в основании которых стоят обычные числа. Итак, простейшей называется конструкция вида

log a f (x ) = b

Для решения таких задач мы можем использовать следующую формулу:

b = log a a b

Переписываем наше исходное выражение и получаем:

log a f (x ) = log a a b

Затем мы приравниваем аргументы, т. е. записываем:

f (x ) = a b

Таким образом мы избавляемся от знака log и решаем уже обычную задачу. При этом полученные при решении корни и будут корнями исходного логарифмического уравнения. Кроме того, запись, когда и слева, и справа стоит по одному и тому же логарифму с одним и тем же основанием, как раз и называется канонической формой. Именно к такой записи мы будем пытаться свести сегодняшние конструкции. Итак, поехали.

Первая задача:

log x − 2 (2x 2 − 13x + 18) = 1

Заменяем 1 на log x − 2 (x − 2) 1 . Та степень, которую мы наблюдаем у аргумента, это, на самом деле то число b , которое стояло справа от знака равенства. Таким образом, перепишем наше выражение. Получим:

log x − 2 (2x 2 − 13x + 18) = log x − 2 (x − 2)

Что мы видим? Перед нами каноническая форма логарифмического уравнения, поэтому мы смело можем приравнять аргументы. Получим:

2x 2 − 13x + 18 = x − 2

Но на этом решение не заканчивается, потому что данное уравнение не равносильно исходному. Ведь полученная конструкция состоит из функций, которые определены на всей числовой прямой, а наши исходные логарифмы определены не везде и не всегда.

Поэтому мы должны отдельно записать область определения. Давайте не будем мудрить и для начала запишем все требования:

Во-первых, аргумент каждого из логарифмов должен быть больше 0:

2x 2 − 13x + 18 > 0

x − 2 > 0

Во-вторых, основание должно быть не только больше 0, но и отлично от 1:

x − 2 ≠ 1

В итоге получим систему:

Но вы не пугайтесь: при обработке логарифмических уравнений такую систему можно существенно упростить.

Судите сами: с одной стороны, от нас требуется, чтобы квадратичная функция была больше нуля, а с другой стороны — эта квадратичная функция приравнивается к некому линейному выражению, от которого также требуется, чтобы оно было больше нуля.

В таком случае, если мы требуем, чтобы x − 2 > 0, то автоматически будет выполняться и требование 2x 2 − 13x + 18 > 0. Поэтому мы можем смело зачеркнуть неравенство, содержащее квадратичную функцию. Таким образом, количество выражений, которое содержится в нашей системе, уменьшится до трех.

Разумеется, с тем же успехом мы могли бы зачеркнуть и линейное неравенство, т. е. вычеркнуть x − 2 > 0 и потребовать, чтобы 2x 2 − 13x + 18 > 0. Но согласитесь, что решить простейшее линейное неравенство гораздо быстрее и проще, чем квадратичное, пусть даже при условии, что в результате решения всей этой системы мы получим одни и те же корни.

В общем, по возможности старайтесь оптимизировать вычисления. И в случае с логарифмическими уравнениями вычеркивайте самые сложные неравенства.

Давайте перепишем нашу систему:

Вот такая система из трех выражений, с двумя из которых мы, по сути, уже разобрались. Давайте отдельно выпишем квадратное уравнение и решим его:

2x 2 − 14x + 20 = 0

x 2 − 7x + 10 = 0

Перед нами приведенный квадратный трехчлен и, следовательно, мы можем воспользоваться формулами Виета. Получим:

(х − 5)(х − 2) = 0

x 1 = 5

x 2 = 2

А теперь возвращаемся к нашей системе и обнаруживаем, что х = 2 нас не устраивает, потому что от нас требуется, чтобы х был строго больше, чем 2.

А вот х = 5 нас вполне устраивает: число 5 больше, чем 2, и при этом 5 не равно 3. Следовательно, единственным решением данной системы будет являться х = 5.

Все, задача решена, в т. ч. с учетом ОДЗ. Переходим ко второму уравнению. Здесь нас ждут более интересные и содержательные выкладки:

Первый шаг: как и в прошлый раз, приводим все это дело к канонической форме. Для этого число 9 мы можем записать следующим образом:

Основание с корнем можно не трогать, а вот аргумент лучше преобразовать. Давайте перейдем от корня в степень с рациональным показателем. Запишем:

Давайте я не буду переписывать все наше большое логарифмическое уравнение, а просто сразу приравняю аргументы:

x 3 + 10x 2 + 31x + 30 = x 3 + 9x 2 + 27x + 27

x 2 + 4x + 3 = 0

Перед нами вновь приведенный квадратный трехчлен, воспользуемся формулами Виета и запишем:

(х + 3)(х + 1) = 0

x 1 = −3

x 2 = −1

Итак, мы получили корни, но никто нам не гарантировал, что они подойдут к исходному логарифмическому уравнению. Ведь знаки log накладывают дополнительные ограничения (здесь мы должны были бы записать систему, но из-за громоздкости всей конструкции я решил посчитать область определения отдельно).

