Равнобедренная прямоугольная трапеция. Материал по геометрии на тему "трапеция и ее свойства"

14.10.2019

Инструкция

Согласно свойству равнобокой трапеции отрезок n равен полуразности оснований х и y. Следовательно, меньшее основание трапеции y можно представить в виде разности большего основания и отрезка n, помноженного на два: y = x - 2*n.

Найдите неизвестный меньший отрезок n. Для этого вычислите одну их сторон получившегося прямоугольного треугольника. Треугольник образован высотой – h (катет), боковой стороной – a (гипотенуза) и отрезком – n (катет). Согласно теореме Пифагора неизвестный катет n² = a² - h². Подставьте числовые значения и высчитайте квадрат катета n. Возьмите корень квадратный из полученного значения – это и будет длина отрезка n.

Подставьте полученное значение в первое уравнение для вычисления y. Площадь трапеции высчитывается по формуле S = ((х + y)*h)/2. Выразите неизвестную переменную: y = 2*S/h – х.

Источники:

  • высота равнобокой трапеции

Для задания такого четырехугольника, как трапеция, должно быть определено не менее трех его сторон. Поэтому, для примера, можно рассмотреть задачу, в условии которой заданы длины диагоналей трапеции , а также один из векторов боковой стороны.

Инструкция

Фигура из условия задачи представлена на 1.В данном случае следует предположить, что рассматриваемая – это AВCD, в котором заданы длины диагоналей AC и BD, а также боковая сторона АВ, представленная вектором a(ax,ay). Принятые исходные данные позволяют найти оба основания трапеции (как верхнее, так и нижнее). В конкретном примере сначала будет найдено нижнее основание АD.

Рассмотрите треугольник ABD. Длина его стороны АВ равна модулю вектора a. Пусть|a|=sqrt((ax)^2+(ay)^2)=a, тогда cosф =ax/sqrt(((ax)^2+(ay)^2), как направляющий косинус a. Пусть заданная диагональ BD имеет длину p, а искомая AD длину х. Тогда, по теореме косинусов, P^2=a^2+ x^2-2axcosф. Или x^2-2axcosф+(a^2-p^2)=0.

Для нахождения верхнего основания ВС (его длина при поиске также обозначена х) используется модуль |a|=a, а также вторая диагональ BD=q и косинус угла АВС, который, очевидно, равен (п-ф).

Далее рассматривается треугольник АВС, к которому, как и ранее, теорема косинусов, и возникает следующее . Учитывая, что cos(п-ф)=-cosф, на основе решения для AD, можно следующую формулу, заменив p на q:ВС=- a*ax|sqrt(((ax)^2+(ay)^2)+sqrt((((a)^2)(ax^2))/(ax^2+ay^2))-a^2+q^2).

Данное является квадратным и, соответственно, имеет два корня. Таким образом, в данном случае остается выбрать лишь те корни, которые имеют положительное значение, так как длина не может быть отрицательной.

ПримерПусть в трапеции АВСD боковая сторона АВ задана вектором a(1, sqrt3), p=4, q=6. Найти основания трапеции .Решение. Используя полученные выше алгоритмы можно записать:|a|=a=2, cosф=1/2. AD=1/2+sqrt(4/4 -4+16)=1/2 +sqrt(13)=(sqrt(13)+1)/2.BC=-1/2+sqrt(-3+36)=(sqrt(33)-1)/2.

Видео по теме

Трапецией считается такой четырехугольник, у которого две стороны параллельны, а две другие нет. Высотой трапеции называется отрезок, проведенный перпендикулярно между двумя параллельными прямыми. В зависимости от исходных данных ее можно вычислить по-разному.

Вам понадобится

  • Знание сторон, оснований, средней линии трапеции, а так же, опционально, ее площадь и/или периметр.

Инструкция

Допустим, имеется трапеция с теми же данными, что и на рисунке 1. Проведем 2 высоты, получим , у которого 2 меньшие стороны катетами прямоугольных треугольников. Обозначим меньший катит за x. Он находится деления разницы длин между большим и меньшим основаниями. Тогда по теореме Пифагора квадрат высоты равен сумме квадратов гипотенузы d и катета x. Извлекаем из этой суммы и получим высоту h. (рис. 2)

Видео по теме

Источники:

  • как вычислить высоту трапеции

Математическая фигура с четырьмя углами называется трапецией, если пара противоположных ее сторон параллельна, а другая пара - нет. Параллельные стороны называют основаниями трапеции , две другие - боковыми. В прямоугольной трапеции один из углов при боковой стороне - прямой.

