Все в мире относительно. Какой фильм научит вас видеть мир иначе? Всё в мире относительно

30.09.2019

Алексей Чуличков

Все ли в мире
ОТНОСИТЕЛЬНО?

Мне вспоминается старый анекдот о человеке, ползающем ночью под фонарем в поисках потерянного кошелька, и на вопрос о том, где он его обронил, машущего рукой в темноту. Cмех вызывает объяснение потерпевшего: «Я ищу его здесь потому, что здесь светлее!»

Несмотря на такое многократно осмеянное поведение мы по-прежнему очень редко осмеливаемся искать там, где темно, хотя и очевидно, что «на свету» нужного нам нет. Шагнуть в темноту из освещенного круга понятных идей осмеливается не каждый, но без этого не будет никаких открытий...

Среди тех, кто пересек этот рубеж – Альберт Эйнштейн. Кому-то он представляется в виде чудаковатого «Альберта Германовича», который только благодаря подсказке известного любителя пива догадывается, что «E=mc2». Более просвещенные знают его как великого физика, связавшего два привычных понятия в единое пространство-время и увидевшего его кривизну. Но большинство всерьез убеждено, что фраза «все в мире относительно» принадлежит именно ему. И успокоенно объявляют: «Ну, раз сам Эйнштейн так считает – то значит, точно. Нет в мире ничего абсолютного. А значит, нет ни идеалов, ни моральных ценностей, а все зависит от того, с какой точки зрения смотреть».

А между тем, теория его ничуть не менее заслуживает названия «Теория абсолютностей»...

До своей всемирной известности А. Эйнштейн слыл, мягко говоря, чудаком и неудачником. Его выгнали из гимназии за год до ее окончания. Блестяще выдержав вступительные экзамены в Цюрихский политехникум, знаменитый в те времена европейский центр научных знаний, он был принят туда лишь через год из-за отсутствия аттестата зрелости. После его окончания два года не мог найти постоянной работы, да и потом несколько лет служил в бюро патентов в должности «эксперта 3-го разряда». Его нежелание «искать там, где светло», раздражало его коллег, сослуживцев, членов его семьи. Но темнота неизвестности манила его, несмотря на нужду и даже голод, преследовавшие его в период после окончания Политехникума.

Первая статья, содержащая результаты исследований, которые позднее были названы теорией относительности, вышла из печати в 1905 г. в ведущем физическом журнале того времени «Анналы физики». Ее автору было 26 лет. Теория относительности родилась из рассмотрения парадокса, с которым столкнулась физика на рубеже XIX–XX вв., и связана была с анализом распространения света в среде.

На первый взгляд, проблема движения не кажется нам очень уж интересной, и даже странно, что многие серьезные ученые потратили на ее изучение свои силы и время. Действительно, все мы видим вокруг себя некоторое пространство, в котором движутся или покоятся тела. Но вот беда – для различных наблюдателей, движущихся один относительно другого, неподвижными будут разные предметы. Например, если мы едем в поезде, то для нас неподвижны предметы, лежащие в купе, в то время как они движутся для человека, стоящего на платформе, мимо которой проносится поезд. Для большинства людей в житейском смысле неподвижно то, что не движется относительно Земли. Но как быть с гипотетическим наблюдателем, находящимся на Солнце? И вообще, можно ли найти во вселенной нечто «абсолютно неподвижное», с чем можно было бы соотносить движение любого предмета?

Одно время казалось, что ответ на этот вопрос положителен. На основании ряда экспериментов (в частности, основанных на наблюдении смещения видимого положения звезд при движении Земли) была сформулирована гипотеза о том, что свет представляет собой волны, распространяющиеся в «абсолютно неподвижной» среде, названной эфиром. Чтобы понять, с какой скоростью мы несемся в неподвижном пространстве, занятым эфиром, американским физиком Альбертом Майкельсоном, а позже и его соотечественником Эдвардом Морли были поставлены весьма точные опыты, которые, к величайшему удивлению ученых, эфира не обнаружили!