В первую очередь, вспоминаем, что аргументы должны быть больше 0, а именно:

Это и есть требования, накладываемые областью определения.

Сразу заметим, что поскольку мы приравниваем первые два выражения системы друг к другу, то любое из них мы можем вычеркнуть. Давайте вычеркнем первую, потому что она выглядит более угрожающе, нежели вторая.

Кроме того, заметим, что решением второго и третьего неравенства будут одни и те множества (куб какого-то числа больше нуля, если само это число больше нуля; аналогично и с корнем третьей степени — эти неравенства полностью аналогичны, поэтому одно из них мы можем вычеркнуть).

А вот с третьим неравенством такое не пройдет. Избавимся от знака радикала, стоящего слева, для чего возведем обе части в куб. Получим:

Итак, мы получаем следующие требования:

− 2 ≠ x > −3

Какой из наших корней:x 1 = −3 или x 2 = −1 отвечает этим требованиям? Очевидно, что только х = −1, потому что х = −3 не удовлетворяет первому неравенству (ибо неравенство у нас строгое). Итого возвращаясь к нашей задаче, мы получаем один корень: х = −1. Вот и все, задача решена.

Еще раз ключевые моменты данной задачи:

  1. Не стесняйтесь применять и решать логарифмические уравнения с помощью канонической формы. Ученики, которые делают такую запись, а не переходят напрямую от исходной задачи к конструкции типа log a f (x ) = b , допускают намного меньше ошибок, чем те, которые куда-то спешат, пропуская промежуточные шаги вычислений;
  2. Как только в логарифме появляется переменное основание, задача перестает быть простейшей. Следовательно, при его решении необходимо учитывать область определения: аргументы должны быть больше нуля, а основания — не только больше 0, но еще они не должны быть равны 1.

Накладывать последние требования на итоговые ответы можно по-разному. Например, можно решать целую систему, содержащую все требования к области определения. С другой стороны, можно сначала решить саму задачу, а затем вспомнить про область определения, отдельно проработать ее в виде системы и наложить на полученные корни.

Какой способ выбирать при решении конкретного логарифмического уравнения, решать только вам. В любом случае ответ получится один и тот же.

Заключительные видео из длинной серии уроков про решение логарифмических уравнений. В этот раз мы будем работать в первую очередь с ОДЗ логарифма — именно из-за неправильного учета (или вообще игнорирования) области определения возникает большинство ошибок при решении подобных задач.

В этом коротком видеоуроке мы разберем применение формул сложения и вычитания логарифмов, а также разберемся с дробно-рациональными уравнениями, с которыми у многих учеников также возникают проблемы.

О чем пойдет речь? Главная формула, с которой я хотел бы разобраться, выглядит так:

log a (f g ) = log a f + log a g

Это стандартный переход от произведения к сумме логарифмов и обратно. Вы наверняка знаете эту формулу с самого начала изучения логарифмов. Однако тут есть одна заминка.

До тех пор, пока в виде переменных a , f и g выступают обычные числа, никаких проблем не возникает. Данная формула работает прекрасно.

Однако, как только вместоf и g появляются функции, возникает проблема расширения или сужения области определения в зависимости от того, в какую сторону преобразовывать. Судите сами: в логарифме, записанном слева, область определения следующая:

fg > 0

А вот в сумме, записанной справа, область определения уже несколько иная:

f > 0

g > 0

Данный набор требований является более жестким, чем исходный. В первом случае нас устроит вариант f < 0, g < 0 (ведь их произведение положительное, поэтому неравенство fg > 0 выполняется).

Итак, при переходе от левой конструкции к правой возникает сужение области определения. Если же сначала у нас была сумма, а мы переписываем ее в виде произведения, то происходит расширение области определения.

Другими словами, в первом случае мы могли потерять корни, а во втором — получить лишние. Это необходимо учитывать при решении реальных логарифмических уравнений.

