Как найти расстояние от вектора до плоскости. Расстояние от точки до плоскости

26.09.2019

Инструкция

Для нахождения расстояния от точки до плоскости методами начертательной : выберите на плоскости произвольную точку; проведите через нее две прямые (лежащие в этой плоскости ); восстановите перпендикуляр к плоскости , проходящий через эту точку (постройте прямую, перпендикулярную одновременно обеим пересекающимся прямым); проведите через заданную точку прямую параллельную, построенному перпендикуляру; найдите расстояние между точкой пересечения этой прямой с плоскостью и заданной точкой.

Если положение точки задано ее трехмерными координатами, а положение плоскости – линейным уравнением, то, чтобы найти расстояние от плоскости до точки , воспользуйтесь методами аналитической геометрии: обозначьте координаты точки через x, y, z, соответственно (х – абсцисса, y – ордината, z – аппликата); обозначьте через А, В, С, D уравнения плоскости (А – параметр при абсциссе, В – при , С – при аппликате, D – свободный член); вычислите расстояние от точки до плоскости по формуле:s = | (Ax+By+Cz+D)/√(A²+B²+C²) |,где s – оасстояние между точкой и плоскостью,|| - абсолютного значения (или модуля) .

Пример.Найдите расстояние между точкой А с координатами (2, 3, -1) и плоскостью, заданной уравнением: 7х-6у-6z+20=0.Решение.Из условий следует, что:х=2,у=3,z=-1,A=7,B=-6,C=-6,D=20.Подставьте эти значения в вышеприведенную .Получится:s = | (7*2+(-6)*3+(-6)*(-1)+20)/√(7²+(-6)²+(-6)²) | = | (14-18+6+20)/11 | = 2.Ответ:Расстояние от точки до плоскости равно 2 (условным единицам).

Совет 2: Как определить расстояние от точки до плоскости

Определение расстояния от точки до плоскости - одна из распространенных задач школьной планиметрии. Как известно, наименьшим расстоянием от точки до плоскости будет перпендикуляр, проведенный из этой точки к данной плоскости . Поэтому длина этого перпендикуляра и принимается за расстояние от точки до плоскости .

Вам понадобится

  • уравнение плоскости

Инструкция

Пусть первая из параллельных f1 задана уравнением y=kx+b1. Переведя выражение в общий вид, у вас получится kx-y+b1=0, то есть A=k, B=-1. Нормалью к ней будет n={k, -1}.
Теперь следует произвольную абсциссу точки х1 на f1. Тогда ее ордината y1=kx1+b1.
Пусть уравнение второй из параллельных прямых f2 будет иметь вид:
у=kx+b2 (1),
где k одинаково для обеих прямых, в силу их параллельности.

Далее вам необходимо составить каноническое уравнение линии перпендикулярной как f2, так и f1, содержащей точку М (x1, y1). При этом полагают, что х0=х1, y0=y1, S={k, -1}. В результате у вас должно получится следующее равенство:
(x-x1)/k =(y-kx1-b1)/(-1) (2).

Решив систему уравнений, состоящую из выражений (1) и (2), вы найдете вторую точку, определяющую искомое расстояние между параллельными N(x2, y2). Само искомое расстояние будет равно d=|MN|=((x2-x1)^2+(y2-y1)^2)^1/2.

Пример. Пусть уравнения заданных параллельных прямых на плоскости f1 – у=2x +1 (1);
f2 – y=2x+5 (2). Берем произвольную точку х1=1 на f1. Тогда y1=3. Первая точка, таким образом будет иметь координаты M (1,3). Уравнение общего перпендикуляра (3):
(х-1)/2 = -y+3 или y=-(1/2)x+5/2.
Подставив это значение y в (1), получить:
-(1/2)x+5/2=2х+5, (5/2)х=-5/2, х2=-1, y2=-(1/2)(-1) +5/2=3.
Второе основание перпендикуляра в точке с координатами N (-1, 3). Расстояние между параллельными прямыми составит:
d=|MN|=((3-1)^2+(3+1)^2)^1/2=(4+16)^1/2=4,47.

