Суть биотестирования и предъявляемые к его методам требования. Методы биотестирования природных и сточных вод

25.09.2019

Биотестирование (биологическое тестирование) - оценка качества объектов окружающей среды (воды и пр.) по ответным реакциям живых организмов, являющихся тест-объектами.

Это широко распространенный экспериментальный методический прием, который представляет собой токсикологический эксперимент. Суть эксперимента заключается в том, что тест-объекты помещают в исследуемую среду и выдерживают (экспонируют) определенное время, в течении которого регистрируют реакции тест-объектов на воздействие этой среды.

Приемы биотестирования широко применяются в различных областях природоохранной деятельности и используются по различным назначениям. Биотестирование является основным методом при разработке нормативов ПДК химических веществ (биотестирование токсичности индивидуальных химических веществ), и, в конечном итоге, при оценке из опасности для окружающей среды и здоровья населения. Таким образом, оценка уровня загрязнения по результатам химического анализа, т.е. интерпретация результатов с точки зрения опасности для окружающей среды, также в значительной степени опирается на данные биотестирования.

Методы биотестирования, будучи биологическими по сути, близки по смыслу получаемых данных к методам химического анализа вод: как и химические методы, они отражают характеристику воздействия на водные биоценозы.

Требования, применяемые к методикам биотестирования:

  • - чувствительность тест-организмов к достаточно малым концентрациям загрязняющих веществ.
  • - отсутствие инверсии ответных реакций тест-организмов на разные значения концентрации загрязняющих веществ в пределах тех значений, кот-е отмечены в природных водах;
  • - возможность получать надежные результаты, метрологическая обеспеченность методик;
  • - доступность тест-организмов для сбора, простота культивирования и содержания в условиях лаборатории;
  • - простота выполнения процедуры и технических приемов биотеста;
  • - низкая себестоимость работ по биотестированию.

Развиваются два основных направления работ по биотестированию:

  • - подбор методик с использованием гидробионтов, охватывающих основные иерархические структуры водной экосистемы и звенья трофической цепи;
  • - поиск наиболее чувствительных тест-организмов, которые позволили бы уловить низкий уровень токсичности при обеспеченной гарантии надежности информации.

Для токсикологической оценки загрязнения пресноводных экосистем на основе биотестирования водной среды рекомендовано использовать несколько видов тест-объектов: водоросли, дафнии, цериодафний, бактерии, простейшие, коловратки, рыбы.

Водоросли - основа пищевых цепей во всех природных экосистемах. Наиболее чувствительные организмы к широкой гамме химических веществ от детергентов до НФПР. Отмирание клеток, нарушение скорости роста, изменение процессов фотосинтеза и др. метаболич. процессов. Chlorella vulgaris, Scenedesmus quadricauda, Anabaena, Microcystis, Oscillatoria, Phormidium.

Бактерии - изменение скорости разложения (биодеградации) органических соединений/ Nitrosomonas, Nitrosobacter; изменение метаболических процессов в организме - Escherichia coli (оценка влияния токсиканта на сбраживание глюкозы)

Простейшие. Дафнии. ДДТ, (ГХЦГ)гексахлорциклогексан, ТЯЖЕЛЫЕ металлы (медь-цинк-кадмий-хром), биогенные элементы. Daphnia magna.

Коловратки

Рыбы. Гуппи (Poecillia reticulata) - металлы, пестициды; данио (Brachidanio rerio).

Рыбы природных вод. Высокочувствительные: - лососевые (форель), шиповка, пескарь, плотва, голец, судак, верховка; среднечувствительные: окунь, красноперка, лещь, гольян, карп, уклея.

Токсичность вод

О наличии токсичности судят по проявлениям негативных эффектов у тест-объектов, которые считаются показателями токсичности.

Среди показателей токсичности выделяют: общебиологические, физиологические, биохимические, химические, биофизические, и т.д.

Показателем токсичности является тест-реакция, изменения которой регистрируют в ходе токсикологического эксперимента.

Следует заметить, что под токсикологическими (биотестовыми) показателями в экологической и водной токсикологии понимают показатели биотестирования на различных тест-объектах. В тоже время в санитарно-гигиеническом нормировании под токсикологическими показателями понимают концентрации токсичных химических веществ (например, в нормировании питьевой воды они характеризуют ее безвредность).

При биотестировании проб природной воды обычно ставят два вопроса: - токсична ли проба природной воды; - какова степень токсичности, если таковая имеется?

В результате биотестирования проб на основе регистрации показателей токсичности делают оценку токсичности по критериям, установленным для каждого биообъекта. Результаты биотестирования опытной пробы с исследуемого участка сравнивают с контрольной, заведомо нетоксичной пробой и по разнице в контроле и опыте судят о наличии токсичности.

При этом эффекты воздействия делят на острые и хронические. Их обозначают как острое и хроническое токсическое действие или как острую и хроническую токсичность (ОТД и ХТД). Эти термины и используют для выражения результатов биотестирования.

Острое токсическое действие - воздействие, вызывающее быструю ответную реакцию тест-объекта. Его чаще всего измеряют по тест-реакции «выживаемость» за относительно короткий период времени.

Хроническое токсическое действие - воздействие, вызывающее ответную реакцию тест-объекта, проявляющуюся в течение относительно долгого периода времени. Измеряют по тест-реакциям: выживаемость, плодовитость, изменение роста и т.п.

Реакция тест-объектов на токсическое воздействие зависит от интенсивности или продолжительности воздействия. По результатам биотестирования находят количественную зависимость между величиной воздействия и реакцией тест-объектов.

Реакция организмов на воздействие токсических химических веществ представляет собой комплекс взаимосвязанных эволюционно сформировавшихся реакций, направленных на сохранение постоянства внутренней среды организма и в конечном итоге на выживание.

Выявлены определенные закономерности реакций организмов на токсические воздействия. В общем виде воздействие токсического вещества на организм описывается двумя основными параметрами: концентрацией и временем воздействия (экспозицией). Именно эти параметры определяют степень влияния токсичного вещества на организм.

Экспозиция - период, в течение которого организм находится под воздействием исследуемого фактора, в частности химического вещества. В зависимости от экспозиции различают острое или хроническое токсическое воздействие.

Результат токсического воздействия обычно называют эффектом токсического воздействия. Для описания зависимости между эффектом воздействия токсического вещества на организм и его концентрацией предложены различные функции, например, формула Хабера:

Где Е - эффект (результат) воздействия;

С - концентрация воздействующего вещества;

Т - время воздействия (экспозиция).

Е - представляет собой любой результат воздействия (гибель тест-объектов), а величины С и Т - могут быть выражены в соответствующих единицах измерения.

Как видно из формулы Хабера, между эффектом временем воздействия концентрацией имеется прямая функциональная связь: эффект будет тем большим, чем больше величина воздействия (конц-ция вещ-ва) и/или его продолжительность.

Формула Хабера позволяет сравнивать биологические эффекты различных химических веществ с помощью анализа их конц-ции или экспозиции. Отличия по какому-либо из этих величин отражают отличия в чувствительности организмов к токсическому воздействию.

При малых конц-циях или экспозициях эффект воздействия проявляется в популяции у небольшого числа тест-объектов, которые оказываются наиболее чувствительными, т.е. наименее устойчивыми к воздействию. По мере увеличения концентрации или экспозиции число устойчивых организмов падает, и в конце концов у всех (или почти у всех) организмов удается зарегистрировать четко выраженные эффекты токсического воздействия. В ходе токсикологического эксперимента находят зависимость отклика тест-объектов от величины или времени воздействия.

Параметры токсичности химического воздействия:

  • - Летальная концентрация (ЛК50) - концентрация токсиканта, вызывающая гибель 50% тест-организмов за определенное время (чем ниже ЛК50, тем выше токсичность химического вещества или воды)
  • - Максимальная недействующая концентрация - наивысшая измеренная концентрация химического вещества (тестируемой воды), не вызывающая наблюдаемого химического воздействия (чем ниже МНК, тем выше токсичность хим. вещ-ва или сточной воды).

Не все организмы одинаково реагируют на одно и то же воздействие. Реакция зависит от чувствительности к возд-вию.

Чувствительность организма к токсичному веществу - это совокупность реакций на его воздействие, характеризующих степень и скорость реагирования организма. Характеризуется такими показателями, как время начала проявления отклика (реакции) или конц-ция токсического вещ-ва, при которой проявляется реакция; она существенно отличается не только у разных видов, но и у разных особей одного вида.

Согласно ряду чувствительности, разработанному С.А. Патиным (1988), тест объекты можно расположить следующм образом:

Рыбы-зоопланктон-зообентос-фитопланктон-бактерии-простейшие-макрофиты.

Существуют и другие ряды чувствительности.

Например, при биотестировании вод целлюлозно-бумажных предприятий: водоросли-бактерии-рыбы (по уменьшению чувствительности).

Факторы, влияющие на биотестирование:

  • - факторы, влияющие на тест-организмы (экспозиция; условия культивирования, в природе - условия жизни растений и животных; возрастные особенности, сезон года, обеспечение тест-организмов пищей, температура (пессимум и оптимум), освещенность);
  • - факторы, определяющие физико-химические свойства тестируемой природной воды, от которых зависит ее токсичность для тест-организмов (свежесть пробы, наличие в ней взвешенных частиц).

В качестве тест-объектов в водной токсикологии широко используются планктонные ветвистоусые ракообразные (Cladocera), в частности дафнии (лат. Daphnia).

Это обусловлено прежде всего тем, что:

Род Daphnia имеет очень широкое распространение в пресных водах и является ключевым звеном во многих водных пищевых цепях;

Вследствие прозрачности тела дафний, есть возможность визуального наблюдения за качеством эмбрионов, скоростью их созревания, темпом размножения, а также оценки физиологического состояния (сердцебиения, наполнения кишечника и т.д.) тест-объекта;

Есть возможность регулярной оценки народившейся молоди по ее морфологическим признакам, а также по выживаемости от родительского к дочерним поколениям;

Род Daphnia имеет относительно короткий жизненный цикл, что особенно важно для тестов на плодовитость;

Род Daphnia используется как один из наиболее чувствительных индикаторов (датчиков) присутствия в водной среде тяжелых металлов и фосфорорганических пестицидов .

Наиболее универсальным тест-объектом по чувствительности и адекватности реагирования на различные токсиканты признан вид Дафний - Daphnia magna Straus .

Рис.2.

Впервые этот вид Daphnia как тест-объект был использован в работе Э.Наумана в 1933 году. Дафнии широко применяются в биотестировании в таких странах мира, как США, Германия, Франция, Венгрия и др. Во многих из них дафния принята как стандартный тест-организм. В СССР начало подобных работ связано с исследованиями Н.С. Строгонова и его школы, Е.А. Веселова и Л.А. Лесникова. Дафнии как обязательный тест-объект включены в схему установления ПДК веществ-загрязнителей и сточных вод России .

Daphnia magna Straus имеет серо-желтую или красноватую окраску (при дефиците кислорода), не превышает 2-3 мм в длину, обитает в водоёмах, прудах, озерах почти повсеместно.

При благоприятных условиях в лаборатории дафнии большую часть года размножаются без оплодотворения, т.е. партерогенетически, производя потомство, состоящее из самок. Период созревания рачков при температуре 20±2 оС и хорошем питании - 5-8 дней. Длительность эмбрионального развития обычно 3-4 дня. По истечении этого времени происходит вымет молоди. Партеногенетические поколения следуют одно за другим каждые 3-4 дня .

Для культивирования дафний используется биологизированная вода из аквариума, кормом служат зеленые водоросли (хлорелла). Культуру выращивают в специальном климостате при температуре 20±2 оС и освещенности 400-600 лк при продолжительности светового дня 12-14 часов.

В токсикологических исследованиях на дафниях различают кратковременное (до 96 часов) и длительное (20 и более суток) биотестирование. Кратковременное биотестирование рассчитано на получение экспресс информации о состоянии проверяемого водоема, где основным показателем служит выживаемость гидробионта. Для более глубокого и тщательного исследования используют длительное биотестирование. Оно позволяет долговременный эффект действия токсикантов.