Итак, первая задача:

[Подпись к рисунку]

Слева мы видим сумму логарифмов по одному и тому же основанию. Следовательно, эти логарифмы можно сложить:

[Подпись к рисунку]

Как видите, справа мы заменил ноль по формуле:

a = log b b a

Давайте еще немного преобразуем наше уравнение:

log 4 (x − 5) 2 = log 4 1

Перед нами каноническая форма логарифмического уравнения, мы можем зачеркнуть знак log и приравнять аргументы:

(x − 5) 2 = 1

|x − 5| = 1

Обратите внимание: откуда взялся модуль? Напомню, что корень из точного квадрата равен именно модулю:

[Подпись к рисунку]

Затем решаем классическое уравнение с модулем:

|f | = g (g > 0) ⇒f = ±g

x − 5 = ±1 ⇒x 1 = 5 − 1 = 4; x 2 = 5 + 1 = 6

Вот два кандидат на ответ. Являются ли они решением исходного логарифмического уравнения? Нет, ни в коем случае!

Оставить все просто так и записать ответ мы не имеем права. Взгляните на тот шаг, когда мы заменяем сумму логарифмов одним логарифмом от произведения аргументов. Проблема в том, что в исходных выражениях у нас стоят функции. Следовательно, следует потребовать:

х(х − 5) > 0; (х − 5)/х > 0.

Когда же мы преобразовали произведение, получив точный квадрат, требования изменились:

(x − 5) 2 > 0

Когда это требование выполняется? Да практически всегда! За исключением того случая, когда х − 5 = 0. Т.е. неравенство сведется к одной выколотой точке:

х − 5 ≠ 0 ⇒ х ≠ 5

Как видим, произошло расширение области определения, о чем мы и говорили в самом начале урока. Следовательно, могут возникнуть и лишние корни.

Как же не допустить возникновения этих лишних корней? Очень просто: смотрим на наши полученные корни и сравниваем их с областью определения исходного уравнения. Давайте посчитаем:

х (х − 5) > 0

Решать будем с помощью метода интервалов:

х (х − 5) = 0 ⇒ х = 0; х = 5

Отмечаем полученные числа на прямой. Все точки выколотые, потому что неравенство строгое. Берем любое число, больше 5 и подставляем:

[Подпись к рисунку]

На интересуют промежутки (−∞; 0) ∪ (5; ∞). Если мы отметим наши корни на отрезке, то увидим, что х = 4 нас не устраивает, потому что этот корень лежит за пределами области определения исходного логарифмического уравнения.

Возвращаемся к совокупности, вычеркиваем корень х = 4 и записываем ответ: х = 6. Это уже окончательный ответ к исходному логарифмическому уравнению. Все, задача решена.

Переходим ко второму логарифмическому уравнению:

[Подпись к рисунку]

Решаем его. Заметим, что первое слагаемое представляет собой дробь, а второе — ту же самую дробь, но перевернутую. Не пугайтесь выражения lgx — это просто десятичный логарифм, мы можем записать:

lgx = log 10 x

Поскольку перед нами две перевернутые дроби, предлагаю ввести новую переменную:

[Подпись к рисунку]

Следовательно, наше уравнение может быть переписано следующим образом:

t + 1/t = 2;

t + 1/t − 2 = 0;

(t 2 − 2t + 1)/t = 0;

(t − 1) 2 /t = 0.

Как видим, в числителе дроби стоит точный квадрат. Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля:

(t − 1) 2 = 0; t ≠ 0

Решаем первое уравнение:

t − 1 = 0;

t = 1.

Это значение удовлетворяет второму требованию. Следовательно, можно утверждать, что мы полностью решили наше уравнение, но только относительно переменной t . А теперь вспоминаем, что такое t :

[Подпись к рисунку]

Получили пропорцию:

lgx = 2 lgx + 1

2 lgx − lgx = −1

lgx = −1

Приводим это уравнение к канонической форме:

lgx = lg 10 −1

x = 10 −1 = 0,1

В итоге мы получили единственный корень, который, по идее, является решением исходного уравнения. Однако давайте все-таки подстрахуемся и выпишем область определения исходного уравнения:

[Подпись к рисунку]

Следовательно, наш корень удовлетворяет всем требованиям. Мы нашли решение исходного логарифмического уравнения. Ответ: x = 0,1. Задача решена.

Ключевой момент в сегодняшнем уроке один: при использовании формулы перехода от произведения к сумме и обратно обязательно учитывайте, что область определения может сужаться либо расширяться в зависимости от того, в какую сторону выполняется переход.

Как понять, что происходит: сужение или расширение? Очень просто. Если раньше функции были вместе, а теперь стали по отдельности, то произошло сужение области определения (потому что требований стало больше). Если же сначала функции стояли отдельно, а теперь — вместе, то происходит расширение области определения (на произведение накладывается меньше требований, чем на отдельные множители).