Источники:

  • Развитие легкой атлетики в России

Вершина любой плоской или объемной геометрической фигуры однозначно определяется своими координатами в пространстве. Точно так же может быть однозначно определена и любая произвольная точка в той же системе координат, а это дает возможность вычислить расстояние между этой произвольной точкой и вершиной фигуры.

Вам понадобится

  • - бумага;
  • - ручка или карандаш;
  • - калькулятор.

Инструкция

Сведите задачу к нахождению длины отрезка между двумя точками, если координаты заданной в задачи точки и вершины геометрической фигуры известны. Эту длину можно вычислить, воспользовавшись теоремой Пифагора применительно к проекциям отрезка на оси координат - она будет равна квадратному корню из суммы квадратов длин всех проекций. Например, пусть в трехмерной системе координат заданы точка A(X₁;Y₁;Z₁) и вершина C фигуры любой геометрической с координатами (X₂;Y₂;Z₂). Тогда длины проекций отрезка между ними на координатные оси можно как X₁-X₂, Y₁-Y₂ и Z₁-Z₂, а длину отрезка - как √((X₁-X₂)²+(Y₁-Y₂)²+(Z₁-Z₂)²). Например, если координаты точки A(5;9;1), а вершины C(7;8;10), то расстояние между ними будет равно √((5-7)²+(9-8)²+(1-10)²) = √(-2²+1²+(-9)²) = √(4+1+81) = √86 ≈ 9,274.

Вычислите сначала координаты вершины, если в явном виде в условиях задачи они не представлены. Конкретный способ зависит от типа фигуры и известных дополнительных параметров. Например, если известны трехмерные координаты трех вершин A(X₁;Y₁;Z₁), B(X₂;Y₂;Z₂) и C(X₃;Y₃;Z₃), то координаты четвертой его вершины (противоположной вершине B) будут (X₃+X₂-X₁; Y₃+Y₂-Y₁; Z₃+Z₂-Z₁). После определения координат недостающей вершины вычисление расстояния между ней и произвольной точкой вновь сведется к определению длины отрезка между двумя этими точками в заданной системе координат - сделайте это тем же способом, который был описан в предыдущем шаге. Например, для вершины описанного в этом шаге параллелограмма и точки E с координатами (X₄;Y₄;Z₄) формулу вычисления расстояния из предыдущего шага можно так: √((X₃+X₂-X₁-X₄)²+(Y₃+Y₂-Y₁-Y₄)²+(Z₃+Z₂-Z₁-Z₄)²).

Для практических расчетов можно использовать, например, встроенный в поисковую систему Google . Так, чтобы вычислить значение по формуле, полученной на предыдущем шаге, для точек с координатами A(7;5;2), B(4;11;3), C(15;2;0), E(7;9;2), введите такой поисковый запрос: sqrt((15+4-7-7)^2+(2+11-5-9)^2+(0+3-2-2)^2). Поисковик рассчитает и отобразит результат вычислений (5,19615242).

Видео по теме

Восстановление перпендикуляра к плоскости – одна из важных задач в геометрии, она лежит в основе многих теорем и доказательств. Чтобы построить прямую, перпендикулярную плоскости , нужно последовательно выполнить несколько действий.

Вам понадобится

  • - заданная плоскость;
  • - точка, из которой требуется провести перпендикуляр;
  • - циркуль;
  • - линейка;
  • - карандаш.

Тип задания: 14

Условие

В правильной треугольной пирамиде DABC с основанием ABC сторона основания равна 6\sqrt{3}, а высота пирамиды равна 8 . На ребрах AB , AC и AD соответственно отмечены точки M , N и K , такие, что AM=AN=\frac{3\sqrt{3}}{2} и AK=\frac{5}{2}.

а) Докажите, что плоскости MNK и DBC параллельны.

б) Найдите расстояние от точки K до плоскости DBC .

Показать решение

Решение

а) Плоскости MNK и DBC параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Докажем это. Рассмотрим прямые MN и KM плоскости MNK и прямые BC и DB плоскости DBC.

В треугольнике AOD : \angle AOD = 90^\circ и по теореме Пифагора AD=\sqrt{DO^2 +AO^2}.

Найдём AO , используя то, что \bigtriangleup ABC правильный.

