Методы вычисления пределов по видам типу. Методы решения пределов

15.10.2019

Математика — наука, строящая мир. Как учёный, так и простой человек — никто не сможет обойтись без неё. Сначала маленьких детей учат считать, потом складывать, вычитать, умножать и делить, к средней школе в ход вступают буквенные обозначения, а в старшей без них уже не обойтись.

Но сегодня речь пойдёт о том, на чём строится вся известная математика. О сообществе чисел под названием «пределы последовательностей».

Что такое последовательности и где их предел?

Значение слова «последовательность» трактовать нетрудно. Это такое построение вещей, где кто-то или что-то расположены в определённом порядке или очереди. Например, очередь за билетами в зоопарк — это последовательность. Причём она может быть только одна! Если, к примеру, посмотреть на очередь в магазин — это одна последовательность. А если один человек из этой очереди вдруг уйдёт, то это уже другая очередь, другой порядок.

Слово «предел» также легко трактуется — это конец чего-либо. Однако в математике пределы последовательностей — это такие значения на числовой прямой, к которым стремится последовательность чисел. Почему стремится, а не заканчивается? Всё просто, у числовой прямой нет конца, а большинство последовательностей, как лучи, имеют только начало и выглядят следующим образом:

х 1 , х 2 , х 3 , …х n …

Отсюда определение последовательности — функция натурального аргумента. Более простыми словами — это ряд членов некоторого множества.

Как строится числовая последовательность?

Простейший пример числовой последовательности может выглядеть так: 1, 2, 3, 4, …n…

В большинстве случаев для практических целей последовательности строятся из цифр, причём каждый следующий член ряда, обозначим его Х, имеет своё имя. Например:

х 1 — первый член последовательности;

х 2 — второй член последовательности;

х 3 — третий член;

х n — энный член.

В практических методах последовательность задаётся общей формулой, в которой есть некоторая переменная. Например:

Х n =3n, тогда сам ряд чисел будет выглядеть так:

Стоит не забывать, что при общей записи последовательностей можно использовать любые латинские буквы, а не только Х. Например: y, z, k и т. д.

Арифметическая прогрессия как часть последовательностей

Прежде чем искать пределы последовательностей, целесообразно поглубже окунуться в само понятие подобного числового ряда, с которым все сталкивались, будучи в средних классах. Арифметическая прогрессия — это ряд чисел, в котором разница между соседними членами постоянна.

Задача: «Пусть а 1 =15, а шаг прогрессии числового ряда d=4. Постройте первые 4 члена этого ряда»

Решение: а 1 = 15 (по условию) — первый член прогрессии (числового ряда).

а 2 = 15+4=19 — второй член прогрессии.

а 3 =19+4=23 — третий член.

а 4 =23+4=27 — четвёртый член.

Однако подобным методом трудно добраться до крупных значений, например до а 125. . Специально для таких случаев была выведена удобная для практики формула: а n =a 1 +d(n-1). В данном случае а 125 =15+4(125-1)=511.

Виды последовательностей

Большинство последовательностей бесконечны, это стоит запомнить на всю жизнь. Существует два интересных вида числового ряда. Первый задаётся формулой а n =(-1) n . Математики часто называют эту последовательностей мигалкой. Почему? Проверим её числовой ряд.

1, 1, -1 , 1, -1, 1 и т. д. На подобном примере становится ясно, что числа в последовательностях могут легко повторяться.

Факториальная последовательность. Легко догадаться — в формуле, задающей последовательность, присутствует факториал. Например: а n = (n+1)!

Тогда последовательность будет выглядеть следующим образом:

а 2 = 1х2х3 = 6;

а 3 = 1х2х3х4 =24 и т. д.

Последовательность, заданная арифметической прогрессией, называется бесконечно убывающей, если для всех её членов соблюдается неравенство -1

а 3 = - 1/8 и т. д.

Существует даже последовательность, состоящая из одного и того же числа. Так, а n =6 состоит из бесконечного множества шестёрок.