Большинство методов биотестирования с использованием дафний основывается на регистрации их смертности под воздействием загрязняющих веществ. Но еще до гибели тест-объектов токсиканты влияют на изменение их поведенческой активности. Под воздействием поллютантов у дафнии наблюдается либо резкое повышение двигательной активности, либо наоборот замедление. Таким образом фиксирование изменения плавательной активности дафний позволяет на ранней стадии определить токсичность воды.

Также было проведено несколько работ, в которых ставилось предположение, что траектория плавания дафнии является фрактальной структурой, а при внесении токсиканта фрактальная размерность меняется. (Shimizu, 2001).

Фрактал - математическое множество, обладающее свойством самоподобия, то есть однородности в различных шкалах измерения. Самоподобие является весьма общим свойством природных систем: бассейны крупных рек, пространственная структура колоний микроорганизмов и др. - обладают удивительной структурной универсальностью. Часто в этой связи говорят о фрактальности природных объектов. Термин «фрактал» и первые исследования с его использованием были проведены Бенуа Мандельбротом.

Фрактальная размерность - это мера геометрической сложности объекта. Следуя идее Мандельброта, фрактальную размерность можно определить методом подсчёта квадратов. Представим себе объект сложной формы, который сплошь покрыт квадратами, как миллиметровая бумага. Часть квадратов будет содержать элементы множества, другие квадраты будут пустыми. Число непустых клеток N зависит от формы объекта и от размеров квадратной ячейки E. Постулируется, что N пропорционально 1/ED (чем мельче решётка, тем больше непустых ячеек). Показатель степени D и является размерностью объекта. Например, для такой сплошной плоской фигуры, как круг, уменьшение размера решётки вдвое приведёт к увеличению количества непустых клеток в четыре раза (два в квадрате), потому что фигура обладает размерностью два. Для фрактала количество непустых клеток будет возрастать с несколько меньшим, дробным показателем степени. Описанная процедура не ограничивается математическими объектами или формами на плоскости. Аналогичным образом можно подсчитать фрактальную размерность реальных объектов, таких, как реки, облака, береговые линии, артерии или реснички, покрывающие стенки кишечника. Артерии человека, например, имеют фрактальную размерность порядка 2,7 .

Фрактальная размерность рассчитывается по формуле Каца и Георгия (1985):

FD= log (N)/ ,

где L - это общая длина плавательной траектории, D - это диаметр описанной траектории, N - количество сегментов.

В качестве токсиканта был использован пестицид Esfenvalerate. Представляет собой химическое действующее вещество пестицидов (пиретроид), используется в сельском и личных приусадебных хозяйствах для борьбы с вредными насекомыми.

Препараты на основе эсфенвалерата проявляют сильную поражающую активность как при наружном контакте, так и при попадании в пищеварительную систему членистоногих вредителей. Защита растений происходит также при помощи репеллентного, парализующего и антифидантного действия.

Препараты имеют достаточно длительный эффект последействия даже в условиях прямого солнечного освещения. Защитное действие длится около 15 дней.

Эсфенвалерат гидролитически устойчив. При попадании в водоем сохраняется в воде до 10 суток, при этом испарение не будет играть особой роли в его исчезновении. Лабораторные исследования показывают, что эсфенвалерат является весьма токсичным для водных организмов .

ЦОС ПВ Р 005-95


Документ разработан авторским коллективом в составе: Рахманин Ю.А., Ческис А.Б. (руководители разработки), Еськов А.П., Кирьянова Л.А., Михайлова Р.И., Плитман С.И., Роговец А.И., Тулакина Н.В., Русанова Н.А., Донерьян Л.Г., Пожаров А.В.

В приложениях использованы материалы Методического руководства по биотестированию воды РД 118-02-90* и методических документов по применению прибора "БИОТЕСТЕР", а также "Методики контроля токсичности медицинских изделий однократного применения, стерилизованных радиационным или газовым методом" (МЗ СССР, 1991 г.).

________________
* Документ, упомянутый здесь и далее по тексту, не приводится. За дополнительной информацией обратитесь по ссылке

Представлен: Техническим комитетом по стандартизации ТК-343 "Качество воды"

Внесён: Управлением стандартизации и сертификации пищевой, лёгкой промышленности и сельскохозяйственного производства Госстандарта России

Утверждён: Заместителем Председателя Госстандарта России 12.10.95 г. для издания и распространения в качестве методического справочного пособия.

Зарегистрирован: Центральным органом по сертификации питьевой воды, материалов, технологических процессов и оборудования, применяемых в хозяйственно-питьевом водоснабжении N ЦОС ПВ Р 005-95

ОБЩИЕ ПОЛОЖЕНИЯ

ОБЩИЕ ПОЛОЖЕНИЯ

В условиях постоянно нарастающего антропогенного загрязнения источников водоснабжения обеспечение безопасности и безвредности питьевой воды, поставляемой населению предприятиями водоснабжения, в значительной мере зависит от полноты, достоверности и оперативности контроля качества воды во всех технологических звеньях системы: в контрольных створах водных объектов, в местах водозаборов, в ёмкостях чистой воды после ее очистки и обеззараживания, в распределительной водопроводной сети у потребителей. При этом число нормируемых и контролируемых параметров качества, в совокупности определяющих безопасность и безвредность воды, увеличилось за последнее десятилетие более, чем в два раза и в соответствии с рекомендациями Всемирной Организации Здравоохранения (ВОЗ) включает более 100 нормативов. Высокая токсичность и соответственно низкие значения предельно-допустимых концентраций (ПДК) для ряда тяжелых металлов и большинства органических токсикантов существенно усложняют процедуры аналитического химического контроля, требуют продолжительного времени и весьма значительных материальных затрат на проведение комплексного контроля качества воды. Кроме того, проведение даже полного анализа качества воды по всем установленным в нормативных документах индивидуальным показателям не дает возможность определить их комплексное воздействие на организм человека, а принятие системы суммирования относительных концентраций не отражает в полной мере механизм совокупного воздействия токсикантов на степень опасности потребляемой человеком воды.

В связи с этим наряду с традиционными методами для контроля качества воды в системах хозяйственно-питьевого водоснабжения могут применяться методы биологического тестирования, основанные на оценке степени опасности воды источников водоснабжения и питьевой воды по реакции специально подготовленных живых организмов - тест-объектов.

Особенность информации, получаемой с помощью методов биотестирования, состоит в интегральном характере восприятия и отражения всех токсических воздействий, обусловленных совокупностью содержащихся в воде токсикантов и комплексных факторов их совместного присутствия.

При этом применение различных методов биотестирования должно быть ограничено определенными условиями в отношении целей контроля, места отбора проб воды, степени оперативности и т.п., в зависимости от специфических характеристик каждого конкретного метода. Возможно комплексное использование различных биотестов, взаимно дополняющих друг друга по чувствительности к различным группам токсикантов.

Во всех случаях использование методов биотестирования не может заменить аналитический физико-химический контроль, установленный действующими нормативными документами, однако биотесты могут существенно дополнить его результаты оценкой комплексного воздействия содержащихся в воде токсикантов, повысить оперативность обнаружения опасных уровней загрязнения источников питьевого водоснабжения для принятия экстренных мер по вводу резервных мощностей очистки или предупреждения потребителей, а также в ряде случае позволить увеличить периодичность отбора проб для физико-химического контроля и соответственно снизить затраты на контроль при подтверждаемом биотестами сохранении стабильных показателей уровня безопасности исходной воды в источнике водоснабжения.

Настоящий документ устанавливает общие методические рекомендации по применению различных методов биотестирования в централизованных системах хозяйственно-питьевого водоснабжения для решения конкретных задач по контролю качества воды в источниках водоснабжения и очищенной воды, подаваемой потребителям в сочетании с традиционными методами физико-химического контроля.

Методические рекомендации предназначены для использования предприятиями водоснабжения и водоотведения в целях совершенствования систем контроля качества воды, повышения его надежности и оперативности, а также могут быть использованы органами Госкомсанэпиднадзора России при выполнении надзорных функций за качеством воды источников водоснабжения и качеством питьевой воды для повышения достоверности оценки безопасности (безвредности) контролируемой воды в отношении комплексного воздействия находящихся в ней токсикантов.

ХАРАКТЕРИСТИКА МЕТОДОВ БИОТЕСТИРОВАНИЯ, ИСПОЛЬЗУЕМЫХ ДЛЯ КОНТРОЛЯ КАЧЕСТВА ВОДЫ В СИСТЕМАХ ХОЗЯЙСТВЕННО-ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

Основными характеристиками методов биотестирования, определяющими цели и условия их возможного использования в системах хозяйственно-питьевого водоснабжения, являются:

- вид тест-объекта;

- контролируемый параметр тест-объекта (тест-реакция);

- процедуры измерения тест-реакции;

- оценочные нормативы для определения степени опасности контролируемой среды (воды) для человека по замеренным параметрам тест-реакции.

В качестве тест-объектов в современных методах биотестирования для контроля безопасности (безвредности) воды могут быть использованы рыбы, ракообразные (дафнии и др.), инфузории, зародышевые организмы, водоросли, ферменты, бактерии и др.

Основные требования к тест-объектам состоят в их доступности, простоте и удобстве культивирования или хранения для использования, достаточной чувствительности к содержащимся в воде токсикантам, опасным для человека.

Тест-реакция тест-объекта при воздействии токсикантов или других неблагоприятных факторов окружающей среды может выражаться в гибели тест-объектов (выживаемости), снижении интенсивности размножения, снижении подвижности или других поведенческих характеристик, типичных для данного тест-объекта, а также в подавлении некоторых биохимических процессов, протекающих в клетках и ферментных системах.

Основные требования к тест-реакциям при выборе методов биотестирования для практического использования состоят в наличии ясно выраженной зависимости фиксируемых отклонений от нормы от концентраций токсикантов в воде, а также в возможности наблюдения и регистрации количественных значений тест-реакций с необходимой точностью и достоверностью при использовании доступных средств контроля.

Основные требования к процедурам измерения тест-реакций при использовании методов биотестирования для контроля качества воды в системах водоснабжения состоят в возможности получения требуемого "отклика" на появление в воде опасных токсикантов в максимально сжатые сроки. Это, как правило, требует использования специальных контролирующих устройств с элементами автоматизации, обеспечивающими преобразование регистрируемых тест-реакций в нормируемые величины характеристик токсичности воды.

Методы биотестирования, в которых процедуры измерения тест-реакции рассчитаны на длительный период наблюдения, могут найти ограниченное применение на стадии обследования и выбора источника водоснабжения для хозяйственно-питьевых целей или при наблюдении за источниками водоснабжения с заведомо стабильным качеством воды.

Оценочные нормативы при использовании методов биотестирования должны позволять на основе полученных результатов замеров сделать заключение о степени опасности воды и о принятии при превышении допустимых норм опасности (токсичности) воды необходимых мер по предотвращению возможной угрозы здоровью населения, потребляющего питьевую воду из данной системы водоснабжения.

В настоящее время в действующих нормативных документах отсутствуют утвержденные нормированные величины предельно-допустимых комплексных токсических воздействий, измеряемых с помощью методов биотестирования.

В связи с этим для каждого конкретного метода биотестирования в результате специальных исследований устанавливают корреляционные связи фиксируемых значений тест-реакций с возможным токсическим воздействием на теплокровных животных или с концентрациями конкретных токсикантов и на этом основании вводят определенные оценочные значения степени токсичности (опасности) контролируемой воды в зависимости от фиксируемых результатов измерений при биотестировании.

При этом следует иметь в виду, что эти оценочные значения не являются критериями опасности или безопасности воды при использовании ее человеком для питьевых целей в течение длительного времени; они могут только указывать на вероятность наличия или отсутствия в воде опасных концентраций токсических загрязнений, что должно подтверждаться результатами соответствующего химического контроля, на основании которого с учетом действующих ПДК делается заключение о соответствии питьевой воды установленным требованиям и ее пригодности для использования людьми.