С учетом данного замечания хотел бы отметить, что второе логарифмическое уравнение вообще не требует данных преобразований, т. е. мы нигде не складываем и не перемножаем аргументы. Однако здесь я хотел бы обратить ваше внимание на другой замечательный прием, который позволяет существенно упростить решение. Речь идет о замене переменной.

Однако помните, что никакие замены не освобождает нас от области определения. Именно поэтому после того были найдены все корни, мы не поленились и вернулись к исходному уравнению, чтобы найти его ОДЗ.

Часто при замене переменной возникает обидная ошибка, когда ученики находят значение t и думают, что на этом решение закончено. Нет, ни в коем случае!

Когда вы нашли значение t , необходимо вернуться к исходному уравнению и посмотреть, что именно мы обозначали этой буквой. В результате нам предстоит решить еще одно уравнение, которое, впрочем, будет значительно проще исходного.

Именно в этом состоит смысл введения новой переменной. Мы разбиваем исходное уравнение на два промежуточных, каждое из которых решается существенно проще.

Как решать «вложенные» логарифмические уравнения

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого логарифма. Оба уравнения мы будем решать с помощью канонической формы.

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого. Оба уравнения мы будем решать с помощью канонической формы. Напомню, если у нас есть простейшее логарифмическое уравнение вида log a f (x ) = b , то для решения такого уравнения мы выполняем следующие шаги. В первую очередь, нам нужно заменить число b :

b = log a a b

Заметьте: a b — это аргумент. Точно так же в исходном уравнении аргументом является функция f (x ). Затем мы переписываем уравнение и получаем вот такую конструкцию:

log a f (x ) = log a a b

Уже затем мы можем выполнить третий шаг — избавится от знака логарифма и просто записать:

f (x ) = a b

В результате мы получим новое уравнение. При этом никаких ограничений на функцию f (x ) не накладывается. Например, на ее месте также может стоять логарифмическая функция. И тогда мы вновь получим логарифмическое уравнение, которое снова сведем к простейшему и решим через каноническую форму.

Впрочем, хватит лирики. Давайте решим настоящую задачу. Итак, задача № 1:

log 2 (1 + 3 log 2 x ) = 2

Как видим, перед нами простейшее логарифмическое уравнение. В роли f (x ) выступает конструкция 1 + 3 log 2 x , а в роли числа b выступает число 2 (в роли a также выступает двойка). Давайте перепишем эту двойку следующим образом:

Важно понимать, что первые две двойки пришли к нам из основания логарифма, т. е. если бы в исходном уравнении стояла 5, то мы бы получили, что 2 = log 5 5 2 . В общем, основание зависит исключительно от логарифма, который изначально дан в задаче. И в нашем случае это число 2.

Итак, переписываем наше логарифмическое уравнение с учетом того, что двойка, которая стоит справа, на самом деле тоже является логарифмом. Получим:

log 2 (1 + 3 log 2 x ) = log 2 4

Переходим к последнему шагу нашей схемы — избавляемся от канонической формы. Можно сказать, просто зачеркиваем знаки log. Однако с точки зрения математики «зачеркнуть log» невозможно — правильнее сказать, что мы просто просто приравниваем аргументы:

1 + 3 log 2 x = 4

Отсюда легко находится 3 log 2 x :

3 log 2 x = 3

log 2 x = 1

Мы вновь получили простейшее логарифмическое уравнение, давайте снова приведем его к канонической форме. Для этого нам необходимо провести следующие изменения:

1 = log 2 2 1 = log 2 2

Почему в основании именно двойка? Потому что в нашем каноническом уравнении слева стоит логарифм именно по основанию 2. Переписываем задачу с учетом этого факта:

log 2 x = log 2 2

Снова избавляемся от знака логарифма, т. е. просто приравниваем аргументы. Мы вправе это сделать, потому что основания одинаковые, и больше никаких дополнительных действий ни справа, ни слева не выполнялось:

Вот и все! Задача решена. Мы нашли решение логарифмического уравнения.

Обратите внимание! Хотя переменная х и стоит в аргументе (т. е. возникают требования к области определения), мы никаких дополнительных требований предъявлять не будем.

Как я уже говорил выше, данная проверка является избыточной, если переменная встречается лишь в одном аргументе лишь одного логарифма. В нашем случае х действительно стоит лишь в аргументе и лишь под одним знаком log. Следовательно, никаких дополнительных проверок выполнять не требуется.