Ученые выдвинули ряд остроумнейших объяснений результатам опытов Майкельсона и Морли. Стало ясно, что наши представления о многих привычных вещах, мягко говоря, неточны. Чтобы понять, в каком положении оказались физики, можно сказать, что самое простое и в то же время абсурдное для рубежа XIX–XX вв. объяснение опытов Майкельсона и Морли состояло в том, что Земля абсолютно неподвижна! Попытка спасти «эфирную гипотезу» предположением о том, что Земля увлекает за собой часть эфира, «прилипшего» к ее поверхности, оказалась несостоятельной, так как предположение это противоречило другой серии опытов. Ирландский ученый Джордж Фитцджеральд предложил считать, что эфир «давит» на тела, движущиеся сквозь него, заставляя их сжиматься, причем расчеты для тел, движущихся со скоростью света, приводили к тому, что их длина в направлении движения должна равняться нулю. Это же объяснение даже в более общем виде предложил голландец Хендрик Лоренц; в частности, по его мысли, при движении через «эфирный ветер» часы замедляют свой ход.

Эти объяснения напоминают нам сейчас попытки «искать там, где светло»: они не могли оторваться от представлений об эфире и являлись подпорками под эту гипотезу. Эйнштейн же осмелился «шагнуть в темноту» и сделать то, что потом стало чуть ли не нормой для всей физики XX в.: отбросить то, что противоречит наблюдениям, и оставшееся считать физической реальностью, несмотря на всю кажущуюся абсурдность.

Эйнштейн отказался от существования эфира, отказался от понятия абсолютного покоя, от единого времени, текущего везде и для всех с одинаковым темпом, от понятия абсолютного размера, который одинаково характеризует протяженность предмета для всех наблюдателей. Отказался от столь очевидного правила сложения скоростей: для всех, что плавал на лодке по реке, стрелял на ходу из лука или ходил по мчащемуся вагону поезда совершенно ясно, что скорость лодки складывается из скорости течения воды и скорости лодки относительно воды и т.п. Однако это оказалось не так для больших скоростей, близких к скорости света. Итак, рухнули все привычные свойства движения и покоя. А что взамен?

Во-первых, Эйнштейн ввел два основных постулата. Первый из них звучит, скорее, как философский, а не физический закон: «Не существует способа, чтобы установить, находится ли тело в состоянии покоя или равномерного движения». Этот постулат, по сути, утверждает, что абсолютного покоя не существует. Второй постулат – более физический: «Независимо от движения своего источника свет движется через пустое пространство с одинаковой скоростью». Его следствием является то, что скорость света одинакова для любого наблюдателя во вселенной.

А во-вторых, взамен прежних появились новые абсолюты, не столь очевидные в повседневности, но единственные, которые могли создать непротиворечивую картину мира. Об одном из них речь шла в предыдущем абзаце – скорость света абсолютна! Второй абсолют связывает воедино пространство и время: если каждое событие описывать четырьмя числами – тремя пространственными координатами (x, y, z) и четвертой – временем t события, то для любого наблюдателя одинаковым является пространственно-временной интервал между двумя событиями, величина которого дается формулой

s=(x2+y2+z2–c2t2)1/2, где c – скорость света.

Множество следствий из приведенных постулатов весьма экзотичны, их трудно принять обыденным сознанием (подтверждением этому служат множество дискуссий, которые ведутся в том числе и в Интернете теми, кто не дал себе труд достаточно глубоко изучить теорию относительности). Тем не менее, в верности этой теории убеждают не только экспериментальные подтверждения, но и удивительной красоты принципы симметрии природы, которые встают за ней. Например, теория относительности утверждает, что в физической системе все законы действуют вне зависимости от того, движется она или покоится. Теория утверждает равноправие всех точек пространства и времени, всех направлений в пространстве, утверждает новую физическую реальность – пространство-время со своей симметрией, устанавливает связи между гравитацией и инерцией, между массой и энергией.

Многие понятия, прежде считавшиеся самостоятельными и никак между собой не связанными, в теории относительности представляются как разные грани единой реальности. Благодаря ей мир сейчас видится нами значительно более «единым», чем в классической физике, тем самым на новом уровне возрождаются представления древних культур о всеобщей взаимосвязи всего сущего.

Чего не знает современная наука Коллектив авторов

Все ли в мире относительно?

Все ли в мире относительно?

Мне вспоминается старый анекдот о человеке, ползающем ночью под фонарем в поисках потерянного кошелька, и на вопрос о том, где он его обронил, машущего рукой в темноту. Смех вызывает объяснение потерпевшего: «Я ищу его здесь потому, что здесь светлее!»