Вместе с тем, в сравнительном плане при оценке, например, различных технологий очистки воды, обеспечивающих ее соответствие нормативным требованиям по отдельным видам токсикантов, предпочтение должно отдаваться тем методам, которые обеспечивают более высокий уровень безопасности, определяемый методами биотестирования.

В таблице 1 приведены основные характеристики методов биотестирования, рекомендуемых для использования в целях контроля качества воды в системах хозяйственно-питьевого водоснабжения. Описание методов приведено в справочных приложениях, нумерация которых соответствует номерам тест-объектов в таблице 1.

Таблица 1

Тест-объект

Тест-реакция

Способ измерения тест-реакции

Норматив (индекс токсичности)

1. Клеточный тест-объект (гранулиро-
ванная сперма быка)

Изменение показателей подвижности тест-объекта

Подсчет числа флуктуаций интенсивности рассеянного излучения, вызванного прохождением тест-объекта через оптический зонд, с использованием автоматической контрольной системы

Допустимые значения индекса токсичности (отношение определяемых значений, характеризующих подвижность тест-объекта в опытном и контрольном растворах): %

2. Инфузории парамеции

Реакция хемотаксиса - число инфузорий, направленно перемещаю-
щихся в зоне анализа

Измерение приборами серии "Биотестер" (например, "Биотестер-2"), обеспечивающими регистрацию тест-реакций с выдачей данных в условных единицах токсичности.

Допустимые значения индекса токсичности (допустимая степень загрязнения): ; высокая степень загрязнения:

3. Инфузории тетрахимена-
периформис

Изменение выживаемости и интенсивности размножения

Визуальная оценка (подсчет) под микроскопом количества тест-объектов через определенные промежутки времени (15 мин, 1 час, 6 час, 24 часа, 48 часов).

Острое токсическое действие - гибель 100% инфузорий в течение 6 часов. Хроническое токсическое действие при коэффициенте токсичности (снижение числа тест-объектов по сравнению с контролем за 48 часов.) и

4. Штамм бактерий Е-колли

Изменение уровня дегидрогеназной активности микроорганизмов (подавление актив. фермента)

Определение времени обесцвечивания метиленового-синего, как косвенного показателя активности фермента дегидрогеназы.

Признак отсутствия токсичности - отклонение времени обесцвечивания от контрольной пробы меньше, чем на 15%.

5. Ракообраз-
ные (дафнии, цеиодафнии)

Изменение показателей выживаемости и плодовитости

Визуальная оценка (подсчёт) количества тест-объектов через определенные промежутки времени в сопоставлении с контрольными пробами.

Острое токсическое действие - гибель более 50% ракообразных за 96 часов. Хроническое токсическое действие - достоверное снижение по сравнению с контролем тест-объектов в течение 20 суток.

6. Водоросли (сценедесмус, хлорелла)

Снижение интенсивности размножения (прироста клеток водорослей)

Визуальная оценка (подсчет) прироста числа клеток в сопоставлении с контрольным опытом.

Показатель токсического действия - достоверное снижение коэффициента прироста числа клеток по сравнению с контролем через 96 часов (острое токсическое действие) и через 14 суток (хроническое токсическое действие)

7.Рыбы (гуппи, данио)

Снижение выживаемости

Визуальная оценка (подсчет) среднего количества тест-объектов, выживших в тестируемой воде в сопоставлении с контрольным опытом

Острое токсическое действие - гибель 50% и более рыб за 96 часов. Хроническое токсическое действие - достоверное снижение выживаемости рыб за 30 суток по сравнению с контрольным опытом


Наряду с перечисленными в таблице 1, практическое применение для оценки качества воды в системах хозяйственно-питьевого водоснабжения находят специальные методы, в частности, для определения суммарной мутагенной активности с использованием биологических тест-систем после проведения соответствующей подготовки. При анализах питьевой воды такая подготовка включает операции экстракции, концентрирования и стерилизации. Для оценки мутагенного потенциала полученных экстрактов наиболее часто применяется тест Эймса (сальмонелла/микросомы) и тесты на индукцию цитогенетических нарушений (хромосомные аберрации, микроядра, сестринские хроматидные обмены). Описание указанных процедур содержится в "Методических указаниях по экспериментальной оценке суммарной мутагенной активности загрязнений воздуха и воды" (Минздрав СССР, М.,1990). Сложность реализации указанных методов обуславливает возможность их применения в специальных лабораториях НИИ, имеющих необходимое оборудование и квалифицированный персонал.

В частности, указанные исследования систематически проводятся в НИИ экологии человека и гигиены окружающей среды им.А.Н.Сысина РАМН.

ОБЩИЕ ПРАВИЛА ПРИМЕНЕНИЯ МЕТОДОВ БИОТЕСТИРОВАНИЯ ДЛЯ КОНТРОЛЯ КАЧЕСТВА ВОДЫ В ЦЕНТРАЛИЗОВАННЫХ СИСТЕМАХ ХОЗЯЙСТВЕННО-ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

Контроль качества воды в централизованных системах хозяйственно-питьевого водоснабжения включает отбор и анализ проб воды в следующих основных элементах технологической схемы:

- в источнике водоснабжения перед водозабором;

- на промежуточных стадиях процесса водоподготовки (технологический контроль);

- в емкости чистой воды и (или) из трубопроводов перед подачей в водопроводную распределительную сеть;

- в водопроводной сети из распределительных колонок или кранов

Кроме того, в крупных системах водоснабжения силами предприятия водоснабжения проводится контроль поверхностных источников водоснабжения путем отбора проб в различных створах как правило, в пределах зоны санитарной охраны.

С учетом специфики методов биотестирования, связанной с чувствительностью большинства тест-объектов к дезинфектантам, используемым в процессе водоподготовки, а также особенностей отдельных методов биотестирования в отношении сроков получения результатов (возможности реализации экспресс-контроля) и степени универсальности по выявлению различных видов токсикантов в табл.2 изложены рекомендации по предпочтительному использованию различных видов биотестов для контроля качества воды в различных объектах и различных контрольных точках систем водоснабжения.


Таблица 2

Объект контроля

Контрольные точки

Вода в источнике водоснабжения

Контрольные створы в пределах зон санитарной охраны

________________
* На территории Российской Федерации документ не действует. Действуют СанПиН 2.1.5.980-00 , здесь и далее по тексту. - Примечание изготовителя базы данных.

2. Непрерывный оперативный "Алярмконтроль" для своевременного обнаружения внезапного появления в источнике водоснабжения опасных концентраций токсикантов, наличие которых требует принятия специальных мер по дополнительному химическому контролю, очистке воды и (или) предупреждению населения.

3. Периодический контроль для определения степени опасности воды по совокупному действию находящихся в ней токсикантов.

зона водозабора

4. Непрерывный оперативный автоматизированный "Алярм-контроль"

5. Периодический контроль для подтверждения соответствия исходной воды общим требованиям безопасности

Питьевая вода

ёмкости чистой воды и контрольные точки перед входом в систему распределения

6. Периодический контроль после дехлорирования по общему токсическому действию токсикантов, которые могут образовываться в процессе очистки и обеззараживания воды (продукты дезинфекции - галогенорганические соединения и др.)

водоотборные устройства в сети водоснабжения

7. Периодический контроль проб воды для подтверждения отсутствия токсичного воздействия питьевой воды после прохождения по трубопроводам водопроводной системы.

Материалы, используемые в оборудовании, изделиях и процессах

8. Подтверждение отсутствия токсического эффекта в результате взаимодействия материалов с водой для выдачи разрешений на применение материалов (веществ) в сфере питьевого водоснабжения


В дополнение к рекомендациям, изложенным в табл.2, следует учитывать некоторые изложенные ниже особенности методов биотестирования, связанные с их чувствительностью к отдельным группам токсикантов и возможностями сопоставления фиксируемых результатов тест-реакций с данными стандартизованных методов химико-аналитического контроля.

Для клеточного тест-объекта (гранулированная сперма быка) экспериментально установлены корреляционные зависимости измеряемой тест-реакции от уровня токсикометрических параметров ( - половинная смертельная доза для крыс) и концентраций широкого круга органических токсикантов (хлорированные углеводороды, фенолы, акриламид, формальдегид и др.), которые, в частности, могут попадать в воду при контактах с полимерными материалами и изделиями. Определены предельные значения индекса токсичности, при которых отсутствует реакция лабораторных животных на совокупность различных токсикантов, находящихся в воде в определенных концентрациях. На этой основе данный метод одобрен Минздравом России для оценки полимерных материалов, используемых в медицинской технике. Установлена также чувствительность тест-объекта к тяжелым металлам (ртуть, свинец, кадмий).

Для методов биотестирования с использованием инфузорий установлены данные, характеризующие содержание в воде и концентрации ряда органических и неорганических компонентов, при которых фиксируется тест-реакция, отражающая острое токсическое действие указанных компонентов. На этой основе данный метод может быть рекомендован, в частности, для контроля за качеством воды в водных объектах (источниках водоснабжения), в которых могут содержаться токсичные соединения металлов (ртуть, хром, кадмий, никель, медь, цинк) и органические соединения (хлороформ, бензол, акриламид, винилацетат, метилметакрилат и др.).

При применении в качестве тест-объекта ферментных систем (оценка угнетения дегидрогеназы) выявлена достаточно высокая чувствительность тест-реакций на присутствие в воде повышенных концентраций ионов тяжелых металлов (ртуть, свинец, медь, кадмий), а также ряда органических соединений (фенолы, резорцин, гидрохинон и др.). Специфической особенностью при использовании ферментных тест-систем вместо живых организмов является отсутствие достаточной чувствительности к дыхательным ядам (цианиды), канцерогенам типа бензапирена, а также к некоторым анионам (нитриты, нитраты).

Использование ракообразных, водорослей и рыб в системах биотестирования для определения острого и хронического токсического действия контролируемой воды с соответствующей продолжительностью экспериментов характеризует общий уровень загрязнения воды токсичными компонентами и наличие неблагоприятных факторов, влияющих на жизненные функции организмов. В отношении чувствительности к отдельным токсикантам эти методы относительно менее специфичны по сравнению с применением, например, инфузорий, однако фиксируемые тест-реакции могут проявляться при опасных концентрациях в воде тяжелых металлов (ртуть, хром и др.), фенолов и их производных, отдельных высокотоксичных пестицидов и т.п.

При сопоставлении чувствительности методов биотестирования с методами аналитического химического определения отдельных химических веществ в пробах контролируемой воды отмечается, как правило, невозможность фиксации тест-реакций при низких концентрациях загрязнений воды на уровне ПДК, которые количественно определяются химическими методами.

Реально фиксируемые с необходимой достоверностью тест-реакции при наличии в воде индивидуальных токсикантов для типовых методов биотестирования в режимах экспресс-контроля наблюдаются при концентрациях, существенно превышающих ПДК.

Так, при использовании биотеста с инфузориями острое токсическое действие проявляется при концентрациях, составляющих для никеля - 5 ПДК, хрома и кадмия - 10-20 ПДК, хлороформа - 50 ПДК, бензола - 100 ПДК, фенола - 500 ПДК. Исключение составляет ртуть, для которой острый токсический эффект фиксируется при содержании 1-2 ПДК.

Однако все это относится только к случаям загрязнения воды индивидуальными токсикантами, а основное преимущество методов биотестирования проявляется в фиксации совокупного действия присутствующих в воде токсикантов, когда может иметь место суммирование воздействующих факторов, существенно снижающих уровень обнаружения отдельных токсикантов. При этом возможность экспресс-контроля при применении методов биотестирования с соответствующим приборным оснащением позволяет своевременно выявить возникновение чрезвычайных ситуаций, когда внезапно возникающие высокие уровни загрязнения воды опасными токсикантами могут нанести ущерб здоровью населения в короткие сроки при потреблении небольших количеств воды.

Сводные данные об организациях-разработчиках методов биотестирования, указанных в таблицах 1 и 2, и основных публикациях по этим вопросам, приведены в табл.3.