Тем не менее, если вы не доверяете данному методу, то легко можете убедиться, что х = 2 действительно является корнем. Достаточно подставить это число в исходное уравнение.

Давайте перейдем ко второму уравнению, оно чуть интересней:

log 2 (log 1/2 (2x − 1) + log 2 4) = 1

Если обозначить выражение внутри большого логарифма функцией f (x ), получим простейшее логарифмическое уравнение, с которого мы начинали сегодняшний видеоурок. Следовательно, можно применить каноническую форму, для чего придется представить единицу в виде log 2 2 1 = log 2 2.

Переписываем наше большое уравнение:

log 2 (log 1/2 (2x − 1) + log 2 4) = log 2 2

Изваляемся от знака логарифма, приравнивая аргументы. Мы вправе это сделать, потому что и слева, и справа основания одинаковые. Кроме того, заметим, что log 2 4 = 2:

log 1/2 (2x − 1) + 2 = 2

log 1/2 (2x − 1) = 0

Перед нами снова простейшее логарифмическое уравнение вида log a f (x ) = b . Переходим к канонической форме, т. е. представляем ноль в виде log 1/2 (1/2)0 = log 1/2 1.

Переписываем наше уравнение и избавляемся от знака log, приравнивая аргументы:

log 1/2 (2x − 1) = log 1/2 1

2x − 1 = 1

Опять же мы сразу получили ответ. Никаких дополнительных проверок не требуется, потому что в исходном уравнении лишь один логарифм содержит функцию в аргументе.

Следовательно, никаких дополнительных проверок выполнять не требуется. Мы можем смело утверждать, что х = 1 является единственным корнем данного уравнения.

А вот если бы во втором логарифме вместо четверки стояла бы какая-то функция от х (либо 2х стояло бы не в аргументе, а в основании) — вот тогда потребовалось бы проверять область определения. Иначе велик шанс нарваться на лишние корни.

Откуда возникают такие лишние корни? Этот момент нужно очень четко понимать. Взгляните на исходные уравнения: везде функция х стоит под знаком логарифма. Следовательно, поскольку мы записали log 2 x , то автоматически выставляем требование х > 0. Иначе данная запись просто не имеет смысла.

Однако по мере решения логарифмического уравнения мы избавляемся от всех знаков log и получаем простенькие конструкции. Здесь уже никаких ограничений не выставляется, потому что линейная функция определена при любом значении х.

Именно эта проблема, когда итоговая функция определена везде и всегда, а исходная — отнюдь не везде и не всегда, и является причиной, по которой в решении логарифмических уравнениях очень часто возникают лишние корни.

Но повторю еще раз: такое происходить лишь в ситуации, когда функция стоит либо в нескольких логарифмах, либо в основании одного из них. В тех задачах, которые мы рассматриваем сегодня, проблем с расширением области определения в принципе не существует.

Случаи разного основания

Этот урок посвящен уже более сложным конструкциям. Логарифмы в сегодняшних уравнениях уже не будут решаться «напролом» — сначала потребуется выполнить некоторые преобразования.

Начинаем решение логарифмических уравнений с совершенно разными основаниями, которые не являются точными степенями друг друга. Пусть вас не пугают подобные задачи — решаются они ничуть не сложнее, чем самые простые конструкции, которые мы разбирали выше.

Но прежде, чем переходить непосредственно к задачам, напомню о формуле решения простейших логарифмических уравнений с помощью канонической формы. Рассмотрим задачу вот такого вида:

log a f (x ) = b

Важно, что функция f (x ) является именно функцией, а в роли чисел а и b должны выступать именно числа (без всяких переменных x ). Разумеется, буквально через минуту мы рассмотрим и такие случаи, когда вместо переменных а и b стоят функции, но сейчас не об этом.

Как мы помним, число b нужно заменить логарифмом по тому же самому основанию а, которое стоит слева. Это делается очень просто:

b = log a a b

Разумеется, под словом «любое число b » и «любое число а» подразумеваются такие значения, которые удовлетворяют области определения. В частности, в данном уравнении речь идет лишь основание a > 0 и a ≠ 1.