Несмотря на такое многократно осмеянное поведение мы по-прежнему очень редко осмеливаемся искать там, где темно, хотя и очевидно, что «на свету» нужного нам нет. Шагнуть в темноту из освещенного круга понятных идей осмеливается не каждый, но без этого не будет никаких открытий…

Среди тех, кто пересек этот рубеж, – Альберт Эйнштейн. Кому-то он представляется в виде чудаковатого «Альберта Германовича», который только благодаря подсказке известного любителя пива догадывается, что «E=mc 2 ». Более просвещенные знают его как великого физика, связавшего два привычных понятия в единое пространство-время и увидевшего его кривизну. Но большинство всерьез убеждено, что фраза «все в мире относительно» принадлежит именно ему. И успокоенно объявляют: «Ну, раз сам Эйнштейн так считает – то значит, точно. Нет в мире ничего абсолютного. А значит, нет ни идеалов, ни моральных ценностей, а все зависит от того, с какой точки зрения смотреть».

А между тем, теория его ничуть не менее заслуживает названия «Теория абсолютностей»…

…До своей всемирной известности А. Эйнштейн слыл, мягко говоря, чудаком и неудачником. Его выгнали из гимназии за год до ее окончания. Блестяще выдержав вступительные экзамены в Цюрихский политехникум, знаменитый в те времена европейский центр научных знаний, он был принят туда лишь через год из-за отсутствия аттестата зрелости. После его окончания два года не мог найти постоянной работы, да и потом несколько лет служил в бюро патентов в должности «эксперта 3-го разряда». Его нежелание «искать там, где светло», раздражало его коллег, сослуживцев, членов его семьи. Но темнота неизвестности манила его, несмотря на нужду и даже голод, преследовавшие его в период после окончания Политехникума.

Первая статья, содержащая результаты исследований, которые позднее были названы теорией относительности, вышла из печати в 1905 г. в ведущем физическом журнале того времени «Анналы физики». Ее автору было 26 лет. Теория относительности родилась из рассмотрения парадокса, с которым столкнулась физика на рубеже XIX–XX вв., и связана была с анализом распространения света в среде.

На первый взгляд, проблема движения не кажется нам очень уж интересной, и даже странно, что многие серьезные ученые потратили на ее изучение свои силы и время. Действительно, все мы видим вокруг себя некоторое пространство, в котором движутся или покоятся тела. Но вот беда – для различных наблюдателей, движущихся один относительно другого, неподвижными будут разные предметы. Например, если мы едем в поезде, то для нас неподвижны предметы, лежащие в купе, в то время как они движутся для человека, стоящего на платформе, мимо которой проносится поезд. Для большинства людей в житейском смысле неподвижно то, что не движется относительно Земли. Но как быть с гипотетическим наблюдателем, находящимся на Солнце? И вообще, можно ли найти во вселенной нечто «абсолютно неподвижное», с чем можно было бы соотносить движение любого предмета?

Одно время казалось, что ответ на этот вопрос положителен. На основании ряда экспериментов (в частности, основанных на наблюдении смещения видимого положения звезд при движении Земли) была сформулирована гипотеза о том, что свет представляет собой волны, распространяющиеся в «абсолютно неподвижной» среде, названной эфиром. Чтобы понять, с какой скоростью мы несемся в неподвижном пространстве, занятым эфиром, американским физиком Альбертом Майкельсоном, а позже и его соотечественником Эдвардом Морли были поставлены весьма точные опыты, которые, к величайшему удивлению ученых, эфира не обнаружили!

Ученые выдвинули ряд остроумнейших объяснений результатам опытов Майкельсона и Морли. Стало ясно, что наши представления о многих привычных вещах, мягко говоря, неточны. Чтобы понять, в каком положении оказались физики, можно сказать, что самое простое и в то же время абсурдное для рубежа XIX–XX вв. объяснение опытов Майкельсона и Морли состояло в том, что Земля абсолютно неподвижна! Попытка спасти «эфирную гипотезу» предположением о том, что Земля увлекает за собой часть эфира, «прилипшего» к ее поверхности, оказалась несостоятельной, так как предположение это противоречило другой серии опытов. Ирландский ученый Джордж Фитцджеральд предложил считать, что эфир «давит» на тела, движущиеся сквозь него, заставляя их сжиматься, причем расчеты для тел, движущихся со скоростью света, приводили к тому, что их длина в направлении движения должна равняться нулю. Это же объяснение даже в более общем виде предложил голландец Хендрик Лоренц; в частности, по его мысли, при движении через «эфирный ветер» часы замедляют свой ход.