Инструкция

Задача 1.Найдите основания BC и AD трапеции , если известна длина AC = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный CED. Известны гипотенуза c и угол между гипотенузой и катетом EDC. Найдите длины CE и ED: по формуле угла CE = CD*sin(ADC); ED = CD*cos(ADC). Итак: CE = c*sinα; ED=c*cosα.

Рассмотрите прямоугольный треугольник ACE. Гипотенуза AC и CE вам известны, найдите сторону AE по правилу : сумма квадратов катетов равна квадрату гипотенузы. Итак: AE(2) = AC(2) - CE(2) = f(2) - c*sinα. Вычислите квадратный корень из правой части равенства. Вы нашли верхнее прямоугольной трапеции .

Длина основания AD суммой длин двух отрезков AE и ED. AE = квадратный корень(f(2) - c*sinα); ED = c*cosα).Итак: AD = квадратный корень(f(2) - c*sinα) + c*cosα.Вы нашли нижнее основание прямоугольной трапеции .

Задача 2.Найдите основания BC и AD прямоугольной трапеции , если известна длина диагонали BD = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный треугольник CED. Найдите длины сторон CE и ED: CE = CD*sin(ADC) = c*sinα; ED = CD*cos(ADC) = c*cosα.

Рассмотрите прямоугольник ABCE. По свойству AB = CE = c*sinα.Рассмотрите прямоугольный треугольник ABD. По свойству прямоугольного треугольника квадрат гипотенузы сумме квадратов катетов. Поэтому AD(2) = BD(2) - AB(2) = f(2) - c*sinα.Вы нашли нижнее основание прямоугольной трапеции AD = квадратный корень(f(2) - c*sinα).

По правилу прямоугольника BC = AE = AD - ED = квадратный корень(f(2) - c*sinα) - с*cosα.Вы нашли верхнее основание прямоугольной трапеции .

Меньшим основанием трапеции является одна из ее параллельных сторон, имеющая минимальную длину. Рассчитать эту величину можно несколькими способами, используя те или иные данные.

Вам понадобится

  • - калькулятор.

Инструкция

Если известны две длины - основания и средней линии - используйте для расчета наименьшего основания свойство трапеции. Согласно нему, средняя линия трапеции тождественна полусумме оснований. В этом случае наименьшее основание будет равно разности удвоенной длины средней линии и длины большого основания данной фигуры.

Если известны такие параметры трапеции, как , высота, длина большого основания, то расчет наименьшего основания данной ведите на основе трапеции. В этом случае конечный результат получите путем вычитания из разности частного удвоенной площади и высоты такого параметра, как длина большого основания трапеции.

Длину боковой стороны в высчитывайте по другой

Для того чтобы чувствовать себя на уроках геометрии уверенно и успешно решать задачи, недостаточно выучить формулы. Их нужно в первую очередь понимать. Бояться, а тем более ненавидеть формулы - непродуктивно. В этой статье доступным языком будут проанализированы различные способы поиска площади трапеции. Для лучшего усвоения соответствующих правил и теорем уделим некоторое внимание ее свойствам. Это поможет разобраться в том, как работают правила и в каких случаях следует применять те или иные формулы.

Определяем трапецию

Что это за фигура в целом? Трапецией называют многоугольник из четырех углов с двумя параллельными сторонами. Две другие стороны трапеции могут быть наклонены под различными углами. Ее параллельные стороны называют основаниями, а для непараллельных сторон применяют наименование "боковые стороны" или "бедра". Такие фигуры довольно часто встречаются в обыденной жизни. Контуры трапеции можно увидеть в силуэтах одежды, предметах интерьера, мебели, посуды и многих других. Трапеция бывает разных видов: разносторонняя, равнобокая и прямоугольная. Более детально их типы и свойства разберем далее в статье.

Свойства трапеции

Остановимся коротко на свойствах этой фигуры. Сумма углов, прилегающих к любой боковой стороне, всегда равняется 180°. Надо заметить, что все углы трапеции в сумме составляют 360°. У трапеции существует понятие средней линии. Если соединить середины боковых сторон отрезком - это и будет средняя линия. Ее обозначают m. У средней линии есть важные свойства: она всегда параллельна основаниям (мы помним, что основания также параллельны между собой) и равна их полусумме:

Это определение обязательно надо выучить и понять, ведь это ключ к решению множества задач!

