Презентация на тему история создания микроскопа. Презентация "микроскопическая техника"

31.01.2024

Котосонов Александр

Содержит информацию об истории создания микроскопов, типы микроскопов и принцип их действия

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

История микроскопии Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения. Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия. Микроскоп - (от греческого mikros - малый и skopeo - смотрю), оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом. Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Первый микроскоп был создан в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал. История микроскопии

В 1625 г. членом Римской "Академии зорких" ("Akudemia dei lincei") И. Фабером был предложен термин "микроскоп" . Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге "Micrographia" Гук описал устройство микроскопа. В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677) Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир. История микроскопии

История микроскопии В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

История микроскопии Труды английского оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии. В 1903 г. Р. Жигмонди (R. Zsigmondy) и Зидентопф (Н. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный микроскоп, в 1935 г. Зернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A. Wilska) был изобретен аноптральный микроскоп. Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем микроскопа и микроскопической техники внесли М.В. Ломоносов, И.П. Кулибин, Л.И. Мандельштам, Д.С. Рождественский, А.А. Лебедев, С.И. Вавилов, В.П. Линник, Д.Д. Максутов и др.

Основные типы микроскопов:

ОПТИЧЕСКИЙ МИКРОСКОП Монокулярный оптический микроскоп

Принцип работы оптического микроскопа Объективом (к объекту) называют линзу или систему линз с очень коротким фокусом, что обеспечивает большое увеличение. Полученное изображение рассматривается глазом в окуляр (око), который является более длиннофокусной линзой (или системой), что позволяет обеспечить нормальное зрительное восприятие. Между линзами находится металлический корпус -- тубус, в котором предусмотрено перемещение линз для получения четкого изображения участка предмета(или всего небольшого объекта).Увеличение оптического микроскопа может доходить до 2000 раз(исключением из этого правила являются наноскопы, с помощью которых можно преодолеть эффект Аббе). Иначе размер линзы объектива будет таким, что появится явление дифракции Ход лучей в микроскопе - за Вами. Максимальная разрешающая способность светового оптического микроскопа равна 0,2мкм

Примеры изображений, полученных с помощью оптических микроскопов

ЭЛЕКТРОННЫЙ МИКРОСКОП Трансмиссионный электронный микроскоп

ЭМ перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия ЭМ в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз. В верхней части колонны ЭМ находится источник электронов - вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок. Внутри колонны создается глубокий вакуум. Это необходимо для того, чтобы сократить до минимума рассеивание электронов из-за столкновения их с частицами воздуха. Для изучения в электронном микроскопе можно использовать только очень тонкие срезы или частицы, так как более крупными объектами электронный пучок почти полностью поглощается. С помощью электронного микроскопа удается достичь высокое разрешение – на практике 0,5 нм. Максимально полезное увеличение х250 000 Принцип работы электронного трансмиссионного микроскопа

Пыльца Полиовирус (30 нм) Примеры изображений, полученных с помощью электронного микроскопа:

Зондовый микроскоп СКАНИРУЮЩИЙ ЗОНДОВЫЙ МИКРОСКОП

Сканирующие зондовые микроскопы(СЗМ) стали первыми устройствами, с помощью которых стало возможным наблюдать за нанообъектами и передвигать их. Основой атомного сканирующего микроскопа(АСМ) служит зонд, обычно сделанный из кремния и представляющий собой тонкую пластинку-консоль (ее называют кантилевером). На конце кантилевера (длина около 500 мкм, ширина около 50 мкм, толщина около 1 мкм) расположен очень острый шип (длина около 10 мкм, радиус закругления от 1 до 10 нм), оканчивающийся группой из одного или нескольких атомов. При перемещении микрозонда вдоль поверхности образца острие шипа приподнимается и опускается, очерчивая микрорельеф поверхности, подобно тому, как скользит по грампластинке патефонная игла. Принцип работы сканирующего микроскопа

На выступающем конце кантилевера расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда шип опускается и поднимается на неровностях поверхности, отраженный луч отклоняется, и это отклонение регистрируется фотодетектором, а сила, с которой шип притягивается к близлежащим атомам – пьезодатчиком. Данные фотодетектора и пьезодатчика используются в системе обратной связи, которая может обеспечивать, например, постоянную величину силу взаимодействия между микрозондом и поверхностью образца. В результате, можно строить объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность АСМ метода составляет примерно 0,1-1 нм по горизонтали и 0,01 нм по вертикали. Степень увеличения 109. Игла сканирующего туннельного микроскопа, находящаяся на постоянном расстоянии (см. стрелки) над слоями атомов исследуемой поверхности Принцип работы сканирующего микроскопа