Эти объяснения напоминают нам сейчас попытки «искать там, где светло»: они не могли оторваться от представлений об эфире и являлись подпорками под эту гипотезу. Эйнштейн же осмелился «шагнуть в темноту» и сделать то, что потом стало чуть ли не нормой для всей физики XX в.: отбросить то, что противоречит наблюдениям, и оставшееся считать физической реальностью, несмотря на всю кажущуюся абсурдность.

Эйнштейн отказался от существования эфира, отказался от понятия абсолютного покоя, от единого времени, текущего везде и для всех с одинаковым темпом, от понятия абсолютного размера, который одинаково характеризует протяженность предмета для всех наблюдателей. Отказался от столь очевидного правила сложения скоростей: для всех, что плавал на лодке по реке, стрелял на ходу из лука или ходил по мчащемуся вагону поезда совершенно ясно, что скорость лодки складывается из скорости течения воды и скорости лодки относительно воды и т. п. Однако это оказалось не так для больших скоростей, близких к скорости света. Итак, рухнули все привычные свойства движения и покоя. А что взамен?

Во-первых, Эйнштейн ввел два основных постулата. Первый из них звучит, скорее, как философский, а не физический закон: «Не существует способа, чтобы установить, находится ли тело в состоянии покоя или равномерного движения». Этот постулат, по сути, утверждает, что абсолютного покоя не существует. Второй постулат – более физический: «Независимо от движения своего источника свет движется через пустое пространство с одинаковой скоростью». Его следствием является то, что скорость света одинакова для любого наблюдателя во вселенной.

А во-вторых, взамен прежних появились новые абсолюты, не столь очевидные в повседневности, но единственные, которые могли создать непротиворечивую картину мира. Об одном из них речь шла в предыдущем абзаце – скорость света абсолютна! Второй абсолют связывает воедино пространство и время: если каждое событие описывать четырьмя числами – тремя пространственными координатами (x, y, z) и четвертой – временем t события, то для любого наблюдателя одинаковым является пространственно-временной интервал между двумя событиями, величина которого дается формулой

s = (x 2 + y 2 + z 2 – c 2 t 2) / 2,

где c – скорость света. Множество следствий из приведенных постулатов весьма экзотичны, их трудно принять обыденным сознанием (подтверждением этому служат множество дискуссий, которые ведутся в том числе и в Интернете теми, кто не дал себе труд достаточно глубоко изучить теорию относительности). Тем не менее в верности этой теории убеждают не только экспериментальные подтверждения, но и удивительной красоты принципы симметрии природы, которые встают за ней. Например, теория относительности утверждает, что в физической системе все законы действуют вне зависимости от того, движется она или покоится. Теория утверждает равноправие всех точек пространства и времени, всех направлений в пространстве, утверждает новую физическую реальность – пространство-время со своей симметрией, устанавливает связи между гравитацией и инерцией, между массой и энергией.

Многие понятия, прежде считавшиеся самостоятельными и никак между собой не связанными, в теории относительности представляются как разные грани единой реальности. Благодаря ей мир сейчас видится нами значительно более «единым», чем в классической физике, тем самым на новом уровне возрождаются представления древних культур о всеобщей взаимосвязи всего сущего.

Алексей Чуличков, д-р физ. – мат. наук, МГУ

Из книги 11 сентября 2001 автора Мейссан Тьерри

Записка Госдепартамента США относительно Усамы бин Ладина Для оправдания бомбардировок 28 августа 1998 года в Афганистане и Судане Госдепартамент распространил документационную записку, в которой он излагает легенду бин Ладина. 20 августа армия Соединенных Штатов

Из книги Нарушенные завещания автора Кундера Милан

ЕЩЕ ОДНО ЗАМЕЧАНИЕ ОТНОСИТЕЛЬНО НЕОБХОДИМОСТИ СОБЛЮДЕНИЯ ПОВТОРОВ И чуть дальше на той же странице Замка: «…Stimme nach Frieda gerafen wurde. „Frieda", sagte K. in Friedas Ohr und gab so den Ruf weiter».Что дословно означает: «…какой-то голос позвал Фриду. „Фрида", - сказал К. на ухо Фриде, передавая

Из книги Театр и его Двойник [сборник] автора Арто Антонен

1. Относительно содержания, то есть выбранных тем и сюжетов: Театр Жестокости будет отбирать сюжеты и темы, отвечающие тревоге и беспокойству нашего времени.Он не собирается отдавать кинематографу вопросы толкования Мифов о человеке и современной жизни. Он будет делать