AO=\frac{2}{3}AO_1, где AO_1 — высота \bigtriangleup ABC, AO_1 = \frac{a\sqrt{3}}{2}, где a — сторона \bigtriangleup ABC.

AO_1 = \frac{6\sqrt{3} \cdot \sqrt{3}}{2}=9, тогда AO=6, AD=\sqrt{8^2 + 6^2}=10.

1. Так как \frac{AK}{AD}=\frac{5}{2} : 10=\frac{1}{4}, \frac{AM}{AB}=\frac{3\sqrt{3}}{2} : 6\sqrt{3}=\frac{1}{4} и \angle DAB — общий, то \bigtriangleup AKM \sim ADB.

Из подобия следует, что \angle AKM = \angle ADB. Это соответственные углы при прямых KM и BD и секущей AD . Значит KM \parallel BD.

2. Так как \frac{AN}{AC}=\frac{3 \sqrt{3}}{2 \cdot 6 \sqrt{3}}=\frac{1}{4}, \frac{AM}{AB}=\frac{1}{4} и \angle CAB — общий, то \bigtriangleup ANM \sim \bigtriangleup ACB.

Из подобия следует, что \angle ANM = \angle ACB. Эти углы соответственные при прямых MN и BC и секущей AC . Значит, MN \parallel BC.

Вывод: так как две пересекающиеся прямые KM и MN плоскости MNK соответственно параллельны двум пересекающимся прямым BD и BC плоскости DBC , то эти плоскости параллельны — MNK \parallel DBC.

б) Найдём расстояние от точки K до плоскости BDC .

Поскольку плоскость MNK параллельна плоскости DBC , то расстояние от точки K до плоскости DBC равно расстоянию от точки O_2 до плоскости DBC и оно равно длине отрезка O_2 H. Докажем это.

BC \perp AO_1 и BC \perp DO_1 (как высоты треугольников ABC и DBC ), значит, BC перпендикулярна плоскости ADO_1, и тогда BC перпендикулярна любой прямой этой плоскости, например, O_2 H. По построению O_2H\perp DO_1, значит, O_2H перпендикулярна двум пересекающимся прямым плоскости BCD , и тогда отрезок O_2 H перпендикулярен плоскости BCD и равен расстоянию от O_2 до плоскости BCD .

В треугольнике O_2HO_1:O_2H=O_{2}O_{1}\sin\angle HO_{1}O_{2}.

O_{2}O_{1}=AO_{1}-AO_{2}.\, \frac{AO_2}{AO_1}=\frac{1}{4}, AO_{2}=\frac{AO_1}{4}=\frac{9}{4}.

O_{2}O_{1}=9-\frac{9}{4}=\frac{27}{4}.

\sin \angle DO_{1}A= \frac{DO}{DO_{1}}= \frac{8}{\sqrt{64+3^2}}= \frac{8}{\sqrt{73}}.

O_2H=\frac{27}{4} \cdot \frac{8}{\sqrt{73}}=\frac{54}{\sqrt{73}}.

Ответ

\frac{54}{\sqrt{73}}

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Расстояние от точки до плоскости

Условие

ABCDA_1B_1C_1D_1 — правильная четырехугольная призма.

а) Докажите, что плоскость BB_1D_1 \perp AD_1C .

б) Зная AB = 5 и AA_1 = 6 найдите расстояние от точки B_1 до плоскости AD_1C .

Показать решение

Решение

а) Так как данная призма правильная, то BB_1 \perp ABCD , отсюда BB_1 \perp AC . Поскольку ABCD — квадрат, то AC \perp BD . Таким образом, AC \perp BD и AC \perp BB_1 . Так как прямые BD и BB_1 пересекаются, то, согласно признаку перпендикулярности прямой и плоскости, AC \perp BB_1D_1D . Теперь по признаку перпендикулярности плоскостей AD_1C \perp BB_1D_1 .