Муравей Бактерия кишечной палочки Примеры изображений, полученных с помощью СЗМ:

РЕНТГЕНОВСКИЙ МИКРОСКОП

Действие таких микроскопов основано на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нм (т.е. на высокой проникающей способности и резком изменении поглощения рентгеновских лучей с изменением атомного номера элементов), что позволяет исследовать с их помощью очень малые объекты. Исходя из разрешающей способности Р.М. по их мощности можно позиционировать как нечто среднее межу оптическими и электронными микроскопами. Наиболее распространены проекционные (теневые) Р. М., в которых объект (металлический образец, ботанический срез и др.) располагается вблизи точечного источника рентгеновского излучения (микрофокусной рентгеновской трубки); расходящийся пучок рентгеновских лучей просвечивает образец и формирует на удалённой от него фотоплёнке/экране увеличенное изображение Принцип работы рентгеновского микроскопа

Тромбоцит человека Диатомовая водоросль Хвост крысы Примеры изображений, полученных с помощью РМ:

Русские ученые сделали 3D-микроскоп для исследования нанообъектов Исследование нанообъектов

Русские нанобиотехнологи, соединив несколько узнаваемых способов микроскопии, сконструировали прибор, позволяющий изучить трехмерную структуру объектов на наноразмерном уровне и их оптические характеристики, свою разработку они обрисовали в статье, размещенной в журнальчике ASC Nano. Обычно, для исследования наноструктур употребляется сканирующая микроскопия, где эталон «ощупывается» острым зондом. Но этот способ дает только двухмерное изображение и не позволяет изучить объемную структуру эталона. Ранее Антон Ефимов, основоположник компании-резидента Сколково «СНОТРА», отыскал метод обойти это ограничение, нарезая эталон тончайшими слоями и сканируя каждый раздельно. Совместно приобретенные данные дают представление о структуре трехмерного объекта. Создатели статьи в ASC Nano, ученые из лаборатории нано-биоинженерии Государственного исследовательского ядерного института «МИФИ» и компании «СНОТРА», сконструировали прибор, который не только лишь нарезает эталон, да и проводит спектроскопию слоев, позволяя определять состав эталона по тому, как он отражает либо поглощает свет. Пока микроскоп существует в виде отдельных устройств. Последующая задачка - «упаковать» его в единый прибор. Изобретение русских учёных

Спасибо за внимание!











1 из 10

Презентация на тему:

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

Больше 350 лет прошло с того времени как изобрели первый в мире микроскоп. За это время он существенно модернизировался: улучшилось качество изображения, возросло увеличение. Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

№ слайда 4

Описание слайда:

Имеются сведения, что первый прибор типа микроскопа был создан в Нидерландах З. Янсеном около 1590 года. Взяв две выпуклые линзы, он смонтировал их внутри одной трубки, за счет выдвижного тубуса достигалась фокусировка на изучаемом объекте. Прибор давал десятикратное увеличение предмета, что было настоящим достижением в области микроскопии. Янсен изготовил несколько таких микроскопов, значительно совершенствуя каждый последующий прибор.

№ слайда 5

Описание слайда:

В 1646 году было опубликовано сочинение А. Кирхера, в котором он описал изобретение века - простейший микроскоп, получивший название «блошиного стекла». Лупу вставляли в медную основу, на которой крепился предметный столик. Изучаемый объект помещали на столик, под которым было вогнутое или плоское зеркало, отражавшее солнечные лучи на объект и освещавшее его снизу. Лупу передвигали с помощью винта, пока изображение предмета не становилось отчетливым.

№ слайда 6

Описание слайда:

Сложные микроскопы, созданные из двух линз, появились в начале 17 века. Многие факты свидетельствуют о том, что изобретателем сложного микроскопа был голландец К. Дребель, состоявший на службе у короля Англии Иакова I. Микроскоп Дребеля имел два стекла, одно (объектив) было обращено к изучаемому предмету, другое (окуляр) - обращено к глазу наблюдателя. В 1633 году английский физик Р. Гук усовершенствовал микроскоп Дребеля, дополнив его третьей линзой, названной коллективом. Такой микроскоп получил большую популярность, по его схеме изготавливалось большинство микроскопов конца 17-го и начала 18-го веков. Рассматривая под микроскопом тонкие срезы животных и растительных тканей, Гук открыл клеточное строение организмов.