Таблица 3

NN методик по табл.1 и тест-объекты

Организации-разработчики и консультанты

Литературные источники

1 Клеточный тест-объект (гранулированная сперма быка)

Всероссийский научно-исследовательский и испытательный институт медицинской техники (ВНИИИИМТ), г.Москва; АО "БМК-ИНВЕСТ" г.Москва

Количественный экспресс-метод оценки токсичности питьевой воды, природных вод и промышленных стоков с применением клеточного тест-объекта.

А.П.Еськов, Р.И.Каюмов, Ю.С.Ротенберг Биотестирование с помощью суспензии сперматозоидов "Гигиена труда и профессиональные заболевания" N 8, 1989 г.

2 Инфузории парамеции

АО "Квант" г.Санкт-Петербург

Методика определения токсичности проб воды экспресс-методом на приборе "Биотестер" НИИ Гигиены и профпаталогии МЗ СССР, Л-д 1991

А.В.Пожаров, Ю.А.Рахманин, С.А.Шелемотов. Прикладные аспекты аппаратурного биотестирования воды. "Гигиена и санитария" 1994 г.

3 Инфузории тетрахимена периформис

НИИ экологии человека и гигиены окружающей среды им.А.Н.Сысина (НИИЭЧиГОС), г.Москва

Методы биотестирования вод, Черноголовка, 1988

4 Штам бактерий Е-колли (фермент дегидрогеназа)

Московский научно-исследовательский институт гигиены им.Ф.Ф.Эрисмана (МНИИГ), г.Москва

Предельно допустимые концентрации вредных веществ в воздухе и воде. Справочное пособие, ГИПХ, Л-д, 1972

5 Ракообразные (дафнии, цериодафнии)

ВНИИВОДГЕО, г.Москва; Гидрохимический институт г. Ростов;

Институт биологии внутренних вод РАН (ИБВВ), г.Дубна;

ГУАК, Минприроды России, г.Москва

Методическое руководство по биотестированию воды РД 118-02-09* Госкомприроды СССР, М.,1991

МС ИСО 6341:1989 "Качество воды. Определение подавления подвижности дафний"

6 Водоросли (сценедесмус, хлорелла)

МГУ, г.Москва

Методическое руководство по биотестированию воды РД 118-02-90 Госкомприроды СССР, М.,1991

МС ИСО 6341:1989 "Качество воды. Тест замедления роста пресноводных водорослей"

7 Рыбы (гуппи, данио)

Научно-исследовательский институт морского рыбного хозяйства (ВНИРО), г.Ростов; МГУ, г.Москва

Методическое руководство по биотестированию воды РД 118-02-09 Госкомприроды СССР, М.,1991

М.Н.Ильин. Аквариумное рыбоводство, М., изд.МГУ, 1997

8 Сальмонелла (биологические тест-системы для определения мутагенной активности)

НИИЭЧиГОС им.А.Н.Сысина, г.Москва

В.В.Соколовский, В.С.Жуков, Ю.А.Рахманин, И.Н.Рыжова. Методические указания по экспериментальной оценке суммарной мутагенной активности загрязнений воздуха и воды, Минздрав СССР, М.,1990;

А.М.Фонштейн, С.К.Абилев и др. Методы первичного выявления генетической активности загрязнителей среды с помощью бактериальных тест-систем;

Методические указания, М., 1985

ПРИЛОЖЕНИЕ 1: БИОТЕСТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ КЛЕТОЧНОГО ТЕСТ-ОБЪЕКТА (гранулированная сперма быка)

1. Принцип метода

Принцип метода основан на анализе зависимости показателя подвижности суспензии сперматозоидов от времени и определении подавления их подвижности (сокращения среднего времени подвижности) под воздействием содержащихся в контролируемой воде токсикантов

Сперматозоиды могут существовать вне организма в средах простого состава до нескольких часов без изменений своих функциональных свойств.

Основное назначение половых клеток как носителей наследственной информации - оплодотворение яйцеклетки. Выполнение этой функции определяется их возможностью продвижения к месту оплодотворения, вследствие чего именно подвижность является основным показателем физиологического, биохимического и морфологического статуса сперматозоидов, который оказывается весьма чувствительным к воздействию широкого круга токсикантов.

Реализация метода осуществляется с применением автоматической аналитической системы (комплекса приборов), обеспечивающей сравнительную оценку показателя подвижности суспензии сперматозоидов в опытных (испытуемых) пробах воды и в контрольных средах, определение процедур расчетов и выдачу результатов в виде соответствующих индексов токсичности оцениваемых проб воды.

Оцениваемый системой показатель подвижности () определяется как функция концентрации подвижных клеток и среднего модуля их скорости

Где - коэффициент, связанный с конструкцией измерительной системы.

Оценка показателя подвижности осуществляется путем автоматического подсчета числа флуктуаций интенсивности рассеянного излучения, вызванного прохождением клеток через оптический зонд.

2. Тест-объект

В качестве тест-объекта используются сперматозоиды быка. Сперму получают на станциях искусственного осеменения в виде гранул, замороженных в жидком азоте. В замороженном виде в сосуде Дьюара с жидким азотом сперму можно хранить неограниченно долго.

Долив азота (4-5 литров) производят каждые 4-5 дней.

Коэффициент вариации концентрации сперматозоидов в гранулах спермы не превышает 10%, что обеспечивает достаточную стабильность и воспроизводимость в экспериментах по оценке их подвижности в контролируемых водных средах.

3. Аналитическая система

Аналитическая система включает комплекс приборов, в состав которого входит анализатор токсичности, блок подготовки образцов и компьютер с принтером, обеспечивающие автоматическое проведение оценки контролируемой тест-реакции, обработку результатов сравнительной оценки подвижности и выдачу итоговых данных в виде соответствующих распечаток.

Технические характеристики системы:

- длина волны лазерного излучения - 0,63 мкм;

- мощность лазерного излучения - не менее 1 мВт,

- время одного анализа - от 10 до 300 с с шагом 10 с;

- время перемещения кюветы (капилляра) с образцом - не более 2 с;

- время обратного хода каретки - не более 15 с;

- температура проб и рабочих образцов - 35-45 °С;

- допустимые пределы отклонения от установленной температуры - ±1,5 °С;

- объем кюветы (капилляра) с контролируемым образцом - 25 мкл;

- компьютер типа IBM PC AT (и последующие модели).

Блок-схема системы приведена на рис.1

Блок-схема комплекса

Рис.1. Блок-схема системы

1 - капилляр, 2 - каретка, 3 - привод, 4 - блок термостатирования капилляров, 5 - лазер, 6 - светоделительная пластина, 7 - микрообъектив, 8 - светоделительная пластина, 9 - экран, 10 - маска, 11 - фотодиод, 12 - усилитель, 13 - контроллер, 14 - компьютер, 15 - принтер, 16 - блок подготовки проб и рабочих образцов


Конструктивное исполнение системы обеспечивает возможность визуального наблюдения за клеточными тест-объектами в суспензии.

4. Вспомогательное оборудование, материалы, реактивы

Вспомогательное оборудование, материалы и реактивы включают:

- комплект кювет (капилляров) для помещения контролируемых образцов в аналитическую систему;

- пробирки с притертыми пробками по ГОСТ 1770-74 объемом 3-5 мл - 40шт.;

- пипеточные дозаторы объемом 0,2 мл и 0,5 мл;

- колбы мерные с притертыми пробками объемом 1000 мл - 2шт.;

- колбы конические с притертыми пробками объемом 50 мл и 100 мл - по 10 шт., объемом 500 мл и 1000 мл - по 2 шт.;

- весы торсионные типа ВТ-500;

- пинцет анатомический;

- сосуд Дьюара емкостью 26,5 л марки СДП-25 - 2 шт.;

- сосуд Дьюара емкостью 5 л марки СДС-5 - 1 шт.;

- шкаф сушильный;

- холодильник бытовой;

- сперма быка в гранулах, замороженная при температуре жидкого азота;

- азот жидкий;

- цитрат натрия кристаллический, х.ч.;

- глюкоза кристаллическая;

- спирт этиловый;

- вода дистиллированная;

- бидистиллят.

5. Условия и процедура биотестирования

5.1. Температура рабочих сред при проведении биотестирования должна поддерживаться в пределах 40±1,5 °С. Это достигается автоматическим термостатирующим устройством.

5.2. Проведение испытаний

5.2.1. Включают аналитическую систему нажатием тумблера "Сеть" за 30 мин до начала испытаний. С помощью компьютера задают условия проведения испытаний: температуру, время одного анализа, количество кювет (капилляров) с образцами. Информация о достижении необходимой температуры и готовности системы к работе выдается на дисплей.

5.2.2. Готовят опытные и контрольные растворы. В качестве контрольного раствора применяют глюкозо-цитратную среду состава: глюкоза - 4 г, цитрат натрия - 1 г, вода дистиллированная - 100 мл. Контрольная среда одновременно является разбавителем для оттаивания замороженной спермы. Изотонию опытного (испытываемого) раствора (проб воды) достигают путем добавления сухих реактивов: 4 г глюкозы и 1 г цитрата натрия на 100 мл воды. Вместо дистиллированной воды может быть использована "фоновая" проба воды из источника с известными показателями химического состава, отвечающими требованиям безопасности.

5.2.3. Дозируют по 1 мл контрольного и испытываемого раствора в пробирки и помещают в водный термостат для термостатирования при температуре 40±1,5 °С.

5.2.4. Для оттаивания замороженной спермы отмеривают в пробирки по 0,5 мл разбавителя (по п.5.2.2) и термостатируют их при температуре 40±1,5 °С. Охлажденным анатомическим пинцетом извлекают из сосуда Дьюара гранулу спермы и быстро опускают в нагретый раствор. Каждую гранулу размораживают в отдельной пробирке. Сразу после размораживания спермы содержимое пробирок сливают в одну пробирку и тщательно перемешивают. Смесь термостатируют при 40±1,5 °С.

5.2.5. Рабочие образцы для биотестирования в аналитической системе готовят путем внесения в каждую пробирку с контрольным и испытываемым растворами по 0,2 мл суспензии сперматозоидов (по п.5.2.4).

5.2.6. Для проведения анализов рабочие образцы из пробирок с контрольным и испытываемым растворами (по п.5.2.5) переносят в капилляры, выполняющие функции кювет, и герметизируют их путем поочередного окунания концов капилляров в ванну с парафином.

Капилляры с рабочими образцами помещают на каретку и устанавливают в привод аналитической системы.

С помощью компьютера проводят идентификацию капилляров и запускают процесс накопления экспериментальных данных. Процесс продолжают до достижения нулевых значений показателя подвижности во всех капиллярах, после чего проводят математическую обработку результатов по алгоритмам, реализуемым программой компьютера согласно изложенным ниже методическим положениям.

6. Обработка и оценка результатов

6.1. В результате эксперимента в системе для каждого образца биотестируемых растворов (испытываемых и контрольных проб воды) регистрируется зависимость:


где - показатель подвижности (по п.1),

- время

7.6.2. Для каждой из указанных зависимостей вычисляется средневзвешенное значение времени подвижности ,

Где - -ое значение показателя подвижности,

- текущий номер оценки показателя подвижности.

6.3. Для контрольной и опытной выборок образцов вычисляют среднее арифметическое значение и среднее квадратическое отклонение, по которым в свою очередь рассчитывают для каждой выборки коэффициент вариации , по формуле:

Где - среднее квадратическое отклонение,

- среднее арифметическое значение

В случае получения коэффициента вариации более 15% хотя бы для одной из выборок, повторяют эксперимент. Если значение коэффициента вариации для каждой из выборок меньше или равно 15%, то результаты контроля считают достоверными.

6.4. Вычисление индекса токсичности проводится по формуле:

Где и - средние арифметические значения средневзвешенного времени подвижности, соответственно, для опытной и контрольной выборок образцов.

6.5. Критерием отсутствия токсического воздействия является нахождение величин в интервале значений от 70 до 130%.