У трапеции всегда можно опустить высоту на основание. Высота - это перпендикуляр, часто обозначаемый символом h, который проведен из любой точки одного основания на другое основание или его продолжение. Средняя линия и высота помогут найти площадь трапеции. Подобные задачи являются самыми распространенными в школьном курсе геометрии и регулярно появляются среди контрольных и экзаменационных работ.

Самые простые формулы площади трапеции

Разберем две самые популярные и простые формулы, с помощью которых находят площадь трапеции. Достаточно умножить высоту на полусумму оснований, чтобы легко найти искомое:

S = h*(a + b)/2.

В этой формуле a, b обозначают основания трапеции, h - высоту. Для удобства восприятия в этой статье знаки умножения отмечены символом (*) в формулах, хотя в официальных справочниках знак умножения обычно опускают.

Рассмотрим пример.

Дано: трапеция с двумя основаниями, равными 10 и 14 см, высота составляет 7 см. Чему равна площадь трапеции?

Разберем решение этой задачи. По этой формуле сначала нужно найти полусумму оснований: (10+14)/2 = 12. Итак, полусумма равняется 12 см. Теперь полусумму умножаем на высоту: 12*7 = 84. Искомое найдено. Ответ: площадь трапеции равна 84 кв. см.

Вторая известная формула гласит: площадь трапеции равна произведению средней линии на высоту трапеции. То есть фактически вытекает из предшествующего понятия средней линии: S=m*h.

Использование диагоналей для вычислений

Другой способ нахождения площади трапеции на самом деле не так уж сложен. Он связан с ее диагоналями. По этой формуле для нахождения площади требуется умножить полупроизведение ее диагоналей (d 1 d 2) на синус угла между ними:

S = ½ d 1 d 2 sina.

Рассмотрим задачу, которая показывает применение этого способа. Дано: трапеция с длиной диагоналей равной соответственно 8 и 13 см. Угол a между диагоналями равняется 30°. Найти площадь трапеции.

Решение. Используя вышеприведенную формулу, легко вычислить требуемое. Как известно, sin 30° составляет 0,5. Следовательно, S = 8*13*0,5=52. Ответ: площадь равна 52 кв. см.

Ищем площадь равнобокой трапеции

Трапеция может быть равнобокой (равнобедренной). Ее боковые стороны одинаковы И углы при основаниях равны, что хорошо иллюстрирует рисунок. Равнобедренная трапеция имеет такие же свойства, что и обычная, плюс ряд особых. Вокруг равнобокой трапеции может быть описана окружность, и в нее может быть вписана окружность.

Какие же есть методики вычисления площади такой фигуры? Нижеприведенный способ потребует больших вычислений. Для его применения нужно знать значения синуса (sin) и косинуса (cos) угла при основании трапеции. Для их расчетов требуются либо таблицы Брадиса либо инженерный калькулятор. Вот эта формула:

S = c *sin a *(a - c *cos a ),

где с - боковое бедро, a - угол при нижнем основании.

Равнобокая трапеция обладает диагоналями одинаковой длины. Верно и обратное утверждение: если у трапеции диагонали равны, то она является равнобедренной. Отсюда следующая формула, помогающая найти площадь трапеции - полупроизведение квадрата диагоналей на синус угла между ними: S = ½ d 2 sina.

Находим площадь прямоугольной трапеции

Известен частный случай прямоугольной трапеции. Это трапеция, у которой одна боковая сторона (ее бедро) примыкает к основаниям под прямым углом. Она имеет свойства обычной трапеции. Помимо этого, она обладает очень интересной особенностью. Разность квадратов диагоналей такой трапеции равняется разности квадратов ее оснований. Для нее используют все ранее приведенные методики вычисления площади.

Применяем смекалку

Есть одна хитрость, которая может помочь в случае забывчивости специфических формул. Рассмотрим внимательнее, что представляет собой трапеция. Если мысленно разделить ее на части, то мы получим знакомые и понятные геометрические фигуры: квадрат или прямоугольник и треугольник (один или два). Если известны высота и стороны трапеции, можно воспользоваться формулами площади треугольника и прямоугольника, после чего сложить все полученные величины.

Проиллюстрируем это следующим примером. Дана прямоугольная трапеция. Угол C = 45°, углы A, D составляют 90°. Верхнее основание трапеции равно 20 см, высота равна 16 см. Требуется вычислить площадь фигуры.