Определение предела последовательности

Пределы последовательностей давно существуют в математике. Конечно, они заслужили свое собственное грамотное оформление. Итак, время узнать определение пределов последовательностей. Для начала рассмотрим подробно предел для линейной функции:

  1. Все пределы обозначаются сокращённо lim.
  2. Запись предела состоит из сокращения lim, какой-либо переменной, стремящейся к определённому числу, нулю или бесконечности, а также из самой функции.

Легко понять, что определение предела последовательности может быть сформулировано следующим образом: это некоторое число, к которому бесконечно приближаются все члены последовательности. Простой пример: а x = 4x+1. Тогда сама последовательность будет выглядеть следующим образом.

5, 9, 13, 17, 21…x …

Таким образом, данная последовательность будет бесконечно увеличиваться, а, значит, её предел равен бесконечности при x→∞, и записывать это следует так:

Если же взять похожую последовательность, но х будет стремиться к 1, то получим:

А ряд чисел будет таким: 1.4, 1.8, 4.6, 4.944 и т. д. Каждый раз нужно подставлять число всё больше приближеннее к единице (0.1, 0.2, 0.9, 0.986). Из этого ряда видно, что предел функции — это пять.

Из этой части стоит запомнить, что такое предел числовой последовательности, определение и метод решения простых заданий.

Общее обозначение предела последовательностей

Разобрав предел числовой последовательности, определение его и примеры, можно приступить к более сложной теме. Абсолютно все пределы последовательностей можно сформулировать одной формулой, которую обычно разбирают в первом семестре.

Итак, что же обозначает этот набор букв, модулей и знаков неравенств?

∀ — квантор всеобщности, заменяющий фразы «для всех», «для всего» и т. п.

∃ — квантор существования, в данном случае обозначает, что существует некоторое значение N, принадлежащее множеству натуральных чисел.

Длинная вертикальная палочка, следующая за N, значит, что данное множество N «такое, что». На практике она может означать «такая, что», «такие, что» и т. п.

Для закрепления материала прочитайте формулу вслух.

Неопределённость и определённость предела

Метод нахождения предела последовательностей, который рассматривался выше, пусть и прост в применении, но не так рационален на практике. Попробуйте найти предел для вот такой функции:

Если подставлять различные значения «икс» (с каждым разом увеличивающиеся: 10, 100, 1000 и т. д.), то в числителе получим ∞, но в знаменателе тоже ∞. Получается довольно странная дробь:

Но так ли это на самом деле? Вычислить предел числовой последовательности в данном случае кажется достаточно легко. Можно было бы оставить всё, как есть, ведь ответ готов, и получен он на разумных условиях, однако есть ещё один способ специально для таких случаев.

Для начала найдём старшую степень в числителе дроби — это 1, т. к. х можно представить как х 1 .

Теперь найдём старшую степень в знаменателе. Тоже 1.

Разделим и числитель, и знаменатель на переменную в высшей степени. В данном случае дробь делим на х 1 .

Далее найдём, к какому значению стремится каждое слагаемое, содержащее переменную. В данном случае рассматриваются дроби. При х→∞ значение каждой из дробей стремится к нулю. При оформлении работы в писменном виде стоит сделать такие сноски:

Получается следующее выражение:

Конечно же, дроби, содержащие х, не стали нулями! Но их значение настолько мало, что вполне разрешено не учитывать его при расчётах. На самом же деле х никогда не будет равен 0 в данном случае, ведь на ноль делить нельзя.

Что такое окрестность?

Предположим, в распоряжении профессора сложная последовательность, заданная, очевидно, не менее сложной формулой. Профессор нашёл ответ, но подходит ли он? Ведь все люди ошибаются.

Огюст Коши в своё время придумал отличный способ для доказательства пределов последовательностей. Его способ назвали оперированием окрестностями.

Предположим, что существует некоторая точка а, её окрестность в обе стороны на числовой прямой равна ε («эпсилон»). Поскольку последняя переменная — расстояние, то её значение всегда положительно.