б) Обозначим через О точку пересечения диагоналей AC и BD квадрата ABCD . Плоскости AD_1C и BB_1D_1 пересекаются по прямой OD_1 . Пусть B_1H — перпендикуляр, проведенный в плоскости BB_1D_1 к прямой OD_1 . Тогда B_1H \perp AD_1C . Пусть E=OD_1 \cap BB_1 . Для подобных треугольников D_1B_1E и OBE (равенство соответствующих углов следует из условия BO \parallel B_1D_1 ) имеем \frac {B_1E}{BE}=\frac{B_1D_1}{BO}=\frac{2}1 .

Значит, B_1E=2BE=2 \cdot 6=12. Так как B_1D_1=5\sqrt{2} , то гипотенуза D_1E= \sqrt{B_1E^{2}+B_1D_1^{2}}= \sqrt{12^{2}+(5\sqrt{2})^{2}}= \sqrt{194}. Далее применяем метод площадей в треугольнике D_1B_1E для вычисления высоты B_1H , опущенной на гипотенузу D_1E :

S_{D_1B_1E}=\frac1{2}B_1E \cdot B_1D_1=\frac1{2}D_1E \cdot B_1H; 12 \cdot 5\sqrt{2}=\sqrt{194} \cdot B_1H;

B_1H=\frac{60\sqrt{2}}{\sqrt{194}}=\frac{60}{\sqrt{97}}=\frac{60\sqrt{97}}{97} .

Ответ

\frac{60\sqrt{97}}{97}

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Расстояние от точки до плоскости

Условие

ABCDA_1B_1C_1D_1 — прямоугольный параллелепипед. Ребра AB=24, BC=7, BB_{1}=4 .

а) Докажите, что расстояние от точек B и D до плоскости ACD_{1} одинаковы.

б) Найдите это расстояние.

Показать решение

Решение

а) Рассмотрим треугольную пирамиду D_1ACD .

В данной пирамиде расстояние от точки D до плоскости основания ACD_1-DH — равно высоте пирамиды, проведенной из точки D , к основанию ACD_1 .

V_{D_1ABC}=\frac1{3}S_{ACD_1} \cdot DH , из этого равенства получаем

DH=\frac{3V_{D_1ACD}}{S_{ACD_1}} .

Рассмотрим пирамиду D_1ABC . Расстояние от точки B до плоскости ACD_1 равно высоте, опущенной из вершины B к основанию ACD_1 . Обозначим это расстояние BK . Тогда V_{D_1ABC}=\frac1{3}S_{ACD_1} \cdot BK , из этого получаем BK=\frac{3V_{D_1ABC}}{S_{ACD_1}}.\: Но V_{D_1ACD} = V_{D_1ABC} , так как, если считать в пирамидах основаниямиADC и ABC , то высота D_1D общая и S_{ADC}=S_{ABC} (\bigtriangleup ADC=\bigtriangleup ABC по двум катетам). Значит, BK=DH .

б) Найдем объем пирамиды D_1ACD .

Высота D_1D=4 .

S_{ACD}=\frac1{2}AD \cdot DC=\frac1{2} \cdot24 \cdot 7=84.

V=\frac1{3}S_{ACD} \cdot D_1D=\frac1{3} \cdot84 \cdot4=112 .

Площадь грани ACD_1 равна \frac1{2}AC \cdot D_1P.

AD_1= \sqrt{AD^{2}+DD_1^{2}}= \sqrt{7^{2}+4^{2}}= \sqrt{65}, \: AC= \sqrt{AB^{2}+BC^{2}}= \sqrt{24^{2}+7^{2}}= 25

Зная, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла, в треугольнике ADC имеем AD^{2}=AC \cdot AP, \: AP=\frac{AD^{2}}{AC}=\frac{7^{2}}{25}=\frac{49}{25}.

В прямоугольном треугольнике AD_1P по теореме Пифагора D_1P^{2}= AD_1^{2}-AP^{2}= 65-\left (\frac{49}{25} \right)^{2}= \frac{38\:224}{25^{2}}, D_1P=\frac{4\sqrt{2\:389}}{25}.

S_{ACD_1}=\frac1{2} \cdot25 \cdot\frac{4\sqrt{2\:389}}{25}=2\sqrt{2\:389} .