Однако данное требование выполняется автоматически, потому что в исходной задаче уже присутствует логарифм по основанию а — оно заведомо будет больше 0 и не равно 1. Поэтому продолжаем решение логарифмического уравнения:

log a f (x ) = log a a b

Подобная запись называется канонической формой. Ее удобство состоит в том, что мы сразу можем избавиться от знака log, приравняв аргументы:

f (x ) = a b

Именно этот прием мы сейчас будем использовать для решения логарифмических уравнений с переменным основанием. Итак, поехали!

log 2 (x 2 + 4x + 11) = log 0,5 0,125

Что дальше? Кто-то сейчас скажет, что нужно вычислить правый логарифм, либо свести их к одному основанию, либо что-то еще. И действительно, сейчас нужно привести оба основания к одному виду — либо 2, либо 0,5. Но давайте раз и навсегда усвоим следующее правило:

Если в логарифмическом уравнении присутствуют десятичные дроби, обязательно переведите эти дроби из десятичной записи в обычную. Такое преобразование может существенно упростить решение.

Подобный переход нужно выполнять сразу, еще до выполнения каких-либо действий и преобразований. Давайте посмотрим:

log 2 (x 2 + 4x + 11) = log 1 /2 1/8

Что нам дает такая запись? Мы можем 1/2 и 1/8 представить как степень с отрицательным показателем:


[Подпись к рисунку]

Перед нами каноническая форма. Приравниваем аргументы и получаем классическое квадратное уравнение:

x 2 + 4x + 11 = 8

x 2 + 4x + 3 = 0

Перед нами приведенное квадратное уравнение, которое легко решается с помощью формул Виета. Подобные выкладки в старших классах вы должны видеть буквально устно:

(х + 3)(х + 1) = 0

x 1 = −3

x 2 = −1

Вот и все! Исходное логарифмическое уравнение решено. Мы получили два корня.

Напомню, что определять область определения в данном случае не требуется, поскольку функция с переменной х присутствует лишь в одном аргументе. Поэтому область определения выполняется автоматически.

Итак, первое уравнение решено. Переходим ко второму:

log 0,5 (5x 2 + 9x + 2) = log 3 1/9

log 1/2 (5x 2 + 9x + 2) = log 3 9 −1

А теперь заметим, что аргумент первого логарифма тоже можно записать в виде степени с отрицательным показателем: 1/2 = 2 −1 . Затем можно вынести степени с обеих сторон уравнения и разделить все на −1:

[Подпись к рисунку]

И вот сейчас мы выполнили очень важный шаг в решении логарифмического уравнения. Возможно, кто-то что-то не заметил, поэтому давайте я поясню.

Взгляните на наше уравнение: и слева, и справа стоит знак log, но слева стоит логарифм по основанию 2, а справа стоит логарифм по основанию 3. Тройка не является целой степенью двойки и, наоборот: нельзя записать, что 2 — это 3 в целой степени.

Следовательно, это логарифмы с разными основаниями, которые не сводятся друг к другу простым вынесением степеней. Единственный путь решения таких задач — избавиться от одного из этих логарифмов. В данном случае, поскольку мы пока рассматриваем довольно простые задачи, логарифм справа просто сосчитался, и мы получили простейшее уравнение — именно такое, о котором мы говорили в самом начале сегодняшнего урока.

Давайте представим число 2, которое стоит справа в виде log 2 2 2 = log 2 4. А затем избавимся от знака логарифма, после чего у нас остается просто квадратное уравнение:

log 2 (5x 2 + 9x + 2) = log 2 4

5x 2 + 9x + 2 = 4

5x 2 + 9x − 2 = 0

Перед нами обычное квадратное уравнение, однако оно не является приведенным, потому что коэффициент при x 2 отличен от единицы. Следовательно, решать мы его будем с помощью дискриминанта:

D = 81 − 4 5 (−2) = 81 + 40 = 121

x 1 = (−9 + 11)/10 = 2/10 = 1/5

x 2 = (−9 − 11)/10 = −2

Вот и все! Мы нашли оба корня, а значит, получили решение исходного логарифмического уравнения. Ведь в исходной задачи функция с переменной х присутствует лишь в одном аргументе. Следовательно, никаких дополнительных проверок на область определения не требуется — оба корня, которые мы нашли, заведомо отвечают всем возможным ограничениям.

На этом можно было бы закончить сегодняшний видеоурок, но в заключении я хотел бы сказать еще раз: обязательно переводите все десятичные дроби в обычные при решении логарифмических уравнений. В большинстве случаев это существенно упрощает их решение.

Редко, очень редко попадаются задачи, в которых избавление от десятичных дробей лишь усложняет выкладки. Однако в таких уравнениях, как правило, изначально видно, что избавляться от десятичных дробей не надо.

В большинстве остальных случаев (особенно если вы только начинаете тренироваться в решении логарифмических уравнений) смело избавляйтесь от десятичных дробей и переводите их в обычные. Потому что практика показывает, что таким образом вы значительно упростите последующее решение и выкладки.