Из книги Договор о несокращении вооружений автора Барабанов Михаил Сергеевич

2. Относительно формы Поскольку потребность театра вновь припасть к источникам вечно страстной поэзии, доступной чувствам самой отсталой и рассеянной части публики, можно удовлетворить через возвращение к старым примитивным Мифам, мы будем требовать именно от

Из книги Гора родила мышь. Бандеровскую автора Полищук Виктор

P.S. Россия обнародовала одностороннее заявление относительно ПРО США Договор об ограничении стратегических наступательных вооружений, подписанный в четверг в Праге Дмитрием Медведевым и Бараком Обамой, будет действовать до тех пор, пока наращивание возможностей ПРО

Из книги Гамбургский счет: Статьи – воспоминания – эссе (1914–1933) автора Шкловский Виктор Борисович

ІІ. 5. Планы А. Гитлера относительно Украины и ОУН Обе ОУН - Мельника и Бандеры, присоединились к нападению Германии на Советский Союз, обе они стремились создать хотя бы «эрзац» украинского государства и в этом рассчитывали на Германию, которая позволила словакам и

Из книги Другие цвета автора Памук Орхан

Относительно Пушкина К Пушкину мы относимся производственно.Как техник к технику.Если бы он жил, то мы бы (он был бы иной) голосовали, принять ли его в «Новый Леф».Затем мы бы попытались достать ему представительство в Федерацию писателей.Нас бы спросили: «Скольких

Из книги Литературная Газета 6334 (№ 30 2011) автора Литературная Газета

Глава 32 ДЕВЯТЬ ЗАМЕЧАНИЙ ОТНОСИТЕЛЬНО КНИЖНЫХ ОБЛОЖЕК Если писатель не представляет себе обложку своей будущей книги, это означает, что он уже состоялся как зрелый, всесторонне образованный человек, он сформировался как личность, но утратил простодушие и наивность,

Из книги Газета Завтра 981 (38 2012) автора Завтра Газета

Относительно современного искусства Клуб 12 стульев Относительно современного искусства МОСКОВСКИЙ ВЕСТНИК Московский музей современного искусства и Школа современного искусства «Свободные мастерские» представляют ежегодную международную выставку молодого

Из книги Перестройка: от Горбачева до Чубайса автора Бояринцев Владимир Иванович

Из книги Капитализм: Незнакомый идеал автора Рэнд Айн

«БУДЬТЕ ЖЕ БДИТЕЛЬНЫ - ВСЕ ОТНОСИТЕЛЬНО! Так пел когда-то Высоцкий, но здесь речь не пойдет о теории относительности, присвоенной гением всех времен и одного народа Эйнштейном (о чем можно прочитать в книге «Еврейские и русские ученые. Мифы и реальность, М. «ФЭРИ-В», 2001), а

«Знак вопроса» 5/91

Как устроена машина времени?

ЗИГУНЕНКО Станислав Николаевич

Спираль или прямая?

Все в мире относительно

"Счастливый Ньютон, счастливое детство науки... Природа была для него открытой книгой, которую он читал без усилий. Концепции, которыми он пользовался для упорядочения данных опыта, кажутся вытекающими самопроизвольно из самого опыта, из замечательных экспериментов... В одном лице он сочетал экспериментатора, теоретика, мастера... Он предстал перед нами сильным, уверенным и одиноким; его радость созидания и ювелирная точность проявляются в каждом слове и каждом рисунке".

Отдав этими словами должное своему предшественнику, "этому блестящему гению", А. Эйнштейн тем не менее принялся перекраивать Вселенную по своему разумению. Говорят, он удивил своих собеседников, признавшись однажды, что никогда не понимал понятия "абсолютное время". Конечно, это была шутка в стиле Эйнштейна - он знал и об абсолютном времени, и об абсолютном пространстве классической физики достаточно много. Столько," чтобы понять несовершенство механики Ньютона - Галилея.

Почему время везде и всюду течет одинаково? Чем этот темп задается и что (или кто) его контролирует? Эти "проклятые" вопросы не давали ему покоя. И он в конце концов разрешил их, создав теорию относительности.

За этой теорией, законченной автором в 1916 году, с самого начала утвердилась слава непостижимой. Сначала говорили, что ее во всем мире понимают всего три человека, включая самого автора. Потом число посвященных увеличилось до двенадцати, но сам автор из этой дюжины, как ни странно, выпал. Эйнштейн по этому поводу шутил: "С тех пор, как на теорию относительности навалились математики, я сам перестал ее понимать".