№ слайда 7

Описание слайда:

А в 1673-1677 годах голландский естествоиспытатель А. Левенгук с помощью микроскопа открыл не известный ранее огромный мир микроорганизмов. На протяжении многих лет Левенгук изготовил около 400 простейших микроскопов, представлявших собой маленькие двояковыпуклые линзы, диаметр некоторых из них был меньше 1 мм, полученных из стеклянного шарика. Сам шарик шлифовался на простейшем шлифовальном станке. Один из таких микроскопов, дающий 300-кратное увеличение, хранится в Утрехте в университетском музее. Исследуя все, что попадалось на глаза, Левенгук делал одно за другим великие открытия.

№ слайда 8

Описание слайда:

Кстати, создатель телескопа Галилей, совершенствуя созданную им зрительную трубу, обнаружил в 1610 году, что в раздвинутом состоянии она значительно увеличивает мелкие предметы. Меняя расстояние между окуляром и объективом, Галилей использовал трубу как своеобразный микроскоп. Сегодня нельзя представить научную деятельность человека без использования микроскопа. Микроскоп нашел широчайшее применение в биологических, медицинских, геологических лабораториях и лабораториях материаловедения.

№ слайда 9

Описание слайда:

Виды микроскопов В зависимости от требуемой величины разрешения рассматриваемых микрочастиц материи, микроскопии, микроскопы классифицируются на: Оптический микроскоп Бинокулярный микроскоп Стереомикроскоп Металлографический микроскоп Поляризационный микроскоп Люминесцентный микроскоп Измерительный микроскоп Электронный микроскоп Сканирующий зондовый микроскоп Рентгеновский микроскоп Дифференциальный интерференционно-контрастный микроскоп

№ слайда 10

Описание слайда:

Какой вклад в историю внесло изобретение микроскопа? Изобретение микроскопа поспособствовало прогрессу биологии: Роберт Гук дал описание клеточной структуры растений,Левенгук увидел, что увеличенная во много раз капля воды полна жизни, наблюдал за бактериями, водорослями, простейшими животными, был открыт секрет размножения растений. Левенгук все свои наблюдения записывал в тетради, которые стали первыми работами в микробиологии.

Считается, что голландский мастер очков Ханс Янсен и его сын Захария Янсен изобрели первый микроскоп в 1590.

Больше 350 лет прошло с того времени как изобрели первый в мире микроскоп. За это время он существенно модернизировался:

улучшилось качество
изображения, возросло
увеличение.

Гюйгенс изобрел простую двулинзовую систему окуляров в конце 1600-х.

Галилей разработал «occhiolino», или составной микроскоп с выпуклой и вогнутой линзами в 1609 г.

В 1665 году англичанин Роберт Гук сконструировал собственный микроскоп и опробовал его на пробке. В результате этого

В 1665 году англичанин Роберт
Гук сконструировал собственный микроскоп и
опробовал его на пробке. В результате этого
исследования появилось название «клетки».

Микроскопы Левенгука представляли собой небольшие изделия с одной очень сильной линзой. Они позволяли очень детально

рассматривать изображения.

Немецкие ученые из Института биофизической химии в 2006 г. разработали оптический микроскоп под названием Наноскоп.

Микроскоп - оптический прибор для получения увеличенного изображения мелких объектов и их деталей, невидимых невооружённым

глазом.
Название прибора произошло от двух греческих слов: (mikros),что означает (малый)и (skopeo)-смотрю.

1 - окуляр; 2 - револьвер для смены объективов; 3 -объектив; 4 - кремальера для грубой наводки; 5 - микрометрический винт для

1 - окуляр; 2 - револьвер
для смены объективов; 3 -
объектив; 4 -
кремальера для грубой
наводки; 5 -
микрометрический винт для
точной наводки; 6 -
предметный столик; 7 -
зеркало; 8 - конденсор.

Микроскопия (МКС) (греч. μΙκροσ - мелкий, маленький и σκοποσ - вижу) - изучение объектов с использованием микроскопа.

Микроскопия (МКС)
(греч. μΙκροσ -
мелкий, маленький и
σκοποσ - вижу) -
изучение объектов с
использованием микр
оскопа.

Виды микроскопии: -Оптическая микроскопия -Рентгеновская микроскопия -Электронная микроскопия -Сканирующая зондовая микроскопия

Разрешающая способность микроскопа - это способность микроскопа выдавать чёткое раздельное изображение двух близко

расположенных точек
объекта.

Виды микроскопов: -Оптические микроскопы -Электронные микроскопы -Сканирующие зондовые микроскопы -Рентгеновские микроскопы

-Дифференциальные
инерферееционно-контрастные
микроскопы

Оптический микроско́п (обычно именуемый просто микроскоп, от греч. μικρός - маленький и σκοπέω - смотрю) - прибор для получения

увеличенных изображений
малых объектов, которые
невозможно рассмотреть
невооружённым глазом.