Данная фигура очевидным образом состоит из прямоугольника (если два угла равны 90°) и треугольника. Так как трапеция прямоугольная, следовательно, ее высота равна ее боковой стороне, то есть 16 см. Имеем прямоугольник со сторонами 20 и 16 см соответственно. Рассмотрим теперь треугольник, угол которого равен 45°. Мы знаем, что одна его сторона составляет 16 см. Так как эта сторона является одновременно высотой трапеции (а нам известно, что высота опускается на основание под прямым углом), следовательно, второй угол треугольника равен 90°. Отсюда оставшийся угол треугольника составляет 45°. Следствием этого мы получаем прямоугольный равнобедренный треугольник, у которого две стороны одинаковы. Значит, другая сторона треугольника равна высоте, то есть 16 см. Осталось вычислить площадь треугольника и прямоугольника и сложить полученные величины.

Площадь прямоугольного треугольника равна половине произведения его катетов: S = (16*16)/2 = 128. Площадь прямоугольника равняется произведению его ширины на длину: S = 20*16 = 320. Мы нашли требуемое: площадь трапеции S = 128 + 320 = 448 кв. см. Можно легко себя перепроверить, воспользовавшись вышеприведенными формулами, ответ будет идентичен.

Используем формулу Пика


Напоследок приведем еще одну оригинальную формулу, помогающую искать площадь трапеции. Она называется формулой Пика. Ею удобно пользоваться, когда трапеция нарисована на клетчатой бумаге. Подобные задачи часто встречаются в материалах ГИА. Выглядит она следующим образом:

S = M/2 + N - 1,

в этой формуле M - количество узлов, т.е. пересечений линий фигуры с линиями клетки на границах трапеции (оранжевые точки на рисунке), N - количество узлов внутри фигуры (синие точки). Удобнее всего пользоваться ею при нахождении площади неправильного многоугольника. Тем не менее, чем больше арсенал используемых методик, тем меньше ошибок и лучше результаты.

Разумеется, приведенными сведениями далеко не исчерпываются типы и свойства трапеции, а также способы поиска ее площади. В этой статье дан обзор наиболее важных ее характеристик. В решении геометрических задач важно действовать постепенно, начинать с легких формул и задач, последовательно закреплять понимание, переходить на другой уровень сложности.

Собранные воедино самые распространенные формулы помогут ученикам сориентироваться в разнообразных способах вычисления площади трапеции и более качественно подготовиться к тестам и контрольным работам по этой теме.

В материалах различных контрольных работ и экзаменов очень часто встречаются задачи на трапецию , решение которых требует знания ее свойств.

Выясним, какими же интересными и полезными для решения задач свойствами обладает трапеция.

После изучения свойства средней линии трапеции можно сформулировать и доказать свойство отрезка, соединяющего середины диагоналей трапеции . Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.

MO – средняя линия треугольника ABC и равна 1/2ВС (рис. 1).

MQ – средняя линия треугольника ABD и равна 1/2АD.

Тогда OQ = MQ – MO, следовательно, OQ = 1/2AD – 1/2BC = 1/2(AD – BC).

При решении многих задач на трапецию одним из основных приемов является проведение в ней двух высот.

Рассмотрим следующую задачу .

Пусть BT – высота равнобедренной трапеции ABCD с основаниями BC и AD, причем BC = a, AD = b. Найти длины отрезков AT и TD.

Решение.

Решение задачи не вызывает затруднения (рис. 2) , но оно позволяет получить свойство высоты равнобедренной трапеции, проведенной из вершины тупого угла : высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.

При изучении свойств трапеции нужно обратить внимание на такое свойство, как подобие. Так, например, диагонали трапеции разбивают ее на четыре треугольника, причем треугольники, прилежащие к основаниям, подобны, а треугольники, прилежащие к боковым сторонам, равновелики. Это утверждение можно назвать свойством треугольников, на которые разбивается трапеция ее диагоналями . Причем первая часть утверждения доказывается очень легко через признак подобия треугольников по двум углам. Докажем вторую часть утверждения.

Треугольники BOC и COD имеют общую высоту (рис. 3) , если принять за их основания отрезки BO и OD. Тогда S BOC /S COD = BO/OD = k. Следовательно, S COD = 1/k · S BOC .