Действительно, математическая сторона теории весьма непроста. Но можно ведь и о самых сложных вещах рассуждать просто, объясняясь, как говорится, на пальцах. Сам Эйнштейн, кстати, владел таким способом изложения своих мыслей достаточно хорошо.

"Представим себе двух физиков, - говорил он. - У обоих есть по физической лаборатории, снабженной всеми мыслимыми физическими приборами. Лаборатория одного из физиков находится в открытом поле, а лаборатория другого - в вагоне поезда, быстро несущегося в некотором направлении. Принцип относительности утверждает: два физика, применив все приборы для изучения существующих в природе законов - один в неподвижной лаборатории, другой в вагоне, - .найдут, что эти законы одни и те же, если вагон движется равномерно и без тряски. Если сказать в более абстрактной форме, то это выглядит так: согласно принципу относительности законы природы не зависят от поступательного (равномерного) движения систем отсчета". Таким образом Эйнштейн своими словами пересказал притчу о путешественнике в запертой каюте, соглашаясь тем самым с правильностью в определенных случаях теории Галилея - Ньютона. И действительно, эта теория около двухсот лет служила верой и правдой человечеству, и никто на нее не жаловался. Так что же заставило Альберта Эйнштейна пересмотреть устоявшиеся позиции? Все та же практическая необходимость.

За два столетия многое переменилось в окружающем мире. Скорости, в нем существующие, заметно возросли. Появились новые, отрасли знания - физики, в частности, вплотную занялись явлениями ллектромагнетизма. И потому на смену принципу относительности длился должен был прийти принцип относительности Эйнштейна. Он добавил в теорию одну важную аксиому: скорость распространения света (в пустоте) одинакова во всех инерциальных системах отсчета.

Долгое время считали, что скорость света вообще равна бесконечности. Например, Герон Александрийский рассуждал так: "Поднимите ночью голову к небу. Вы увидите звезды. Закройте глаза - звезды исчезнут. Откройте их снова - звезды тотчас появятся. Поскольку между мигом открытия глаз и видением звезд нет никакого промежутка, то свет распространяется мгновенно".

А вот уже известный нам Галилей был по этому поводу другого мнения. Он предложил проделать эксперимент по измерению скорости света. Пусть два человека, снабженных сигнальными фонарями, станут подальше друг от друга, рассуждал он. Один из них открывает свой фонарь. Второй делает то же самое, как только видит свет фонаря первого. А наблюдатель, стоящий рядом с первым фонарщиком, пусть замерит промежуток времени, который пройдет между тем мгновением, когда первый фонарщик откроет свет своего фонаря, и тем мигом, когда наблюдатель увидит свет второго фонаря.

Галилей даже попытался провести такой эксперимент на практике, но вскоре убедился - скорость света чересчур велика, чтобы ее можно было было замерить вручную.

Опыты по схеме Галилея удалось провести в XVII и XIX веках. Сначала в 1675 году датский астроном Олаф Кристенсен Ремер про1 вел наблюдения во время затмения открытых Галилеем спутников Юпитера. При этом впервые было подтверждено, что скорость света имеет конечную величину. А потом опыт Галилея был проведен в лабораторных условиях французским экспериментатором Ипполитом Физо в 1849 году с помощью сконструированного им простейшего механического устройства.

Пучок света, пройдя через промежуток между зубцами шестеренки, распространялся на некоторое расстояние (в своих экспериментах Физо доходил и до дистанции в 9 км). На этом расстоянии стоит зеркало, отразившись.от которого световой луч идет обратно. Если зубчатое колесо неподвижно, этот луч попадет в глаз наблюдателя через тот же промежуток между зубцами. А вот если колесо вращается, то в зависимости от скорости вращения световой луч попадет либо на зубец, либо - при дальнейшем повышении скорости - в следующий промежуток

Зная расстояние до зеркала и скорость вращения колеса, можно вычислить скорость распространения света. Физо получил в своих опытах значение скорости света, равное 313 тыс. км/с. (Для сравнения заметим, что в современных опытах, проведенных с помощью атомных часов, это значение равно 299 799 456 м/с с погрешность* + 0,2 м/с.)

Так вот, разрабатывая свою теорию относительности, Эйнштейн пришел к выводу, что скорость света в пустоте, вакууме абсолютна. Она равна примерно 300 тыс. км/с, и быстрее света не может двигаться ничто.