Виды оптических микроскопов: -Рабочие лабораторные микроскопы -Бинокулярные микроскопы -Стериомикроскопы -Металлографические

микроскопы
-Поляризационные микроскопы
-Люименисцентные микроскопы
-Измерительные микроскопы

Области применения оптического микроскопа: - для исследования неоднородностей поверхности твёрдых непрозрачных тел, таких как

горные породы, металлы, ткани; в
микрохирургии и пр.
- для проведения иммунохимических,
иммунологических, иммуноморфологических
и иммуногенетических исследований.
- в лабораторной практике, в технике и
машиностроении.

Электронный микроскоп - это прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения

объектов, в котором
вместо световых лучей
используются пучки электронов,
ускоренных до больших энергий в
условиях глубокого вакуума.

Виды электронных микроскопов: - просвечивающий электронный микроскоп - растровый электронный микроскоп

Сферы применения электронных микроскопов в биологии: - Криобиология - Локализация белков - Электронная томография - Клеточная

томография
- Токсикология
- Анализ частиц
- Фармацевтический контроль качества
- Вирусология

Сканирующие зондовые микроскопы (СЗМ, англ. SPM - Scanning Probe Microscope) - класс микроскопов для получения изображения

Сканирующие
зондовые
микроскопы (СЗМ, ан
гл. SPM - Scanning Probe
Microscope)
- класс микроскопов для
получения изображения
поверхности и её
локальных характеристик.

Виды сканирующих зондовых микроскопов: - сканирующий атомно-силовой микроскоп - сканирующий туннельный микроскоп

Виды сканирующих
зондовых
микроскопов:

- сканирующий
туннельный
микроскоп

Рентгеновский микроскоп - устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской

Рентгеновский
микроскоп
- устройство для
исследования очень
малых объектов, размеры
которых сопоставимы с
длиной рентгеновской
волны.

Виды рентгеновских микроскопов: - проекционные рентгеновские микроскопы - отражательные рентгеновские микроскопы

Применение рентгеновского микроскопа: - сканирующий атомно-силовой микроскоп - сканирующий туннельный микроскоп

Применение
рентгеновского
микроскопа:
- сканирующий атомносиловой микроскоп
- сканирующий
туннельный микроскоп

Дифференциальный интерференционно-контрастный микроскоп - это микроскоп, используемый для создания контраста в неокрашенных

Дифференциальный
интерференционноконтрастный
микроскоп - это
микроскоп,
используемый для
создания контраста в
неокрашенных
прозрачных образцах.

Вывод: Микроскоп это важнейшее открытие человечества. Ведь если бы не было микроскопа человек не смог бы рассматривать мелкие

детали. С помощью микроскопов
определяю форму, строение и многие другие
характеристики микрообъектов. С
использованием микроскопа происходит
разработка и внедрение новых препаратов.

История создания

Первые микроскопы, изобретённые человечеством, были оптическими, и первого их изобретателя не так легко выделить и назвать. Возможность скомбинировать две линзы так, чтобы достигалось большее увеличение, впервые предложил в 1538 году итальянский врач Г.Фракасторо. Самые ранние сведения о микроскопе относят к 1590 году и городу Мидделбург, что в Голландии, и связывают с именами Иоанна Липперсгея (который также разработал первый простой оптический телескоп) и Захария Янсена, которые занимались изготовлением очков. Чуть позже, в 1624 году Галилео Галилей представляет свой составной микроскоп, который он первоначально назвал «оккиолино» (occhiolino итал. - маленький глаз). Годом спустя его друг по Академии Джованни Фабер (англ.)русск. предложил для нового изобретения термин ми кроскоп.


Разрешающая способность микроскопов

Разрешающая способность микроскопа - это способность выдавать чёткое раздельное изображение двух близко расположенных точек объекта. Степень проникновения в микромир, возможности его изучения зависят от разрешающей способности прибора. Эта характеристика определяется прежде всего длиной волны используемого в микроскопии излучения (видимое, ультрафиолетовое, рентгеновское излучение). Фундаментальное ограничение заключается в невозможности получить при помощи электромагнитного излучения изображение объекта, меньшего по размерам, чем длина волны этого излучения.

«Проникнуть глубже» в микромир возможно при применении излучений с меньшими длинами волн.


Электронные микроскопы

Пучок электронов, которые обладают свойствами не только частицы, но и волны, может быть использован в микроскопии.