Тонкости и хитрости решения

Сегодня мы переходим к более сложным задачам и будем решать логарифмическое уравнение, в основании которого стоит не число, а функция.

И пусть даже эта функция линейна — в схему решения придется внести небольшие изменения, смысл которых сводится к дополнительным требованиям, накладываемым на область определения логарифма.

Сложные задачи

Этот урок будет довольно длинным. В нем мы разберем два довольно серьезных логарифмических уравнения, при решении которых многие ученики допускают ошибки. За свою практику работы репетитором по математике я постоянно сталкивался с двумя видами ошибок:

  1. Возникновение лишних корней из-за расширения области определения логарифмов. Чтобы не допускать такие обидные ошибки, просто внимательно следите за каждым преобразованием;
  2. Потери корней из-за того, что ученик забыл рассмотреть некоторые «тонкие» случаи — именно на таких ситуациях мы сегодня и сосредоточимся.

Это последний урок, посвященный логарифмическим уравнениям. Он будет длинным, мы разберем сложные логарифмические уравнения. Устраивайтесь поудобней, заварите себе чай, и мы начинаем.

Первое уравнение выглядит вполне стандартно:

log x + 1 (x − 0,5) = log x − 0,5 (x + 1)

Сразу заметим, что оба логарифма являются перевернутыми копиями друг друга. Вспоминаем замечательную формулу:

log a b = 1/log b a

Однако у этой формулы есть ряд ограничений, которые возникают в том случае, если вместо чисел а и b стоят функции от переменной х:

b > 0

1 ≠ a > 0

Эти требования накладываются на основание логарифма. С другой стороны, в дроби от нас требуется 1 ≠ a > 0, поскольку не только переменная a стоит в аргументе логарифма (следовательно, a > 0), но и сам логарифм находится в знаменателе дроби. Но log b 1 = 0, а знаменатель должен быть отличным от нуля, поэтому a ≠ 1.

Итак, ограничения на переменную a сохраняется. Но что происходит с переменной b ? С одной стороны, из основания следует b > 0, с другой — переменная b ≠ 1, потому что основание логарифма должно быть отлично от 1. Итого из правой части формулы следует, что 1 ≠ b > 0.

Но вот беда: второе требование (b ≠ 1) отсутствует в первом неравенстве, посвященном левому логарифму. Другими словами, при выполнении данного преобразования мы должны отдельно проверить , что аргумент b отличен от единицы!

Вот давайте и проверим. Применим нашу формулу:

[Подпись к рисунку]

1 ≠ х − 0,5 > 0; 1 ≠ х + 1 > 0

Вот мы и получили, что уже из исходного логарифмического уравнения следует, что и а, и b должны быть больше 0 и не равны 1. Значит, мы спокойно можем переворачивать логарифмическое уравнение:

Предлагаю ввести новую переменную:

log x + 1 (x − 0,5) = t

В этом случае наша конструкция перепишется следующим образом:

(t 2 − 1)/t = 0

Заметим, что в числителе у нас стоит разность квадратов. Раскрываем разность квадратов по формуле сокращенного умножения:

(t − 1)(t + 1)/t = 0

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Но в числителе стоит произведение, поэтому приравниваем к нулю каждый множитель:

t 1 = 1;

t 2 = −1;

t ≠ 0.

Как видим, оба значения переменной t нас устраивают. Однако на этом решение не заканчивается, ведь нам требуется найти не t , а значение x . Возвращаемся к логарифму и получаем:

log x + 1 (x − 0,5) = 1;

log x + 1 (x − 0,5) = −1.

Давайте приведем каждое из этих уравнений к канонической форме:

log x + 1 (x − 0,5) = log x + 1 (x + 1) 1

log x + 1 (x − 0,5) = log x + 1 (x + 1) −1

Избавляемся от знака логарифма в первом случае и приравниваем аргументы:

х − 0,5 = х + 1;

х − х = 1 + 0,5;

Такое уравнение не имеет корней, следовательно, первое логарифмическое уравнение также не имеет корней. А вот со вторым уравнением все намного интересней:

(х − 0,5)/1 = 1/(х + 1)

Решаем пропорцию — получим:

(х − 0,5)(х + 1) = 1

Напоминаю, что при решении логарифмических уравнений гораздо удобней приводить все десятичные дроби обычные, поэтому давайте перепишем наше уравнение следующим образом:

(х − 1/2)(х + 1) = 1;

x 2 + x − 1/2x − 1/2 − 1 = 0;

x 2 + 1/2x − 3/2 = 0.