К этому выводу Эйнштейн пришел на основании логических рассуждений,4 основанных на известных ему экспериментах, связанных с изучением электромагнитных процессов. Особенно высоко ценил великий теоретик эксперимент голландского астронома де Сит-тера, основанный на наблюдениях двойных звезд. Проведенные им исследования показали, что скорость света не зависит от скорости перемещения звезды, испускающей этот свет. Затем этот же факт неоднократно подтверждался и в других опытах.

Итак, скорость света постоянна. Так что же тогда меняется в этом изменчивом мире? Очень многое, в том числе и скорость... течения времени!

Чтобы понять, как это может быть, давайте вслед за Эйнштейном проведем мысленный эксперимент. Снова обратимся к двум лабораториям? одна из которых расположена в чистом поле, а другая в вагоне движущегося поезда.

Пусть на передней и задней стенках вагона имеется по лампочке. Физик-наблюдатель движущейся лаборатории находится посредине вагона, как раз между лампочками, на равном расстоянии от каждого источника света.

Эксперимент построен так, что вспышки света от этих лампочек достигают "поездного" и "полевого" физиков строго одновременно, а именно в тот момент, когда они поравняются друг с другом. Какие выводы должен сделать из этого наблюдения каждый из экспериментаторов?

Физик в вагоне может рассуждать так: ""Поскольку сигналы были посланы источниками, находящимися от меня на равных расстояниях и пришли одновременно, значит, и испущены они были строго одновременно".

Физик в полевой лаборатории имеет полное право прокомментировать описываемое событие несколько иным образом: "Когда середина вагона поравнялась со мной, обе лампочки были от меня на одинаковом расстоянии. Но свет был испущен несколько ранее момента, когда меня достиг - ведь

«икак световые лучи имеют пусть и огромную, но конеч-скорость. Отсюда логично предположить, что в момент кания света передняя стенка вагона была ко мне ближе, задняя. А так как свет от обоих источников распространяется с одинаковой скоростью, получается, что лампочка на задней стенке вспыхнула раньше, чем на передней..."

В итоге вслед за нашими физиками мы должны будем прийти к выводу: одновременно или неодновременно случилось некое событие, зависит от того, с какой точки зрения мы будем их рассматривать. Если с точки зрения двигавшегося физика, то лампочки вспыхнули одновременно; если с точки зрения физика, находившегося неподвижно, то нет.

А это, в свою очередь, неумолимо приводит нас к некому логическому парадоксу (по крайней мере таковым он кажется на первый взгляд): время в разных"системах отсчета течет неодинаково. Время оказывается зависящим от скорости! Оно не абсолютно, а относительно... С точки зрения теории относительности нельзя сказать просто "сейчас столько-то времени". Надо обязательно добавлять, в какой именно системе координат.

Бабочки, конечно, ничего не знают о змеях. Зато о них знают птицы, охотящиеся на бабочек. Птицы, плохо распознающие змей, чаще становятся...

  • Если octo на латыни «восемь», то почему октава содержит семь нот?

    Октавой называется интервал между двумя ближайшими одноименными звуками: до и до, ре и ре и т. д. С точки зрения физики «родство» этих...

  • Почему важных особ называют августейшими?

    В 27 году до н. э. римский император Октавиан получил титул Август, что на латыни означает «священный» (в честь этого же деятеля, кстати,...

  • Чем пишут в космосе

    Известная шутка гласит: «NASA потратило несколько миллионов долларов, чтобы разработать специальную ручку, способную писать в космосе....

  • Почему основа жизни - углерод?

    Известно порядка 10 миллионов органических (то есть основанных на углероде) и лишь около 100 тысяч неорганических молекул. Вдобавок...

  • Почему кварцевые лампы синие?

    В отличие от обычного стекла, кварцевое пропускает ультрафиолет. В кварцевых лампах источником ультрафиолета служит газовый разряд в парах ртути. Он...

  • Почему дождь иногда льет, а иногда моросит?

    При большом перепаде температур внутри облака возникают мощные восходящие потоки. Благодаря им капли могут долго держаться в воздухе и...

  • Альберт Эйнштейн (1879-1955). Фото 1930 г.

    Альберт Эйнштейн — один из основателей теоретической физики, лауреат Нобелевской премии, общественный деятель — производил на современников странное впечатление: одевался небрежно, любил свитера, не причесывался, мог показать язык фотографу и вообще вытворял бог весть что. Но за этим несерьезным обликом скрывался парадоксальный ученый- мыслитель, автор свыше 600 работ на разные темы. Его теория относительности совершила переворот в науке. Оказалось, что окружающий мир не так прост. Пространство-время искривляется, и в результате меняются гравитация, ход времени, солнечные лучи отклоняются от прямого направления.