DH=\frac{3V}{S_{ACD_1}}=\frac{3 \cdot112}{2\sqrt{2\:389}}=\frac{168}{\sqrt{2\:389}} .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • обобщение и систематизация знаний и умений учащихся;
  • развитие умений анализировать, сравнивать, делать выводы.

Оборудование:

  • мультимедийный проектор;
  • компьютер;
  • листы с текстами задач

ХОД ЗАНЯТИЯ

I. Организационный момент

II. Этап актуализации знаний (слайд 2)

Повторяем как определяется расстояние от точки до плоскости

III. Лекция (cлайды 3-15)

На занятии мы рассмотрим различные способы нахождения расстояния от точки до плоскости.

Первый метод: поэтапно-вычислительный

Расстояние от точки М до плоскости α:
– равно расстоянию до плоскости α от произвольной точки Р, лежащей на прямой a, которая проходит через точку М и параллельна плоскости α;
– равно расстоянию до плоскости α от произвольной точки Р, лежащей на плоскости β, которая проходит через точку М и параллельна плоскости α.

Решим следующие задачи:

№1. В кубе А…D 1 найти расстояние от точки С 1 до плоскости АВ 1 С.

Осталось вычислить значение длины отрезка О 1 Н.

№2. В правильной шестиугольной призме А…F 1 , все ребра которой равны 1, найдите расстояние от точки А до плоскости DEA 1 .

Следующий метод: метод объемов .

Если объем пирамиды АВСМ равен V, то расстояние от точки М до плоскости α, содержащей ∆АВС вычисляется по формуле ρ(М; α) = ρ(М; АВС) =
При решении задач мы используем равенство объемов одной фигуры, выраженные двумя различными способами.

Решим следующую задачу:

№3. Ребро AD пирамиды DABC перпендикулярно плоскости основания АВС. Найдите расстояние от А до плоскости, проходящей через середины ребер АВ, АС и АD, если.

При решении задач координатным методом расстояние от точки М до плоскости α можно вычислить по формуле ρ(М; α) = , где М(х 0 ; у 0 ; z 0), а плоскость задана уравнением ax + by + cz + d = 0

Решим следующую задачу:

№4. В единичном кубе A…D 1 найдите расстояние от точки А 1 до плоскости ВDC 1 .

Введем систему координат с началом в точке А, ось у пройдет по ребру АВ, ось х – по ребру АD, ось z – по ребру АА 1 . Тогда координаты точек В (0; 1; 0) D (1; 0; 0;) C 1 (1; 1; 1)
Составим уравнение плоскости, проходящей через точки В, D, C 1 .

Тогда – dx – dy + dz + d = 0 x + y – z – 1= 0. Следовательно, ρ =

Следующий метод, который можно использовать при решении задач данного типа – метод опорных задач.

Применение данного метода состоит в применении известных опорных задач, которые формулируются как теоремы.

Решим следующую задачу:

№5. В единичном кубе А…D 1 найдите расстояние от точки D 1 до плоскости АВ 1 С.

Рассмотрим применение векторного метода.

№6. В единичном кубе А…D 1 найдите расстояние от точки А 1 до плоскости ВDС 1 .

Итак, мы рассмотрели различные способы, которые можно использовать при решении данного типа задач. Выбор того или иного метода зависит от конкретной задачи и ваших предпочтений.

IV. Работа в группах

Попробуйте решить задачу разными способами.

№1. Ребро куба А…D 1 равно . Найдите расстояние от вершины С до плоскости BDC 1 .

№2. В правильном тетраэдре АВСD с ребром найдите расстояние от точки А до плоскости BDC

№3. В правильной треугольной призме АВСА 1 В 1 С 1 все ребра которой равны 1, найдите расстояние от А до плоскости ВСА 1 .

№4. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите расстояние от А до плоскости SCD.

V. Итог урока, домашнее задание, рефлексия

Построить следы плоскости, заданной ∆BCD, и определить расстояние от точки А до заданной плоскости методом прямоугольного треугольника (координаты точек А, В, С и D см. в Таблице 1 раздела Задания);

1.2. Пример выполнения задания № 1

Первое задание представляет комплекс задач по темам:

1. Ортогональное проецирование, эпюр Монжа, точка, прямая, плоскость : по известным координатам трех точек B, C, D построить горизонтальную и фронтальную проекции плоскости, заданной ∆BCD ;

2. Следы прямой, следы плоскости, свойства принадлежности прямой плоскости : построить следы плоскости, заданной ∆BCD ;

3. Плоскости общего и частного положения, пересечение прямой и плоскости, перпендикулярность прямой и плоскости, пересечение плоскостей, метод прямоугольного треугольника : определить расстояние от точки А до плоскости ∆BCD .