Длина волны электрона зависит от его энергии, а энергия электрона равна E = Ve, где V - разность потенциалов, проходимая электроном, e - заряд электрона. Длины волн электронов при прохождении разности потенциалов 200 000 В составляет порядка 0,1 нм. Электроны легко фокусировать электромагнитными линзами, так как электрон - заряженная частица. Электронное изображение может быть легко переведено в видимое.

Разрешающая способность электронного микроскопа в 1000-10000 раз превосходит разрешение традиционного светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема.


Сканирующие зондовые микроскоп

Класс микроскопов, основанных на сканировании поверхности зондом.

Сканирующие зондовые микроскопы (СЗМ) - относительно новый класс микроскопов. На СЗМ изображение получают путём регистрации взаимодействий между зондом и поверхностью. На данном этапе развития возможно регистрировать взаимодействие зонда с отдельными атомами и молекулами, благодаря чему СЗМ по разрешающей способности сопоставимы с электронными микроскопами, а по некоторым параметрам превосходят их


Рентгеновские микроскопы

Рентге́новский микроско́п - устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра.

Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нанометров.





Оптические микроскопы Немного теории… Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличны один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Классификации оптических микроскопов:


Ближнепольная оптическая микроскопия (БОМ) оптическая микроскопия, обеспечивающее разрешение лучшее, чем у обычного микроскопа. Повышение разрешения БОМа достигается детектированием рассеяния света от изучаемого объекта на расстояниях меньших, чем длина волны света. В случае, если зонд (детектор) микроскопа ближнего поля снабжен устройством пространственного сканирования, то такой прибор называют сканирующим оптическим микроскопом ближнего поля. Такой микроскоп позволяет получать растровые изображения поверхностей и объектов с разрешением ниже дифракционного предела.


Пример изображения: Конфокальный микроскоп оптический микроскоп, обладающий значительным контрастом по сравнению с обычным микроскопом, что достигается использованием апертуры, размещённой в плоскости изображения и ограничивающей поток фонового рассеянного света. Эта методика завоевала популярность в научных исследованиях в биологии, физике полупроводников и спинтронике.



Электронные микроскопы Немного теории Электронный микроскоп (ЭМ) прибор, позволяющий получать изображение объектов с максимальным увеличением до 10 раз, благодаря использованию вместо светового потока пучка электронов с энергиями 30÷200 кЭв и более. Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может составлять несколько ангстрем. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, управляющие движением электронов в колонне прибора при помощи магнитного поля. Классификации электронных микроскопов:



Просвечивающий (трансмиссионный) электронный микроскоп (ПЭМ) это устройство, в котором изображение от ультратонкого образца (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране, фотоплёнке или сенсорном приборе с зарядовой связью (ПЗС-матрице). Первый ПЭМ создан немецкими инженерами-электронщиками Максом Кноллем и Эрнстом Руской 9 марта 1931 года. Первый практический просвечивающий (трансмиссионный) электронный микроскоп был построен Альбертом Пребусом и Дж. Хиллиером в университете Торонто (Канада) в 1938 году на основе принципов, открытых ранее Кноллем и Руской. Эрнсту Руске за его открытие в 1986 году присуждена Нобелевская премия по физике.


Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким (несколько нанометров) пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым веществом. Современный РЭМ позволяет работать в широком диапазоне увеличений приблизительно от 10 крат (то есть эквивалентно увеличению сильной ручной линзы) до крат, что приблизительно в 500 раз превышает предел увеличения лучших оптических микроскопов.


Сканирующие зондовые микроскопы Сканирующие зондовые микроскопы (СЗМ, англ. SPM Scanning Probe Microscope) класс микроскопов для получения изображения поверхности и её локальных характеристик. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае позволяет получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Сканирующий зондовый микроскоп в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером в 1981 году. За это изобретение были удостоены Нобелевской премии по физике за 1986 год, которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска. Отличительной СЗМ особенностью является наличие: 1) зонда 2) системы перемещения зонда 3) регистрирующей системы. Сканирующих зондовых микроскопов



Атомно-силовой микроскоп (АСМ, англ. AFM atomic-force microscope) сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного. В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности.


Сканирующий туннельный микроскоп Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) вариант сканирующего зондового микроскопа, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения пА при расстояниях около 1 Å. Сканирующий туннельный микроскоп первый из класса сканирующих зондовых микроскопов; атомно-силовой и сканирующий ближнепольный оптический микроскопы были разработаны позднее.



Рентгеновские микроскопы Рентге́новский микроско́п устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра. Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нанометров Рентгеновские микроскопы отражательные Рентгеновские микроскопы проекционные Лазерные рентгеновские микроскопы



Похожие статьи