    В 1921 году Эйнштейн стал лауреатом Нобелевской премии по физике за открытие закона фотоэлектрического эффекта. При этом указывалось, что работы по теории относительности и теории гравитации будут оценены после их подтверждения в будущем.

    Свою теорию относительности Эйнштейн старался объяснить шутливо: Если подержать над горячей плитой руку несколько минут, то они покажутся часом, а вот проведенный с любимой девушкой час покажется минутами». Найти работу в Воронеже можно Разве не так? Он и об открытиях в науке говорил достаточно парадоксально. Скажем, все убеждены, что сделать что-то невозможно. Но случайно находится один невежда, который этого не знает и совершает открытие.

    Эйнштейн утверждал, что теорию относительности он разработал случайно: сидел, наблюдал и вдруг заметил, что автомобиль, двигающийся относительно другого, двигающегося с той же скоростью и в том же направлении, остается неподвижным. Они движутся относительно Земли, но относительно друг друга находятся в состоянии покоя. Парадокс?

    В своих научных статьях Эйнштейн писал о том, что если тело испускает энергию в виде излучения, то уменьшение его массы пропорционально количеству выделенной им энергии. Отсюда его знаменитая формула: энергия равна произведению массы на квадрат скорости света (которая составляет 300 тысяч километров в секунду). По-научному, очень небольшая масса, разогнанная до скорости света, выделяет огромное количество энергии. Это же происходит и при распаде ядер урана. Изобретение атомной бомбы было доказательством правоты его теории…

    Родина Эйнштейна — небольшой немецкий городок Ульм, но рос он в Мюнхене. Отец был предпринимателем, мать — домохозяйкой. Обычная еврейская семья, ничего особенного. Родившийся у них мальчик с большой головой был слабым, хрупким, они боялись, что он не выживет. Но он выжил, проявлял настойчивость и не свойственную возрасту любознательность.

    В гимназии Альберт скучал, а дома читал научно-популярные книги. Особенно его интересовала астрономия. После окончания гимназии он уехал в Цюрих учиться в политехнической школе, по окончании которой стал дипломированным учителем физики и математики. Увы, два года Эйнштейн не мог найти работы даже школьным учителем. Денег не было, он буквально голодал по несколько дней подряд. Это стало причиной болезни печени, от которой ученый страдал до конца жизни, но даже в это тяжелое время Эйнштейн продолжал заниматься физикой.

    В 1902 году он устроился техническим экспертом в Бернском патентном бюро с очень скромным жалованьем. К 1905 году имел уже 5 научных работ. В 1909 году Эйнштейн стал профессором теоретической физики Цюрихского университета. В 1911 году он — профессор Немецкого университета в Праге, с 1914 по 1933-й — профессор Берлинского университета и директор Института физики Берлина.

    Свою теорию относительности, над которой трудился 10 лет, Эйнштейн оформил только в 1916 году. Наблюдавшие в 1919 году солнечное затмение ученые Лондонского королевского общества подтвердили ее правильность. Оказывается, лучи света искривляются под действием гравитационного поля планеты.

    В 1933 году в Германии к власти пришли нацисты, книги Эйнштейна, других видных ученых, писателей сжигались на площадях. Работы в Берлине пришлось свернуть, семья ученого эмигрировала в США. Эйнштейн стал профессором физики в Институте фундаментальных исследований в Принстоне. Вскоре в знак протеста против преступлений нацизма он отказался от немецкого гражданства и членства в Прусской и Баварской академиях наук. В 1940 году он получил американское гражданство.

    В 1939 году Эйнштейн вместе с другими учеными направил письмо президенту США о том, что в Германии, вероятно, ведутся интенсивные работы над оружием массового поражения. Именно это обращение привело к ускорению работ над ядерной бомбой в Америке. Взрыв в 1945 году американских атомных бомб в Хиросиме и Нагасаки сделал Энштейна активным сторонником мира — он призывал к запрещению ядерного оружия.

    Последние годы ученый жил в Принстоне, работал над единой теорией поля, в минуты отдыха играл на скрипке, катался на лодке по озеру. После смерти его мозг изучали на предмет гениальности, но ничего исключительного не обнаружили.



    Похожие статьи