ПРИЛОЖЕНИЕ 2: БИОТЕСТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ ИНФУЗОРИЙ PARAMECIUM

1. Принцип метода

Методика биотестового анализа водных проб основана на способности Paramecium caudatum - инфузории туфельки (далее - инфузории) избегать неблагоприятных и опасных для жизнедеятельности зон и активно перемещаться по градиентам концентраций химических веществ в зоны благоприятные (реакция хемотаксиса). Методика позволяет оперативно определять острую токсичность водных проб.

2. Характеристика тест-объекта, выращивание и подготовка культуры к анализу

2.1. В качестве тест-объекта используется Paramecium caudatum - инфузория туфелька. Относится к подцарству простейших (одноклеточных животных) - Protozoa, типу - Ciliophora. Инфузория широко распространена в пресных водоемах. Форма клетки эллипсоидная, размеры - 200х40 мкм. Основную пищу инфузории составляют бактерии, дрожжи и т.п. Размножение инфузории происходит путем поперечного деления клетки. В зависимости от условий выращивания время генерации может составлять от нескольких часов до нескольких суток.

По сравнению с другими группами простейших инфузории имеют наиболее сложное строение и отличаются разнообразием функций. Инфузория находится в непрерывном движении. Скорость ее при комнатной температуре - 2,0-2,5 мм/с. Траектория движения сложная: она движется вперед, вращаясь вдоль продольной оси тела, с помощью ресничек, количество которых достигает 10-15 тысяч. Изменение внешних условий (температура, химический состав среды, электромагнитные колебания и другие факторы) воспринимаются клеткой, и первая ответная реакция - изменение характера движения: уменьшение или увеличение скорости, частоты остановок и разворотов, разнообразные таксисы, например, гео-, магнито-, аэро-, хемотаксис.

2.2. Исходный материал для выращивания культуры инфузории передается при поставке прибора "БИОТЕСТЕР-2". Культуру можно также получить из коллекций культуры простейших, имеющихся в различных научных организациях (например, в БиНИИ СПб ГУ: 198904; Старый Петергоф, Ораниенбаумское шоссе, 2). Можно выделить свою культуру из местных водоемов или приобрести у аквариумистов, но необходимо при этом учитывать, что видовую принадлежность может определить специалист-протозоолог, т.к. существуют другие представители рода Paramecium caudatum.

2.3. Выращивание культуры

2.3.1. В данной методике может быть использована культура инфузории, выращенная по различным методикам, которые обеспечивают получение тест-объекта, во-первых, в достаточном для анализов количестве, во-вторых, чувствительного к модельному токсиканту в пределах концентраций, установленных в п.2.3.

Выращивание культуры проводят в любых удобных сосудах, например, в стеклянных колбах, стаканах, чашках Петри и других. В качестве корма используют бактерии, дрожжи и их смесь, выращенные стерильно на твердых средах. При отсутствии условий для выращивания стерильного корма, можно использовать воздушносухие пекарские дрожжи.

К общим положениям по выращиванию культуры относится обязательное требование идентичности среды выращивания и среды, которая будет использована для процедур отмывания культуры от продуктов метаболизма, получения рабочей взвеси, разведения водных проб и прочих процедур с культурой.

Метод культивирования инфузории приведен ниже в качестве примера.

2.3.2. Метод культивирования инфузории

В широкогорлую коническую колбу на 200 мл вносят суспензию инфузорий в среде Лозина-Лозинского в количестве 100 мл с плотностью 1000±200 клеток/мл. В качестве корма добавляют воздушносухие дрожжи из расчета 1 мг на 1 мл среды. Выращивание ведут при температуре 18-26 °С.

Для биотестового анализа используют культуру в начале стационарной фазы роста. Для контроля за развитием популяции отбирают ежесуточно пробу, в которой определяют количество клеток по п.2.3.4.1. Отсутствие прироста клеток в популяции свидетельствует о наступлении стационарной фазы роста, ежесуточный контроль позволяет определить ее начало. Обычно при заданных в начале данного раздела условиях стационарная фаза роста наступает на 2-3 сутки, при этом плотность культуры будет составлять 4000±1000 клеток/мл.

2.3.3. Поддержание и хранение культуры

При перерывах в проведении биотестовых анализов культуру достаточно поддерживать только как посевной материал. Один из способов поддержания - на зернах риса. В чашку Петри помещают 2-3 сырых зернышка риса, добавляют среду около 30-40 мл и помещают клетки инфузории туфельки в количестве 50-100 клеток/мл. Раз в 2 недели меняют среду и зерна риса.

Удобно содержать резервную культуру в пробирках. Один раз за 7-10 суток концентрат клеток из верхней части пробирки (без перемешивания) переливают в другую пробирку, добавляют среду Л-Л до прежнего объема и по 0,5 мг дрожжей на 1 мл жидкости.

Другой способ консервации культуры - хранение в холодильнике при низких положительных температурах. Скорость деления при этом может составлять одно деление в 10-20 суток. Культуру отмывают от продуктов метаболизма и старого корма, доводят концентрацию взвеси до 200±100 клеток/мл, добавляют сухие дрожжи 0,2 мг/мл и помещают в холодильник. Так культура сохраняется до месяца. При использовании культуры, сохранявшейся в холодильнике, необходимо дождаться выравнивания ее температуры с температурой остальных растворов и только после этого производить необходимые процедуры.

Особое внимание следует обратить на то, что инфузория не выдерживает резких перепадов температуры (!).

2.3.4. Определение концентрации взвеси инфузории

Концентрацию клеток необходимо определять в процессе выращивания культуры, при подготовке рабочей взвеси клеток и для определения величины тест-реакции. Определение концентрации клеток инфузорий без затруднений выполняется с помощью отградуированного прибора серии "Биотестер".

2.3.4.1. В общем случае концентрацию клеток инфузории определяют подсчетом клеток под микроскопом по общепринятым в микробиологической практике методикам: с помощью измерительных сеток, счетных камер и т.п. Подсчитанное количество клеток пересчитывают на единицу объема среды и выражают как концентрацию (клеток/мл). Ниже приводится пример способа подсчета клеток инфузорий. Исходную взвесь инфузорий взболтать, отобрать с помощью пипетки 0,5 мл взвеси. К этому объему добавить 9,5 мл 1% раствора NaCI. Таким путем достигается обездвиживание инфузорий. Не дожидаясь полного обездвиживания инфузорий (примерно через 2-5 мин) из разбавленной взвеси отбирают 0,5 мл и распределяют этот объем в виде 6-10 крупных капель на сухом стекле (например, в чашке Петри). С помощью микроскопа (лупы) подсчитывают инфузории во всех каплях. Полученный результат пересчитывают на 1 мл исходной взвеси.

Например: 0,5 мл взвеси обездвиженных инфузорий распределены в 6 каплях, в которых было сосчитано 29, 38, 32, 31, 28, 35 клеток - всего 193. В 1 мл разбавленной взвеси содержится 386 клеток, а в 1 мл исходной взвеси, следовательно, будет содержаться 3860 клеток инфузорий.

2.3.4.2. Специализированным средством для определения количества подвижных клеток инфузории является прибор серии "Биотестер". Определение концентрации подвижных клеток проводят по предварительно построенной градировочной кривой.

Для построения градировочной кривой берут взвесь клеток инфузории в среде Л-Л по п.2.3.2. Из взвеси готовят ряд разведений, каждое из которых по концентрации меньше предыдущего в 2 раза, объем взвеси каждого разведения не менее 5 мл. Последнее разведение может содержать 5-10 кпеток/мл. Исходную концентрацию клеток определяют подсчетом числа клеток под микроскопом (см.п.2.3.4.1). Концентрации клеток в серии разведений определяют соответствующим расчетом. При этом последовательно определяют концентрацию подвижных клеток инфузорий, находящихся в исходной рабочей взвеси и во всех разведениях, снимая показания на приборе. Для этого заполняют кювету контролируемой взвесью клеток до верха (инфузории не обездвиживать!), помещают в кюветный модуль прибора и снимают ряд показаний.

Процедуру подсчета клеток в исходной взвеси, приготовление разведений, измерение на приборе исходной взвеси и разведений повторяют не менее 3 раз и результаты усредняют. По полученным данным строят градировочную кривую как зависимость показаний прибора от логарифма концентрации клеток. Построенная кривая может быть использована продолжительное время с одним и тем же измерительным прибором.

2.4. Подготовка инфузорий к анализу

2.4.1. Выращенную по п.2.3 культуру инфузории отмывают от продуктов метаболизма и корма, доводят концентрацию до рабочего значения, проводят проверку готовности культуры к анализу по ее чувствительности к модельному токсиканту и по ее способности выходить в чистую пробу.

2.4.2. Отмывание культуры

При отмывании используют нормальную физиологическую реакцию инфузорий собираться в верхних слоях жидкости. Использование сосудов с узким длинным горлом позволяет сконцентрировать инфузории в верхней зоне и слить в другой сосуд с минимальным количеством загрязненной культуральной среды. Концентрат разбавляют чистой средой Л-Л, опять собирают клетки в верхней зоне и сливают. В результате отмывания инфузорий степень разбавления культуральной жидкости чистой средой должна быть не менее 1:200.

Пример. Культура выращена на среде Л-Л. Отмывочная среда - Л-Л. К 50 мл культуры добавляют 50 мл среды Л-Л, тщательно переливают в мерную колбу на 100 мл, обязательно заполняя горлышко. Через 5-15 минут инфузории собираются в верхней зоне. Сливают верхнюю часть жидкости из колбы. Получают взвесь клеток с разбавлением культуральной жидкости в два раза и объемом, например, 20 мл. Процедуру по отмыванию повторяют еще 2 раза, добавляя к 20 мл взвеси 80 мл среды Л-Л и получают взвесь клеток, например, в объеме 10 мл с разбавлением исходной взвеси инфузорий в 50 раз. Доводят объем полученной взвеси (10 мл) и получают разведение в 250 раз. Определяют концентрацию клеток в полученной взвеси по п.2.3.4 и доводят ее до значения 1000±200 кл/мл. Полученную рабочую взвесь клеток инфузорий после предварительной проверки используют в течение 1,5 часов.

2.4.3. Проверка готовности взвеси инфузорий к анализу

Проверку проводят по двум параметрам одновременно:

- по степени выхода инфузорий в контрольную чистую пробу;

- по чувствительности к модельному токсиканту.

2.4.3.1. Для проверки выхода инфузорий в контрольную пробу заполняют по п.4.1 три кюветы взвесью клеток, наслаивают среду Л-Л или заведомо нетоксичную воду (но не дистиллят). Через 30 минут измеряют концентрацию клеток в верхних зонах кювет по п.4.2. Усредняют результат по 3 кюветам и определяют готовность тест-культуры к биотестовому анализу по условию: выход должен быть не менее 70% от концентрации рабочей взвеси.

2.4.3.2. Для проверки чувствительности к модельному токсиканту в три кюветы наслаивают раствор сульфата меди с концентрацией 0,1 мг/л, приготовленный по п.3.4. Через 30 минут измеряют концентрацию в верхних зонах кювет по п.4.2 и рассчитывают индекс токсичности к раствору сульфата меди.

При культуру используют в биотестовом анализе.

3. Средства измерений, вспомогательные устройства, материалы, растворы.

3.1. Средства измерений:

- микроскоп бинокулярный с увеличением порядка 10-50;

- прибор серии БИОТЕСТЕР, например, БИОТЕСТЕР-2 - специализированный импульсный фотометр по ТУ 401-51-005-91* с набором фотометрических кювет;
________________
* ТУ, упомянутые здесь и далее по тексту, не приводятся. За дополнительной информацией обратитесь по ссылке . - Примечание изготовителя базы данных.

- весы лабораторные общего назначения (ГОСТ 8.520-84).

3.2. Вспомогательные устройства:

- сосуды для культивирования из химически инертного материала, например, химические стаканы, конические широкогорлые колбы, чашки Петри (ГОСТ 25336-82);

- пипетки, мерные колбы, пробирки (ГОСТ 20292-74 , 1770-74).