Аналогично, треугольники BOC и АОВ имеют общую высоту, если принять за их основания отрезки CO и OA. Тогда S BOC /S AOB = CO/OA = k и S А O В = 1/k · S BOC .

Из этих двух предложений следует, что S COD = S А O В.

Не будем останавливаться на сформулированном утверждении, а найдем связь между площадями треугольников, на которые разбивается трапеция ее диагоналями . Для этого решим следующую задачу.

Пусть точка O – точка пересечения диагоналей трапеции АBCD с основаниями BC и AD. Известно, что площади треугольников BOC и AOD равны соответственно S 1 и S 2 . Найти площадь трапеции.

Так как S COD = S А O В, то S АВС D = S 1 + S 2 + 2S COD .

Из подобия треугольников BОC и AOD следует, что ВО/OD = √(S₁/S 2).

Следовательно, S₁/S COD = BO/OD = √(S₁/S 2), а значит S COD = √(S 1 · S 2).

Тогда S АВС D = S 1 + S 2 + 2√(S 1 · S 2) = (√S 1 + √S 2) 2 .

С использованием подобия доказывается и свойство отрезка, проходящего через точку пересечения диагоналей трапеции параллельно основаниям .

Рассмотрим задачу :

Пусть точка O – точка пересечения диагоналей трапеции ABCD с основаниями BC и AD. BC = a, AD = b. Найти длину отрезка PK, проходящего через точку пересечения диагоналей трапеции параллельно основаниям. На какие отрезки делится PK точкой О (рис. 4)?

Из подобия треугольников AOD и BOC следует, что АO/OС = AD/BC = b/a.

Из подобия треугольников AOР и ACB следует, что АO/AС = PO/BC = b/(a + b).

Отсюда PO = BC · b / (a + b) = ab/(a + b).

Аналогично, из подобия треугольников DOK и DBC, следует, что OK = ab/(a + b).

Отсюда PO = OK и PK = 2ab/(a + b).

Итак, доказанное свойство можно сформулировать так: отрезок, параллельный основаниям трапеции, проходящий через точку пересечения диагоналей и соединяющий две точки на боковых сторонах, делится точкой пересечения диагоналей пополам. Его длина есть среднее гармоническое оснований трапеции.

Следующее свойство четырех точек : в трапеции точка пересечения диагоналей, точка пересечения продолжения боковых сторон, середины оснований трапеции лежат на одной линии.

Треугольники BSC и ASD подобны (рис. 5) и в каждом из них медианы ST и SG делят угол при вершине S на одинаковые части. Следовательно, точки S, T и G лежат на одной прямой.

Точно так же на одной прямой расположены точки T, O и G. Это следует из подобия треугольников BOC и AOD.

Значит, все четыре точки S, T, O и G лежат на одной прямой.

Так же можно найти длину отрезка разбивающего трапецию на две подобных.

Если трапеции ALFD и LBCF подобны (рис. 6), то a/LF = LF/b.

Отсюда LF = √(ab).

Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований .

Докажем свойство отрезка, делящего трапецию на две равновеликие .

Пусть площадь трапеции равна S (рис. 7). h 1 и h 2 – части высоты, а х – длина искомого отрезка.

Тогда S/2 = h 1 · (a + x)/2 = h 2 · (b + x)/2 и

S = (h 1 + h 2) · (a + b)/2.

Составим систему

{h 1 · (a + x) = h 2 · (b + x)
{h 1 · (a + x) = (h 1 + h 2) · (a + b)/2.

Решая данную систему, получим х = √(1/2(а 2 + b 2)).

Таким образом, длина отрезка, делящего трапецию на две равновеликие, равна√((а 2 + b 2)/2) (среднему квадратичному длин оснований).

Итак, для трапеции ABCD с основаниями AD и BC (BC = a, AD = b) доказали, что отрезок:

1) MN, соединяющий середины боковых сторон трапеции, параллелен основаниям и равен их полусумме (среднему арифметическому чисел a и b);

2) PK, проходящий через точку пересечения диагоналей трапеции параллельно основаниям, равен
2ab/(a + b) (среднему гармоническому чисел a и b);

3) LF, разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому чисел a и b, √(ab);

4) EH, делящий трапецию на две равновеликие, имеет длину √((а 2 + b 2)/2) (среднее квадратичное чисел a и b).

Признак и свойство вписанной и описанной трапеции.

Свойство вписанной трапеции: трапеция может быть вписана в окружность в том и только в том случае, когда она равнобедренная.