1.2.1. По известным координатам трех точек B, C, D построим горизонтальную и фронтальную проекции плоскости, заданной ∆BCD (Рисунок 1.1), для чего необходимо построить горизонтальные и фронтальные проекции вершин ∆BCD , а затем одноименные проекции вершин соединить.

Известно, что следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с плоскостью проекций.

У плоскости общего положения 3 следа: горизонтальный, фронтальный и профильный .

Для того чтобы построить следы плоскости, достаточно построить следы (горизонтальный и фронтальный) любых двух прямых, лежащих в этой плоскости, и соединить их между собой. Таким образом, след плоскости (горизонтальный или фронтальный) будет однозначно определен, поскольку через две точки на плоскости (в данном случае этими точками будут следы прямых) можно провести прямую, и при том, только одну.

Основанием для такого построения служит свойство принадлежности прямой плоскости : если прямая принадлежит заданной плоскости, то ее следы лежат на одноименных следах этой плоскости.

Следом прямой называется точка пересечения этой прямой с плоскостью проекций.

Горизонтальный след прямой лежит в горизонтальной плоскости проекций, фронтальный – во фронтальной плоскости проекций.

Рассмотрим построение горизонтального следа прямой DB , для чего необходимо:

1. Продолжить фронтальную проекцию прямой DB до пересечения с осью X , точка пересечения М 2 является фронтальной проекцией горизонтального следа;

2. Из точки М 2 восстановить перпендикуляр (линию проекционной связи) до его пересечения с горизонтальной проекцией прямой DB М 1 и будет являться горизонтальной проекцией горизонтального следа (Рисунок 1.1), которая совпадает с самим следом М .

Аналогично выполняется построение горизонтального следа отрезка СВ прямой: точка М’ .

Чтобы построить фронтальный след отрезка CB прямой, необходимо:

1. Продолжить горизонтальную проекцию прямой CB до пересечения с осью X , точка пересечения N 1 является горизонтальной проекцией фронтального следа;

2. Из точки N 1 восстановить перпендикуляр (линию проекционной связи) до его пересечения с фронтальной проекцией прямой CB или ее продолжением. Точка пересечения N 2 и будет являться фронтальной проекцией фронтального следа, которая совпадает с самим следом N .

Соединив точки M′ 1 и M 1 отрезком прямой, получим горизонтальный след плоскости απ 1 . Точка α x пересечения απ 1 с осью X называется точкой схода следов . Для построения фронтального следа плоскости απ 2 необходимо соединить фронтальный след N 2 с точкой схода следов α x

Рисунок 1.1 — Построение следов плоскости

Алгоритм решения этой задачи может быть представлен следующим образом:

  1. (D 2 B 2 ∩ OX ) = M 2 ;
  2. (MM 1 ∩ D 1 B 1) = M 1 = M ;
  3. (C 2 B 2 ∩ OX ) = M′ 2 ;
  4. (M′ 2 M′ 1 ∩ C 1 B 1) = M′ 1 = M′ ;
  5. ( ∩ π 2) = N 2 = N ;
  6. (MM′ ) ≡ απ 1 ;
  7. (α x N ) ≡ απ 2 .

1.2.2. Для решения второй части первого задания необходимо знать, что:

  • расстояние от точки А до плоскости ∆BCD определяется длиной перпендикуляра, восстановленного из этой точки на плоскость;
  • любая прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости ;
  • на эпюре проекции прямой, перпендикулярной плоскости, перпендикулярны наклонным проекциям горизонтали и фронтали этой плоскости или одноименным следам плоскости (рис. 1.2) (см. в лекциях Теорему о перпендикуляре к плоскости).