3.3. Материалы:

- соли марки ч.д.а. или х.ч.: натрий хлористый, калий хлористый, кальций хлористый, магний сернокислый, натрий углекислый кислый, медь сернокислая пятиводная;

- поливиниловый спирт ПВС - марка 11/2, высший сорт (ГОСТ 10779-78);

- дрожжи хлебопекарные воздушносухие - используются в качестве корма для инфузорий.

3.4. Растворы:

- взвесь клеток инфузорий, полученная путем выращивания тест-объекта в определенных условиях (см.п.2.3), отмытая от продуктов метаболизма и корма (см.п.2.4) и доведенная до рабочей концентрации (плотности) 1000±200 клеток/мл;

- среда для культивирования и разбавления: готовится на дистиллированной воде (среда Лозина-Лозинского, в дальнейшем Л-Л). Возможно использование водопроводной воды, которая должна быть соответствующим образом обработана (дехлорировать и отстоять в течение 5-10 суток).

Для приготовления концентрата среды Л-Л в 1 л воды растворяют следующие соли (марки ч.д.а. или х.ч.): NaCI - 1,0 г, KCI - 0,1 г, MgSO - 0,1 г, CaCIx2HO - 0,1 г, NaHCO - 0,2 г. Такой раствор можно хранить в холодильнике до 7 суток. Для работы используется среда Л-Л, полученная десятикратным разбавлением исходного концентрата. Разбавляющая среда и среда для культивирования должны быть идентичны и обеспечивать выживаемость инфузории в течение 5 суток;

- модельный токсикант на основе сульфата меди. Маточный раствор сульфата меди (10 мг/л) в дистиллированной воде хранят не более недели. Рабочие концентрации сульфата меди готовят перед самым определением. Растворы соли с концентрациями до 1 мг/л готовят в дистиллированной воде, а с концентрациями 0,1 мг/л и меньше - в среде Л-Л;

- раствор ПВС в среде Л-Л: 5% раствор используют в качестве нейтрального загустителя. Для приготовления раствора ПВС 0,5 г порошка ПВС смешивают с 9,5 мл среды Л-Л. Смесь нагревают на водяной бане до растворения порошка. Используют раствор в течение суток.

4. Метод определения

4.1. Метод определения токсичности жидких сред основан на способности тест-объектов реагировать на появление в водной среде веществ, представляющих опасность для их жизнедеятельности, и направлено перемещаться по градиенту концентраций этих веществ (хемотаксическая реакция), избегая их вредного воздействия.

Хемотаксическая реакция реализуется при условии наличия стабильного и воспроизводимого градиента концентраций химических веществ. Подобный градиент создается путем наслоения в вертикальной кювете (пробирке) на взвесь инфузорий в загустителе испытуемой водной пробы. При этом в измерительной кювете образуется стабильная граница, сохраняемая в течение всего времени биотестирования. Эта граница раздела не препятствует свободному перемещению инфузорий в предпочтительном для них направлении и при этом предотвращает перемешивание жидкостей из нижней и верхней зон.

После создания в кювете двух зон в течение 30 минут происходит перераспределение инфузорий по зонам. Важная особенность поведенческой реакции инфузорий - массовое перемещение клеток в верхние слои жидкости. В случае, если исследуемая проба не содержит токсических веществ, в кювете будет наблюдаться концентрирование клеток инфузорий в верхней зоне. Наличие в исследуемой пробе токсических веществ приводит к иному характеру перераспределения инфузорий в кювете, а именно, чем выше токсичность пробы, тем меньшая доля инфузорий перемещается в верхнюю зону (исследуемую пробу).

4.2. Критерием токсического действия является значимое различие в числе клеток инфузорий, наблюдаемых в верхней зоне кюветы в пробе, не содержащей токсических веществ (контроль), по сравнению с этим показателем, наблюдаемым в исследуемой пробе (опыт)

4.3. Количественная оценка параметра тест-реакции, характеризующего токсическое действие, производится путем расчета соотношения числа клеток инфузорий, наблюдаемых в контрольной и исследуемой пробе (согласно п.8.1), и выражается в виде безразмерной величины - индекса токсичности (Т).

5. Условия определения

5.1. Определение токсичности по настоящей методике выполняется оператором с квалификацией лаборанта.

5.2. На методику распространяются общие правила техники безопасности при работе с химическими реактивами общего применения и лабораторной аппаратурой (указаны в паспорте на прибор).

5.3. Инфузории работают в интервале температур 10-30 °С при соответствии их свойств требованиям п.2.3.

6. Подготовка к выполнению определения

6.1. Отбор и хранение проб

Общие процедуры отбора проб определены в следующих документах: ИСО 5667/2. Качество воды. Отбор проб. ч.2; ГОСТ 24481-80 . Вода питьевая. Отбор проб.

6.2. Биотестирование проб воды проводят не позднее 6 часов после их отбора. При невозможности проведения анализа в указанный срок пробы воды охлаждают (+4 °С). Не допускается консервирование проб с помощью химических консервантов.

6.3. Необходимый для выполнения анализа (в трех повторностях) объем водной пробы составляет около 10 мл. Для однократного определения достаточно 2 мл.

6.4. При проведении биотестирования температура исследуемой пробы должна соответствовать температуре взвеси тест-объекта. Инфузории не переносят резких перепадов температуры (!).

6.5. При наличии в пробе крупнодисперсных включений, соизмеримых по величине с клеткой инфузории или больших по размеру, необходима фильтрация пробы.

7. Проведение анализов

7.1. Заполнение кювет

В кювету вносят 2,0 мл взвеси инфузорий в рабочей концентрации, предварительно проверенной по двум параметрам: по чувствительности к модельному токсиканту (см.п.2.4.3.2) и по выходу в разбавляющую среду (см.п.2.4.3.1). К взвеси добавляют 0,35 мл 5% раствора ПВС, все тщательно перемешивают, непременно увлажнив стенки кюветы, и наслаивают (например, пипеткой) 1,8 мл анализируемой водной пробы, не допуская перемешивания с нижним слоем. Через 30 минут (продолжительность тест-реакции) последовательно производят определение концентрации инфузорий в верхней зоне кюветы в контрольных () и опытных () пробах. Контрольные и опытные пробы готовят одновременно.

7.2. Измерение концентрации инфузорий на приборе "БИОТЕСТЕР-2"

Подготовленные по п.7.1 кюветы последовательно помещают в кюветный модуль и снимают показания прибора. В приборе "БИОТЕСТЕР-2" предусмотрено три режима работы:

- измерение и индикация результата через каждые 22 с;

- измерение и индикация среднего значения результатов 5 отсчетов (через каждые 110 с);

- измерение и индикация среднего значения результатов 10 отсчетов (через каждые 220 с).

Работа с прибором:

а) установить режим усреднения "1" (горит светодиод над кнопкой, соседние светодиоды погашены);

б) вставить кювету в кюветную нишу, закрыть крышку, нажать кнопку "ПУСК";

в) индикация гаснет, на 12 с (время автоподстройки) загорается светодиод "ОТСЧЕТ", и еще через 22 с на индикационном табло появляется первое значение концентрации в условных единицах. Выдача отсчета сопровождается световым и звуковым сигналом продолжительностью 2 с;

г) в течение 22 с значение предыдущего отсчета сохраняется, этого времени достаточно для регистрации результата.

Если концентрация токсикантов настолько велика, что инфузории практически не выходят в пробу (показания прибора в условных единицах находятся в пределах 000-008), то начинает мигать светодиод "ТРЕВОГА". Это означает, что испытуемую пробу необходимо разбавить до получения на приборе значимых величин. (Не забудьте скорректировать оценку токсичности в соответствии со степенью разбавления исходной пробы).

Последовательность операций при использовании других режимов измерений идентична вышеописанной. Обычно работают в режиме усреднения по 5 показаниям. Контрольные и испытуемые пробы делают в трех повторностях. Значения повторностей усредняют и рассчитывают индекс токсичности по п.8.1.

8.Обработка и оформление результатов

8.1.Оценку токсичности водной пробы производят по относительной разнице количества клеток в верхних зонах кювет с контрольными и анализируемыми пробами.

Индекс токсичности определяется как:

где , - средние показания прибора для контрольных и анализируемых проб соответственно.

Индекс токсичности () - величина безразмерная и может принимать значения от 0 до 1 в соответствии со степенью токсичности анализируемой пробы.

По величине индекса токсичности анализируемые водные пробы классифицируются по степени их загрязнения на 4 группы:

I. Допустимая степень загрязнения ();

II. Умеренная степень загрязнения ();

III. Высокая степень загрязнения (, а также значимые значения , полученные при 2-х, 4-х, 6-кратном разбавлении анализируемой пробы);

IV. Чрезвычайно высокая степень загрязнения (значимые значения , полученные при 8-кратном и свыше разбавлении анализируемой пробы).

8.2. Пример записи результатов измерений

Номер пробы

Пов-
тор-
нос-
ти

Показания прибора I у.е.

Ср.знач. по 5 изме-
рениям , у.е.

Ср.знач. по 3 пов-
торнос-
тям 4 ср.у.е.

Индекс токсичности , у.е.

Контроль среда
Л-Л

Проба 1

[email protected]

Если процедура оплаты на сайте платежной системы не была завершена, денежные
средства с вашего счета списаны НЕ будут и подтверждения оплаты мы не получим.
В этом случае вы можете повторить покупку документа с помощью кнопки справа.

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Биотестирование ныне является основным приемом в разработке ПДК химических веществ в воде. При этом определяют такие параметры, характеризующие токсичность, как: ЛК50 (летальная концентрация для 50% тест-организмов), ЭК50 (эффективная концентрация для 50% тест-организмов), МНК (максимально недействующая концентрация), ОБУВ (ориентировочно безопасный уровень воздействия), ОТД (острое токсическое действие), ХТД (хроническое токсическое действие) и ЛВ50 (время гибели 50% тест - организмов).[ ...]

Биотестирование водоемов основано на том, что отдельные группы гидробионтов могут жить при определенной степени загрязнения водоема органическими веществами. Способность гидробионтов выживать в загрязненной органикой среде называется сапробностъю.[ ...]

Биотестирование проведено также с использованием клеточного тест-объекта - гранулированной спермы быка, т.е. путем анализа зависимости показателя подвижности суспензии сперматазоидов от времени и определения степени подавления их подвижности (сокращения среднего времени подвижности) под воздействием содержащихся в воде токсикантов, в соответствии с . Реализация метода осуществляется с применением автоматической аналитической системы, обеспечивающей сравнительную оценку показателя подвижности суспензии сперматозоидов в опытных пробах воды и в контрольных средах, определение процедур расчетов и выдачу результатов в виде соответствующих индексов токсичности. Оценка показателя подвижности осуществляется путем автоматического подсчета числа флуктуации интенсивности рассеянного излучения, вызванного прохождением клеток через оптический зонд.[ ...]

Биотестирование сточных вод, идущих на повторное использование, показало, что сточная вода в неочищенном виде подавляет прорастание семян и рост проростков на 22%, после очистных сооружений - на 12%, а разбавленная в соотношении 1:1 или 1:2 - на 9%. Контроль во всех случаях - отстоянная водопроводная вода.[ ...]

БИОТЕСТИРОВАНИЕ - оценка состояния окружающей среды по живым организмам. См. Биологические индикаторы. БИОТИЧЕСКАЯ ТРАНСФОРМАЦИЯ СРЕДЫ (Б.т.с.) - изменение абиотических условий под влиянием жизнедеятельности организмов. В.И. Вернадский рассматривал живые организмы как геохимический фактор, который создал биосферу. Благодаря живым организмам в атмосфере появился кислород, сформировались почвы, образовались толщи осадочных пород на дне океанов. В результате Б.т.с. создаются запасы детрита в виде торфа и сапропеля.[ ...]

Для биотестирования используются самые различные организмы (водные растения, водоросли, ракообразные, моллюски и рыбы). Однако наиболее чувствительным к загрязняющим веществам различной природы является пресноводный рачок дафния магна.[ ...]