Теперь зададим некоторую последовательность х n и положим, что десятый член последовательности (x 10) входит в окрестность а. Как записать этот факт на математическом языке?

Допустим, х 10 находится правее от точки а, тогда расстояние х 10 -а<ε, однако, если расположить «икс десятое» левее точки а, то расстояние получится отрицательным, а это невозможно, значит, следует занести левую часть неравенства под модуль. Получится |х 10 -а|<ε.

Теперь пора разъяснить на практике ту формулу, о которой говорилось выше. Некоторое число а справедливо называть конечной точкой последовательности, если для любого её предела выполняется неравенство ε>0, причём вся окрестность имеет свой натуральный номер N, такой, что всё члены последовательности с более значительными номерами окажутся внутри последовательности |x n - a|< ε.

С такими знаниями легко осуществить решение пределов последовательности, доказать или опровергнуть готовый ответ.

Теоремы

Теоремы о пределах последовательностей — важная составляющая теории, без которой невозможна практика. Есть всего лишь четыре главных теоремы, запомнив которые, можно в разы облегчить ход решения или доказательства:

  1. Единственность предела последовательности. Предел у любой последовательности может быть только один или не быть вовсе. Тот же пример с очередью, у которой может быть только один конец.
  2. Если ряд чисел имеет предел, то последовательность этих чисел ограничена.
  3. Предел суммы (разности, произведения) последовательностей равен сумме (разности, произведению) их пределов.
  4. Предел частного от деления двух последовательностей равен частному пределов тогда и только тогда, когда знаменатель не обращается в ноль.

Доказательство последовательностей

Иногда требуется решить обратную задачу, доказать заданный предел числовой последовательности. Рассмотрим на примере.

Доказать, что предел последовательности, заданной формулой, равен нолю.

По рассмотренному выше правилу, для любой последовательности должно выполняться неравенство |x n - a|<ε. Подставим заданное значение и точку отсчёта. Получим:

Выразим n через «эпсилон», чтобы показать существование некоего номера и доказать наличие предела последовательности.

На этом этапе важно напомнить, что «эпсилон» и «эн» - числа положительные и не равны нулю. Теперь можно продолжать дальнейшие преобразования, используя знания о неравенствах, полученные в средней школе.

Откуда получается, что n > -3 + 1/ε. Поскольку стоит помнить, что речь идёт о натуральных числах, то результат можно округлить, занеся его в квадратные скобки. Таким образом, было доказано, что для любого значения окрестности «эпсилон» точки а=0 нашлось значение такое, что выполняется начальное неравенство. Отсюда можно смело утверждать, что число а есть предел заданной последовательности. Что и требовалось доказать.

Вот таким удобным методом можно доказать предел числовой последовательности, какой бы сложной она на первый взгляд ни была. Главное — не впадать в панику при виде задания.

А может, его нет?

Существование предела последовательности необязательно на практике. Легко можно встретить такие ряды чисел, которые действительно не имеют конца. К примеру, та же «мигалка» x n = (-1) n . очевидно, что последовательность, состоящая всего лишь из двух цифр, циклически повторяющихся, не может иметь предела.

Та же история повторяется с последовательностями, состоящими из одного числа, дробными, имеющими в ходе вычислений неопределённость любого порядка (0/0, ∞/∞, ∞/0 и т. д.). Однако следует помнить, что неверное вычисление тоже имеет место быть. Иногда предел последоватей найти поможет перепроверка собственного решения.

Монотонная последовательность

Выше рассматривались несколько примеров последовательностей, методы их решения, а теперь попробуем взять более определённый случай и назовём его «монотонной последовательностью».

Определение: любую последовательность справедливо называть монотонно возрастающей, если для нее выполняется строгое неравенство x n < x n +1. Также любую последовательность справедливо называть монотонной убывающей, если для неё выполняется неравенство x n > x n +1.

Наряду с этими двумя условиями существуют также подобные нестрогие неравенства. Соответственно, x n ≤ x n +1 (неубывающая последовательность) и x n ≥ x n +1 (невозрастающая последовательность).