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

(х + 3/2) (х − 1) = 0;

x 1 = −1,5;

x 2 = 1.

Получили два корня — они являются кандидатами на решение исходного логарифмического уравнения. Для того чтобы понять, какие корни действительно пойдут в ответ, давайте вернемся к исходной задаче. Сейчас мы проверим каждый из наших корней на предмет соответствия области определения:

1,5 ≠ х > 0,5; 0 ≠ х > −1.

Эти требования равносильны двойному неравенству:

1 ≠ х > 0,5

Отсюда сразу видим, что корень х = −1,5 нас не устраивает, а вот х = 1 вполне устраивает. Поэтому х = 1 — окончательное решение логарифмического уравнения.

Переходим ко второй задаче:

log x 25 + log 125 x 5 = log 25 x 625

На первый взгляд может показаться, что у всех логарифмов разные основания и разные аргументы. Что делать с такими конструкциями? В первую очередь заметим, что числа 25, 5 и 625 — это степени 5:

25 = 5 2 ; 625 = 5 4

А теперь воспользуемся замечательным свойством логарифма. Дело в том, что можно выносить степени из аргумента в виде множителей:

log a b n = n ∙ log a b

На данное преобразование также накладываются ограничения в том случае, когда на месте b стоит функция. Но у нас b — это просто число, и никаких дополнительных ограничений не возникает. Перепишем наше уравнение:

2 ∙ log x 5 + log 125 x 5 = 4 ∙ log 25 x 5

Получили уравнение с тремя слагаемыми, содержащими знак log. Причем аргументы всех трех логарифмов равны.

Самое время перевернуть логарифмы, чтобы привести их к одному основанию — 5. Поскольку в роли переменной b выступает константа, никаких изменений области определения не возникает. Просто переписываем:


[Подпись к рисунку]

Как и предполагалось, в знаменателе «вылезли» одни и те же логарифмы. Предлагаю выполнить замену переменной:

log 5 x = t

В этом случае наше уравнение будет переписано следующим образом:

Выпишем числитель и раскроем скобки:

2 (t + 3) (t + 2) + t (t + 2) − 4t (t + 3) = 2 (t 2 + 5t + 6) + t 2 + 2t − 4t 2 − 12t = 2t 2 + 10t + 12 + t 2 + 2t − 4t 2 − 12t = −t 2 + 12

Возвращаемся к нашей дроби. Числитель должен быть равен нулю:

[Подпись к рисунку]

А знаменатель — отличен от нуля:

t ≠ 0; t ≠ −3; t ≠ −2

Последние требования выполняются автоматически, поскольку все они «завязаны» на целые числа, а все ответы — иррациональные.

Итак, дробно-рациональное уравнение решено, значения переменной t найдены. Возвращаемся к решению логарифмического уравнения и вспоминаем, что такое t :

[Подпись к рисунку]

Приводим это уравнение к канонической форме, получим число с иррациональной степенью. Пусть это вас не смущает — даже такие аргументы можно приравнять:

[Подпись к рисунку]

У нас получилось два корня. Точнее, два кандидата в ответы — проверим их на соответствие области определения. Поскольку в основании логарифма стоит переменная х, потребуем следующее:

1 ≠ х > 0;

С тем же успехом утверждаем, что х ≠ 1/125, иначе основание второго логарифма обратится в единицу. Наконец, х ≠ 1/25 для третьего логарифма.

Итого мы получили четыре ограничения:

1 ≠ х > 0; х ≠ 1/125; х ≠ 1/25

А теперь вопрос: удовлетворяют ли наши корни указанным требованиям? Конечно удовлетворяют! Потому что 5 в любой степени будет больше нуля, и требование х > 0 выполняется автоматически.

С другой стороны, 1 = 5 0 , 1/25 = 5 −2 , 1/125 = 5 −3 , а это значит, что данные ограничения для наших корней (у которых, напомню, в показателе стоит иррациональное число) также выполнены, и оба ответа являются решениями задачи.

Итак, мы получили окончательный ответ. Ключевых моментов в данной задаче два:

  1. Будьте внимательны при перевороте логарифма, когда аргумент и основание меняются местами. Подобные преобразования накладывают лишние ограничения на область определения.
  2. Не бойтесь преобразовывать логарифмы: их можно не только переворачивать, но и раскрывать по формуле суммы и вообще менять по любым формулам, которые вы изучали при решении логарифмических выражений. Однако при этом всегда помните: некоторые преобразования расширяют область определения, а некоторые — сужают.


Похожие статьи