Под биотестированием понимают приемы исследования, с помощью которых о качестве среды, факторах, действующих самостоятельно или в сочетании с другими, судят о выживаемости, состоянию и поведению специально помещенных в эту среду организмов - тест-обьектов. Рост особей, их продуктивность, выживаемость служат показателями для биотестирования качества среды. Для целей мониторинга природных и сточных вод предприятий оказались удобными фитопланктон и дафнии.[ ...]

Методы биотестирования основаны на оценке физиологического состояния и адаптационного стресса организмов, адаптированных к чистой среде и на время эксперимента помещенных в испытуемую среду. Эти методы также дают информацию об интегральном экологическом качестве среды. Цели прогноза обычно связаны с экстраполяцией результатов опытов на качество жизни человека и на изменения показателей биоразнообразия в экосистемах. Оценка среды по системе биотестирования и биоиндикации в каждой точке территории должна базироваться на анализе комплекса видов. Для наземных экосистем -это травянистые и древесные растения, беспозвоночные животные (например, моллюски и членистоногие) и позвоночные животные (земноводные, рептилии, птицы, млекопитающие). Оценка состояния каждого вида базируется на результатах использования системы методов: морфологических (например, регистрации признаков асимметрии внешнего строения), генетических (тесты на мутагенную активность), физиологических (тесты на интенсивность энергетического обмена), биохимических (оценка окислительного стресса у животных и фотосинтеза у растений), иммунологических (тесты на иммунную потенцию).[ ...]

Длительное биотестирование (3=20 сут.) позволяет определить хроническое токсическое действие воды на дафний по снижению их выживаемости и плодовитости. Показателем выживаемости служит среднее число исходных самок дафний, выживших в течение биотестирования, показателем плодовитости -среднее число молоди, выметанной в течение биотестирования, в пересчете на одну выжившую исходную самку. Критерием токсичности является достоверное отличие от контроля показателя выживаемости и плодовитости дафний.[ ...]

Субстрат для биотестирования собран в районе Среднеуральского медеплавильного завода (Свердловская обл., г. Ревда, Средний Урал, южная тайга). Главные ингредиенты выбросов - 802 и полиметаллическая пыль (в основном соединения Си, РЬ, Cd, 2п, Аь). Многолетнее загрязнение (начиная с 1940 г.) привело к значительному подкислению лесной подстилки и увеличению содержания в ней металлов (табл. 1). Закономерности техногенной трансформации лесных экосистем района исследований описаны ранее (Воробейчик и др., 1994).[ ...]

Таким образом, биотестирование воды представляет собой оценку качества воды по ответным реакциям водных организмов, которые являются в этих случаях тест - объектами (табл. 15.2).[ ...]

К достоинствам биотестирования можно отнести также возможность его использования с помощью портативных приборов при полевых исследованиях, а также простоту сбора и анализа проб. Так, с помощью этих методов по функциональному состоянию (поведению) тест - объектов (ракообразные - дафнии, водоросли - хлорелла, рыбы - гуппии и др.) можно оценивать качество вод и осуществлять ранжирование их по классам состояний. Таким образом появляется возможность использования этих вод для питьевых или иных целей. Наиболее информативные критерии оценки состояния поверхностных и сточных вод (по состоянию тест - объектов) приведены в табл. 42.[ ...]

Удачно дополняет метод биотестирования на дафниях биоте-стовый анализ с помощью простейших микроорганизмов - инфузорий-туфелек (Paramecium caudatum). Метод биотестового анализа водных проб основан на способности инфузорий избегать неблагоприятных и опасных для жизнедеятельности зон и активно перемещаться по градиентам концентраций химических веществ в благоприятные зоны. Метод позволяет оперативно определять острую токсичность водных проб и предназначен для контроля токсичности природных, сточных, питьевых вод, водных вытяжек из различных материалов и пищевых продуктов.[ ...]

Методические указания по биотестированию сточных вод с использованием рачка дафния магна. - М.: в/о Союзводпроект ОМПР и ВП, 1986. - 27 с.[ ...]

При использовании методов биотестирования оперируют рядом понятий и определений: под тест-объектом понимают живой организм, используемый в биотестировании; тест-реакция - изменение какого-либо показателя тест-объекта под воздействием токсичных веществ, содержащихся в воде; тест-параметр - количественное выражение тест-реакции; критерий токсичности -значение тест-параметра или правило, на основании которого делают вывод о токсичности воды.[ ...]

Особенно перспективными в биотестировании окружающей среды являются простейшие - инфузории. Их используют в экотоксикологическом тестировании вод и почв, в биотестировании химических веществ и материалов биологического происхождения.[ ...]

Методическое руководство по биотестированию включает методики определения токсичности с использованием в качестве тест-объектов дафний, водорослей и рыб. Помимо обязательных тестов (на дафниях) допускается использование других рекомендованных методов биотестирования.[ ...]

В табл. 21 представлены результаты биотестирования пяти рецептур антисептика, содержащего алкил бензил аммонийхлорид (¿)), тринатрийфосфат (к2), карбонат натрия (к3) и борную кислоту (¿4).[ ...]

Гудимов A.B., Петров B.C., Гудимова Е.Н. Биотестирование на донных беспозвоночных как средство предупреждения и минимизации загрязнения акваторий в районах разработки месторождений нефти и газа на шельфе Арктики// Морские и арктические нефтегазовые месторождения и экология. М.: ВНИИГАЗ, 1996.[ ...]

В качестве критерия токсичности речных вод использовали выживаемость тестируемых организмов.[ ...]

На практике для контроля токсичности воды наряду с известными методами биотестирования широко применяют биохимико-физиологи-ческие испытания, основанные на сравнении параметров, характеризующих нормальное поведение организма или биокультуры, с теми же параметрами, наблюдаемыми под воздействием загрязненной воды . Как правило, контролируемыми параметрами являются изменение концентрации органического кислорода, количество поглощенного кислорода или выделившегося углекислого газа и др. Все эти методики впервые стандартизуются сразу на международном уровне.[ ...]

Другой возможностью интегральной оценки уровня загрязнения атмосферы является биотестирование токсичности вод снежного покрова города, накопившего в себе за зимний период выбросы промышленных предприятий и автотранспорта. Для этих целей нами разработаны и аттестованы оперативная методика и комплект аппаратуры для биотестирования вод по воздействию загрязнителей на рост водоросли хлореллы. Эта разработка позволяет одновременно оценивать токсичность многих проб талого снега, а также других природных и сточных вод. Проведенные исследования показали высокую эффективность данного методического подхода в определении загрязнения окружающей среды.[ ...]

На основе результатов экспериментальных исследований предлагается использовать биотестирование как метод прогнозной оценки загрязнения акваториальных вод при освоении морских нефтегазовых месторождений. Изложены преимущества рассматриваемого метода по сравнению с общепринятой системой мониторинга.[ ...]

Нами развиты, доработаны и адаптированы к производственным условиям экспресс-методы биотестирования водных объектов с помощью таких тест-организмов, как ракообразные -Daphnia magna Straus (cladocera, crustacea), далее для краткости -Daphnia magna, а также простейшие - Paramecium caudatum (рис. 3.4).[ ...]

Для оценки биологической значимости выявленных изменений структурных особенностей воды проводили ее биотестирование в соответствии с рекомендациями «Методы биотестирования вод» . Использовали гид-робионты различных трофических уровней (3-х систематических групп): простейшие - инфузории Tetrahimena pyriformis, беспозвоночные - пресноводный рачок Daphnia magna и рыбы-мальки гуппи Poecilia reticulata peters.[ ...]

В настоящее время наиболее информативным и достоверным методом оценки качества ОПС и поступающих в нее веществ является биотестирование. В бурении этим способом проводится оценка токсичности промывочных жидкостей и технологических отходов бурения. Следует отметить, что биотестирование буровых сточных вод (БСВ) выполняется корректно, по утвержденной методике для сточных вод. Однако для бурового шлама и буровых технологических жидкостей, по составу и свойствам существенно отличающихся от БСВ, научно обоснованной методики биотестирования, которая учитывала бы их специфику, нет. Поэтому условия проведения исследований, например, кратность разбавления исходного вещества, не унифицированы. Соответственно, результаты исследований разных авторов зачастую несопоставимы, а в ряде случаев их достоверность сомнительна. Так, при разбавлении промывочных жидкостей их дисперсная фаза выпадает в осадок и ее токсикологический эффект фактически не учитывается. Между тем используемая в составе БПЖ глина обладает высокой адсорбирующей способностью. Поэтому в водную среду попадает не исходная глина, использованная для приготовления промывочной жидкости, а модифицированная в процессе циркуляции через скважину. Кроме того, в БПЖ попадают глинистые частицы из выбуренной породы.[ ...]

К сожалению, при использовании приведенных оценочных шкал необходимо учитывать методический аспект. Известно, что результаты биотестирования очень зависят от методики определения. И даже малейшие отклонения, незаметные для неопытного экспериментатора, приводят к значительному искажению результата.[ ...]

На протяжении ряда последних лет сформировалось самостоятельное направление биологического контроля состояния среды путем биоиндикации и биотестирования [Захаров, 1993; Шуберт (ред.), 1988; Мелехова и др., 1988, 2000; Смуров, 2000].[ ...]

3

Одним из методов интегральной оценки качества воды, имеющей контакт с устройством очистки, для выявления возможного негативного влияния конструкционных материалов на качество питьевой воды является биотестирование с помощью гидробионтов различных трофических уровней.[ ...]

Организмы донной фауны являются не только удобными объектами для акваториального содержания, но и прекрасными мониторами хроничекого загрязнения. Анализ их физиологических и поведенческих реакций при биотестировании позволяет достоверно определить пороговые, переносимые и летальные нагрузки, вызываемые тем или иным видом загрязнения. Биотесгирование на Мурмане пока еще не получило должного развития, хотя насущность его очевидна, а результаты нельзя заменить мониторингом. Начавшиеся в нашем институте исследования по биотестированию буровых растворов и их компонентов показали его успешность, в частности, на таких объектах, как голотурия Cucumaria frondosa, гидроид Dynamena pumita, амфипода Gammarus oceanicus, двустворки - мидия (Mytilus edulis L.) и Modiolus (рис. 1-3). Эксперименты показали, что моллюски-фильтраторы, прекрасно адаптирующиеся к лабораторным условиям, сочетают в себе одновременно высокую общую резистентность при достаточной чувствительности отдельных физиологических и поведенческих реакций по отношению к различного рода загрязнениям. Кроме того, по поведенческим актам и росту мидий, например, можно осуществлять не только тестирование загрязнителей, но и проводить непрерывный контроль за качеством природных вод, особенно в прибрежье (губа Териберка, Кольский залив), - в местах выхода подводных трубопроводов и перетранспортировки газоконденсата, нефти и газа.[ ...]

Дафния магна - мелкое ракообразное, постоянный обитатель стоячих и слабопроточных водоемов. По способу питания - активный фильтратор, размер самок достигает 3 мм, самцы в 1,5-2 раза меньше. Дафнии используются для биотестирования водоемов.[ ...]

Разработанная методика позволит осуществлять анализ фактической экологической опасности веществ. При этом процедура анализа экологического риска нетоварных веществ будет основана на сопоставлении измеренного показателя биотестирования со шкалой уровня техногенного воздействия. Таким образом, вместо утверждаемых в настоящее время эколого-рыбохозяйственных нормативов для всех используемых нетоварных веществ необходимо утвердить только методику биотестирования и несколько шкал уровня техногенного воздействия на окружающую природную среду.[ ...]

Во Франции оценка качества водной среды по токсикологическим показателям является обязательной в “Системе контроля качества пресных вод”. Производственный токсикологический контроль сточных вод проводят более чем на 150 предприятиях. Для биотестирования применяют стандартный набор биотестов на острую токсичность с использованием бактерий, водорослей, дафний и рыб.[ ...]

При обсуждении результатов биотестового анализа водных объектов возникает вопрос о критерии токсичности, т.е. о выборе значений индекса токсичности, при которых вода оказывает или не оказывает токсическое воздействие на живые организмы. Методы биотестирования апробированы нами на модельных растворах с известным содержанием токсичных веществ и реальных водных объектах .[ ...]