Но легче понимать подобное на примерах.

Последовательность, заданная формулой х n = 2+n, образует следующий ряд чисел: 4, 5, 6 и т. д. Это монотонно возрастающая последовательность.

А если взять x n =1/n, то получим ряд: 1/3, ¼, 1/5 и т. д. Это монотонно убывающая последовательность.

Предел сходящейся и ограниченной последовательности

Ограниченная последовательность — последовательность, имеющая предел. Сходящаяся последовательность — ряд чисел, имеющий бесконечно малый предел.

Таким образом, предел ограниченной последовательности — это любое действительное или комплексное число. Помните, что предел может быть только один.

Предел сходящейся последовательности — это величина бесконечно малая (действительная или комплексная). Если начертить диаграмму последовательности, то в определённой точке она будет как бы сходиться, стремиться обратиться в определённую величину. Отсюда и название — сходящаяся последовательность.

Предел монотонной последовательности

Предел у такой последовательности может быть, а может и не быть. Сначала полезно понять, когда он есть, отсюда можно оттолкнуться при доказательстве отсутствия предела.

Среди монотонных последовательностей выделяют сходящуюся и расходящуюся. Сходящаяся — это такая последовательность, которая образована множеством х и имеет в данном множестве действительный или комплексный предел. Расходящаяся — последовательность, не имеющая предела в своём множестве (ни действительного, ни комплексного).

Причём последовательность сходится, если при геометрическом изображении её верхний и нижний пределы сходятся.

Предел сходящейся последовательности во многих случаях может быть равен нулю, так как любая бесконечно малая последовательность имеет известный предел (ноль).

Какую сходящуюся последовательность ни возьми, они все ограничены, однако далеко не все ограниченные последовательности сходятся.

Сумма, разность, произведение двух сходящихся последовательностей - также сходящаяся последовательность. Однако частное может быть также сходящейся, если оно определено!

Различные действия с пределами

Пределы последовательностей — это такая же существенная (в большинстве случаев) величина, как и цифры и числа: 1, 2, 15, 24, 362 и т. д. Получается, что с пределами можно проводить некоторые операции.

Во-первых, как и цифры и числа, пределы любых последовательностей можно складывать и вычитать. Исходя из третьей теоремы о пределах последовательностей, справедливо следующее равенство: предел суммы последовательностей равен сумме их пределов.

Во-вторых, исходя из четвёртой теоремы о пределах последовательностей, справедливо следующее равенство: предел произведения n-ого количества последовательностей равен произведению их пределов. То же справедливо и для деления: предел частного двух последовательностей равен частному их пределов, при условии что предел не равен нулю. Ведь если предел последовательностей будет равен нулю, то получится деление на ноль, что невозможно.

Свойства величин последовательностей

Казалось бы, предел числовой последовательности уже разобран довольно подробно, однако не раз упоминаются такие фразы, как «бесконечно маленькие» и «бесконечно большие» числа. Очевидно, если есть последовательность 1/х, где x→∞, то такая дробь бесконечно малая, а если та же последовательность, но предел стремится к нулю (х→0), то дробь становится бесконечно большой величиной. А у таких величин есть свои особенности. Свойства предела последовательности, имеющей какие угодно малые или большие величины, состоят в следующем:

  1. Сумма любого количества сколько угодно малых величин будет также малой величиной.
  2. Сумма любого количества больших величин будет бесконечно большой величиной.
  3. Произведение сколь угодно малых величин бесконечно мало.
  4. Произведение сколько угодно больших чисел — величина бесконечно большая.
  5. Если исходная последовательность стремится к бесконечно большому числу, то величина, ей обратная, будет бесконечно малой и стремиться к нулю.

На самом деле вычислить предел последовательности - не такая сложная задача, если знать простой алгоритм. Но пределы последовательностей — тема, требующая максимума внимания и усидчивости. Конечно, достаточно просто уловить суть решения подобных выражений. Начиная с малого, со временем можно достигнуть больших вершин.

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является сайт.

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Похожие статьи