Свойства описанной трапеции. Около окружности можно описать трапецию тогда и только тогда, когда сумма длин оснований равна сумме длин боковых сторон.

Полезные следствия того, что в трапецию вписана окружность:

1. Высота описанной трапеции равна двум радиусам вписанной окружности.

2. Боковая сторона описанной трапеции видна из центра вписанной окружности под прямым углом.

Первое очевидно. Для доказательства второго следствия необходимо установить, что угол COD прямой, что так же не составляет большого труда. Зато знание этого следствия позволяет при решении задач использовать прямоугольный треугольник.

Конкретизируем следствия для равнобедренной описанной трапеции :

Высота равнобедренной описанной трапеции есть среднее геометрическое оснований трапеции
h = 2r = √(ab).

Рассмотренные свойства позволят более глубоко познать трапецию и обеспечат успешность в решении задач на применение ее свойств.

Остались вопросы? Не знаете, как решать задачи на трапецию?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Тема урока

Трапеция

Цели урока

Продолжать знакомить с новыми определениями в геометрии;
Закрепить знания об уже изученных геометрических фигурах;
Познакомить с формулировкой и доказательствами свойств трапеции;
Обучить применению свойств различных фигур при решении задач и выполнении заданий;
Продолжать развивать у школьников внимание, логическое мышление и математическую речь;
Воспитывать интерес к предмету.

Задачи урока

Вызвать интерес к знаниям по геометрии;
Продолжать упражнять школьников в решении задач;
Вызвать познавательный интерес к урокам математики.

План урока

1. Повторить материал, изученный ранее.
2. Знакомство с трапецией, ее свойствами и признаками.
3. Решение задач и выполнение заданий.

Повторение ранее изученного материала

На предыдущем уроке вы знакомились с такой фигурой, как четырехугольник. Давайте закрепим пройденный материал и ответим на поставленные вопросы:

1. Сколько углов и сторон имеет 4-х угольник?
2. Сформулируйте определение 4-х угольника?
3. Какое название носят противоположные стороны 4-х угольника?
4. Какие виды четырехугольников вам известны? Перечислите их и дайте определение каждого из них.
5. Изобразите пример выпуклого и невыпуклого четырехугольника.

Трапеция. Общие свойства и определение

Трапеция - это такая четырехугольная фигура, у которой только одна пара противолежащих сторон параллельна.

В геометрическом определении к трапеции относится такой 4-х угольник, который имеет две параллельные стороны, а две другие – нет.

Название такой необычной фигуры, как «трапеция» произошло от слова «трапезион», что в переводе с греческого языка, обозначает слово «столик», от которого произошли также слово «трапеза» и другие родственные слова.

В некоторых случаях в трапеции пара противоположных сторон параллельна, а другая его пара не является параллельной. В таком случае трапеция носит название криволинейной.

Элементы трапеции



Трапеция состоит из таких элементов, как основание, боковые линии, средняя линия и ее высота.

Основанием трапеции называют ее параллельные стороны;
Боковыми сторонами называют две другие стороны трапеции, которые не есть параллельными;
Средней линией трапеции называют отрезок, который соединяет середины его боковых сторон;
Высотой трапеции считается расстояние между ее основаниями.

Виды трапеций



Задание:

1. Сформулируйте определение равнобедренной трапеции.
2. Какая трапеция называется прямоугольной?
3. Что значит остроугольная трапеция?
4. Какая трапеция относится к тупоугольной?

Общие свойства трапеции

Во-первых, средняя линия трапеции находится параллельно основанию фигуры и равняется ее полусумме;

Во-вторых, отрезок, который соединяет середины диагоналей 4-х угольной фигуры, равняется полуразности ее оснований;

В-третьих, в трапеции параллельно лежащие прямые, которые пересекают стороны угла данной фигуры, отсекают пропорциональные отрезки от сторон угла.

В-четвертых, в любого из видов трапеции сумма углов, которые прилегают к ее боковой стороне, равны 180°.

Где еще присутствует трапеция

Слово «трапеция» присутствует не только в геометрии, она имеет более широкое применение в повседневной жизни.

Это необычное слово мы можем встретить, просматривая спортивные соревнования гимнастов, выполняющих акробатические упражнения на трапеции. В гимнастике трапецией называют спортивный снаряд, который состоит из перекладины, подвешенной на двух веревках.