Величины ДФ или АФ/Фт, полученные при построении световых кривых, характеризуют удельную фотосинтетическую и общую физиологическую активность водорослей и могут использоваться в качестве самостоятельного показателя их состояния, в частности при биоиндикации и биотестирования качества воды.[ ...]

Современное загрязнение почти всегда подразумевает наличие в окружающей среде целого комплекса факторов, совместное действие которых может приводить к неожиданным эффектам. Так, специалисты в области экотоксикологии отмечают факты несогласованности результатов биотестирования (токсичность) и химического анализа («благополучные» данные). В качестве одной из возможных причин могут быть комбинированные эффекты. В частности, было обнаружено, что накопление в почве мышьяка приводит к возникновению специфических микробных сообществ. Химическое загрязнение стимулирует развитие фитопатогенных микроорганизмов. Например, при повышенной концентрации мышьяка формируются фузариозно-нематодные комплексы, представляющие двойную опасность для высших растений (Вараксина и др., 2004).[ ...]

При создании новых рецептур многокомпонентных антисептиков на основе явления синергизма главной задачей является подбор оптимального соотношения составных ингредиентов. Рецептуры антисептиков с улучшенными эксплуатационными и экологическими свойствами создают на основе биотестирования по методике "Лаборатории защиты древесины ЦНИИМОД" , описанной выше (1).[ ...]

Под биотестом понимают оценку (испытание) в строго определенных условиях действия вещества или комплекса веществ на водные организмы путем регистрации изменений того или иного биологического (или физиолого-биохимического) показателя исследуемого объекта, сравниваемого с контрольным. Подопытные организмы именуются тест-объектами (тест-организмами), а процесс проведения испытаний-биотестированием .[ ...]

Весьма информативными при экологических оценках водных экосистем являются характеристики состояния и развития всех экологических групп водного сообщества. При выделении зон чрезвычайной экологической ситуации и экологического бедствия используются показатели по бактериопланкто-ну, фитопланктону, зоопланктону и ихтиофауне. Определение степени токсичности вод проводится также на основе биотестирования преимущественно на низших ракообразных. При этом уровень токсичности водной массы должен определяться на всех основных фазах гидрологического цикла. Параметры предложенных показателей должны наблюдаться на данной территории постоянно на протяжении достаточно длительного времени с минимальным периодом не менее 3 лет.[ ...]

Приводятся данные по изменению физико-химических свойств буровых растворов в забойных условиях. Показано, что прогнозирование токсичности отходов бурения при бурении скважин становится невозможным. На примере многочисленных экологических исследований отходов бурения установлено, что наиболее уязвимым звеном экосистемы рыбохозяйственного водоема являются дафнии. В связи с этим обосновывается целесообразность применения метода биотестирования буровых растворов на стадии разработки и отходов бурения в процессе строительства скважин.[ ...]

Между тем многие из перечисленных трудностей удается преодолеть, если в традиционную схему экологического контроля ввести методы биомониторинга. Эти методы основаны на регистрации суммарного токсического действия на специальные тест-организмы сразу всех или многих из компонентов загрязнения и, таким образом, позволяют быстро и с минимальными затратами оценить, является ли анализируемая проба загрязненной или нет. После достаточно масштабной, но малозатратной процедуры биотестирования дорогостоящему химическому анализу подвергаются лишь те образцы, которые вызывают сомнения относительно их экологической безопасности. Биоиндикационный анализ качества среды, основанный на определении состояния организмов, живущих на обследуемой территории, позволяет оценить воздействие на них всех загрязнителей в течение длительного времени, что дает возможность получить интегральный показатель уровня загрязнения среды. К сожалению, из-за недостаточной научно-методической, технической и нормативно-правовой проработки биологические методы пока лишь ограниченно используются в системе экологического мониторинга.[ ...]

Индикационные критерии оценки. В последние годы б ио индикация получила достаточно широкое распространение при оценках качества поверхностных вод. Она по функциональному состоянию (поведению) тест-объектов (ракообразные - дафнии, водоросли - хлорелла, рыбы - гуппи) позволяет ранжировать воды по классам состояний (нормы, риска, кризиса, бедствия) и, по существу, дает интегральную оценку их качества и определяет возможность использования воды для питьевых целей. Лимитирующим фактором использования метода биотестирования является продолжительный срок проведения анализа (не менее 96 ч) и отсутствие информации о химическом составе воды. Пример использования биотестов для определения качества воды приводится в табл. 21.[ ...]

В качестве биотеста можно использовать одинаковые проростки гороха, фасоли, которые отбирают из партии после их прорастания. У горошин срезают половинки обеих семядолей, чтобы у них было ровное ложе. Фильтровальную бумагу, лежащую на дне химического стакана емкостью 200-250 мл смачивают 5 мл опытного раствора, на дно помещают по 5 подготовленных горошин, закрывают крышкой от чашки Петри. После того, как горошины вырастут на высоту 5-7 см и более (до крышки стакана), производят их измерение. Контроль - горошины на дистиллированной воде. Подсчет проводится так же, как и при биотестировании по прорастанию семян.[ ...]

В целях определения экологического состояния водоемов используют результаты гидробиологических наблюдений, которые дают наиболее полную информацию. Биоиндикация загрязнения водоемов включает большой набор показателей, охватывающих основные трофические уровни водной экосистемы: фитопланктон, зоопланктон, бентос и другие. При этом суммирующими (интегральными) показателями, которые способны охарактеризовать общий уровень загрязнения вод всем комплексом токсичных веществ и, следовательно, опасность водной среды для гидробионтов, являются битестовые (токсикологические) показатели. Соответствующий токсикологический анализ проводится с помощью приемов и методов биотестирования токсичности.[ ...]

К этой же группе методов следует отнести мониторинг - периодическое или непрерывное слежение за состоянием экологических объектов и за качеством среды. Большое практическое значение имеет регистрация состава и количества вредных примесей в воде, воздухе, почве, растениях в зонах антропогенного загрязнения, а также исследования переноса загрязнителей в разных средах. В настоящее время техника экологического мониторинга быстро развивается, используя новейшие методы физико-химического экспресс-анализа, дистанционного зондирования, телеметрии и компьютерной обработки данных. Важным средством экологического мониторинга, позволяющим получить интегральную оценку качества среды, являются биоиндикация и биотестирование - использование для контроля состояния среды некоторых организмов, особо чувствительных к изменениям среды и к появлению в ней вредных примесей.[ ...]

Оценена пространственная вариабельность (в пределах участка 100x100 м) загрязненности лесной подстилки тяжелыми металлами (Си, Сё, РЬ, 2п), ее кислотности и фитотоксичности (по корневому тесту на проростках из генетически однородной выборки одуванчика лекарственного). Подстилка собрана в трех зонах с разным уровнем токсической нагрузки на территории, подверженной многолетнему полиметаллическому загрязнению выбросами медеплавильного завода на Среднем Урале. Разброс фитотоксичности максимален на участке со средним уровнем загрязнения, где отмечены как очень высокие, так и очень низкие значения, что приводит к возникновению существенной нелинейности в дозовой зависимости. Фитотоксичность подстилки в первую очередь определяют обменные формы металлов. Обнаружен резко выраженный антагонизм между тяжелыми металлами и кислотностью при биотестировании образцов с максимально загрязненного участка.[ ...]

В связи с этим представляют интерес результаты исследований по ряду ключевых вопросов безопасного обращения с веществами и материалами в бурении. В общем случае используемые и образующиеся в бурении вещества можно разделить на две категории - товарные (промышленная продукция) и нетоварные (буровые технологические жидкости и технологические отходы бурения и испытания скважины). Принципиальные отличия между этими категориями веществ являются веским основанием для того, чтобы по-разному подходить к оценке их экологичности. Однако в нормативных документах федерального уровня эта специфика не учитывается и предусматривается единый подход к оценке экологической опасности веществ путем определения значения их предельно допустимой концентрации в компонентах окружающей природной среды. Применительно к нетоварным веществам целесообразно перейти от нормирования содержания вещества в окружающей среде к нормированию его воздействия. Эта задача может быть решена путем комплексного биотестирования нетоварных веществ. В целях отработки методики таких исследований проведено изучение отработанного бурового раствора и шлама с использованием различных тест-объектов, результаты которого изложены в настоящем обзоре.

Биотестирование-метод оценки качества среды обитания (токсичности веществ) с помощью опытов с тест объектами.в пробы природной воды помещают определенное кол-во (обычно 10) тест-объектов и по истеч. Некоторого времени сравнивают с контролем.(на примере дафний: для определения острой токсичности необходимо 4 дня,для хронической токсичности -20-24 дня.)пробу донных отложений высушивают,делают вытяжку,дальше все по схеме с дафниями

    Биотестирование в оценке токсичности сточных вод

При исследовании сточных вод на токсичность не допускается отбор разовой пробы.кол-во необходимых порций выбирают на основе опыта проведения анализа(согласно методическим указаниям и ГОСТам)обычно отбирают пробы каждый час в течение суток,потом все тщательно перемешивается и для биотестирования берется необходимое количество воды.пробы,взятые для исследования токсичности нельзя консервировать.и тут все как в 1-м вопросе: две банки с исследуемой водой и контроль

    Биотестирование в оценке токсичности химических веществ. Показатели токсичности (LC50, LD50 и др.)

Токсичность химических веществ определяется летальной дозой(для теплокровных тест-объектов) и летальной концентрацией(для водных). LC50(лет.конц.)-такая конц в-Ва, которая вызывает гибель 50% тест ор-мов за установленное время.в качестве тест-объектов используются и водоросли,для них невозможно определить LC50, поэтому для них используется показатель IC50 (ингибирующая концентрация-замедление прироста культуры).для определения токсичности хим в-ва его разводят в воде в соотношении 1/10,1/100,1/1000. Берут 2 пробы (банки) и контроль.по истечению указанного времени сравнивают пробы с контролем, подбирается такая конц в-ва,чтоб точно определить LC50

    Тест-организмы, используемые в биотестировании. Критерии выбора тест-организмов

Тест-объект - организм,используемый при оценке токсичности веществ,донных отложений,вод и почв.это специально выращенный в лабораторных условиях организм,разной систематической принадлежности (крысы,водоросли,простейшие,рыбки) Требования к ним: генетически однородны(чистые линии),адаптированы к лабораторным условиям,в идеале,реакция не должна зависеть от сезонных и суточных циклов.набор тест объектов определяется методиками

    Тест-функции

Тест-функция - критерий токсичности,используемый в биотестировании для характеристики отклика тест-объекта на повреждаюшее (негативное) действие среды. Напр.: смертность/выживаемость(обычно исп. для простейших,насекомых,ракообразных,рыб),плодовитость/кол-во потомства,время его появления,появление аномальных отклонений.для растений- скорость прорастания семян,длинна первичных корешков и т.п.

    Основные критерии оценки токсичности по результатам биотестирования

Токсический эффект- изменение любых показателей жизнедеятельности под воздействием токсикантов,зависит от особенностей в-в. При гибели в пробе <10% от контроля можно говорить о том,что среда не токсична.10-50% - среда безвредна.> 50% - среда токсична

    Отбор, транспортировка проб, подготовка их к биотестированию

Для получения достоверной информации о токсичных свойствах пробы, ее необходимо правильно отобрать и хранить до выполнения теста.Используя карту или схему реки, выбирают места отборов проб (станции). Для более точной оценки качества воды на каждой станции отбираются несколько проб. Проба отжимается и переносится в пластиковый контейнер.биотестирование проб воды проводят не позднее 6 часов после их отбора.при длительной перевозки пробы возможно снижение ее температуры до +4 градусов

    Особенности острых и хронических опытов по биотестированию

тест на острую токсичность выражается в гибели организмов за определенный промежуток времени (то нескольких секунд од нескольких суток).Хроническая токсичность проявляется только через несколько суток и,как правило,не ведет к быстрой гибели организма,выражается в нарушении жизненно важных функций,возникновении токсикозов



Похожие статьи