Чтобы найти основание перпендикуляра, необходимо решить задачу на пересечение прямой (в данной задаче такой прямой является перпендикуляр к плоскости) с плоскостью:

1. Заключить перпендикуляр во вспомогательную плоскость, в качестве которой следует взять плоскость частного положения (горизонтально-проецирующую или фронтально-проецирующую, в примере в качестве вспомогательной плоскости взята горизонтально-проецирующая γ, то есть перпендикулярная к π 1 , ее горизонтальный след γ 1 совпадает с горизонтальной проекцией перпендикуляра);

2. Найти линию пересечения заданной плоскости ∆BCD со вспомогательной γ (MN на рис. 1.2);

3. Найти точку пересечения линии пересечения плоскостей MN с перпендикуляром (точка К на рис. 1.2).

4. Для определения истинной величины расстояния от точки А до заданной плоскости ∆BCD следует воспользоваться методом прямоугольного треугольника : истинная величина отрезка есть гипотенуза прямоугольного треугольника, одним катетом которого является одна из проекций отрезка, а другим – разность расстояний от его концов до плоскости проекций, в которой ведётся построение .

5. Определите видимость участков перпендикуляра методом конкурирующих точек. На примере — точки N и 3 для определения видимости на π 1 , точки 4 , 5 — для определения видимости на π 2 .

Рисунок 1.2 — Построение перпендикуляра к плоскости

Рисунок 1.3 — Пример оформления контрольного задания №1

Видеопример выполнения задания №1

1.3. Варианты задания 1

Таблица 1– Значения координат точек
Вариант Координаты (x, y, z) точек
А В С D
1 15; 55; 50 10; 35; 5 20; 10; 30 70; 50; 40
2 80; 65; 50 50; 10; 55 10; 50; 25 75; 25; 0
3 95; 45; 60 130; 40; 50 40; 5; 25 80; 30; 5
4 115; 10; 0 130; 40; 40 40; 5; 25 80; 30; 5
5 55; 5; 60 85; 45; 60 100; 5; 30 50; 25; 10
6 55; 5; 60 70; 40; 20 30; 30; 35 30; 10; 10
7 60; 10; 45 80; 45; 5 35; 0; 15 10; 0; 45
8 5; 0; 0 35; 0; 25 20; 0; 55 40; 40; 0
9 50; 5; 45 65; 30; 10 30; 25; 55 20; 0; 20
10 60; 50; 35 40; 30; 0 30; 15; 30 80; 5; 20
11 65; 35; 15 50; 0; 30 20; 25; 25 5; 0; 10
12 75; 65; 50 45; 10; 35 60; 20; 10 10; 65; 0
13 95; 0; 15 85; 50; 10 10; 10; 10 55; 10; 45
14 45; 40; 40 80; 50; 10 10; 10; 10 55; 10; 45
15 80; 20; 30 55; 30; 60 15; 10; 20 70; 65; 30
16 75; 35; 35 55; 30; 60 25; 10; 20 70; 65; 30
17 75; 65; 50 45; 5; 55 5; 45; 10 70; 20; 0
18 65; 15; 20 40; 5; 60 0; 5; 25 60; 60; 20
19 70; 20; 10 45; 15; 60 5; 10; 20 60; 65; 10
20 20; 50; 45 10; 20; 10 55; 50; 10 80; 0; 60
21 0; 5; 50 50; 50; 40 5; 55; 10 45; 5; 0
22 55; 50; 65 45; 55; 5 0; 10; 45 70; 0; 40
23 65; 5; 15 40; 60; 10 0; 20; 5 60; 20; 60
24 50; 20; 45 45; 60; 30 5; 20; 10 60; 30; 5
25 55; 15; 40 40; 50; 25 5; 15; 10 50; 40; 10
26 15; 45; 40 10; 25; 5 20; 10; 30 65; 40; 35
27 70; 30; 30 55; 30; 60 20; 5; 15 65; 60; 25
28 90; 0; 15 80; 45; 10 10; 10; 10 50; 10; 45
29 110; 10; 0 120; 35; 30 35; 5; 20 70; 20; 5
30 45; 40; 40 80; 45; 10 10; 10; 10 55; 10; 40


Похожие статьи