Также это слово можно услышать, занимаясь в спортивном зале или в среде людей, которые занимаются бодибилдингом, так как трапеции - это не только геометрическая фигура или спортивный акробатический снаряд, но и мощные мышцы спины, которые расположены сзади за шеей.



На рисунке изображена воздушная трапеция, которую изобрел для цирковых акробатов артист Джулиус Леотард еще в девятнадцатом веке во Франции. Вначале создатель этого номера устанавливал свой снаряд на небольшой высоте, но в итоге он был перенесен под самый купол цирка.

Воздушные гимнасты в цирке выполняют трюки перелетов из трапеции на трапецию, исполняют перекрёстные полёты, проделывают в воздухе сальто-мортале.

В конном виде спорта, трапецией называют упражнение для растяжки или потягивание тела лошади, которое очень полезно и приятно для животного. Во время стойки лошади в положении трапеции работает растяжка ног животного или мышц его спины. Это красивое упражнение мы можем наблюдать во время поклона или так называемого «переднего кранча», когда лошадь глубоко прогибается.

Задание: Наведите свои примеры о том, где еще в повседневной жизни можно услышать слова «трапеция»?

А известно ли вам, что впервые в 1947 году известный французский модельер Кристиан Диор произвел показ мод, в котором присутствовал силуэт юбки-трапеции. И хотя уже прошло более шестидесяти лет, этот силуэт до сих пор в моде, и не теряет своей актуальности, и по сей день.



В гардеробе английской королевы юбка-трапеция стала непременным предметом и ее визитной карточкой.

Напоминающая геометрическую форму трапеции, юбка с одноименным названием прекрасно сочетается с любыми кофточками, блузами, топами и пиджаками. Классичность и демократичность этого популярного фасона позволяет ее носить и со строгими пиджаками и немного легкомысленными топами. В такой юбке будет уместно появляться как в офисе, так и на дискотеке.

Задачи с трапецией

Для облегчения решения задач с трапециями важно помнить несколько основных правил:

Во-первых, проведите две высоты: ВF и СК.

В одном из случаев, в результате вы получите прямоугольник – ВСFК из чего понятно, что FК=ВС.

АD=АF+FК+КD, отсюда АD=АF+ВС+КD.

К тому же сразу очевидно, что АВF и DСК – это прямоугольные треугольники.


Возможен еще такой вариант, когда трапеция не совсем стандартная, где

АD=АF+FD=АF+FК–DК=АF+ВС–DК.


Но самый простой вариант, если наша трапеция – равнобедренная. Тогда решать задачу становиться еще легче, потому что АВF и DСК – это прямоугольные треугольники, и они равны. АВ=СD, так как трапеция равнобедренная, а ВF=СК, как высоты трапеции. Из равенства треугольников следует равенство соответствующих сторон.

Трапецией называется выпуклый четырехугольник, у которого одна пара противоположных сторон параллельна друг другу, а другая - нет.

Исходя из определения трапеции и признаков параллелограмма, параллельные стороны трапеции не могут быть равны друг другу. Иначе другая пара сторон также стала бы параллельной и равной друг другу. В таком случае мы имели бы дело с параллелограммом.

Параллельные противоположные стороны трапеции называют ее основаниями . То есть у трапеции два основания. Непараллельные противоположные стороны трапеции называют ее боковыми сторонами .

В зависимости от того, какие боковые стороны, какие углы они образуют с основаниями, выделяют различные виды трапеций. Чаще всего трапеции делят на неравнобедренные (разнобокие), равнобедренные (равнобокие) и прямоугольные.

У разнобоких трапеций боковые стороны не равны друг другу. При этом с большим основанием они обе могут образовывать только острые углы, или один угол будет тупым, а второй острым. В первом случае трапецию называют остроугольной , во втором - тупоугольной .

У равнобедренных трапеций боковые стороны равны друг другу. При этом с большим основанием они могут образовывать только острые углы, т.е. все равнобедренные трапеции остроугольные. Поэтому их не делят на остроугольные и тупоугольные.

У прямоугольных трапеций одна боковая сторона перпендикулярна основаниям. Вторая сторона не может быть им перпендикулярна, т. к. в этом случае мы имели бы дело с прямоугольником. В прямоугольных трапециях неперпендикулярная боковая сторона образует с большим основанием всегда острый угол. Перпендикулярная боковая сторона перпендикулярна обеим основаниям, т. к. основания параллельны.



Похожие статьи