Однородные тригонометрические уравнения: общая схема решения.

26.09.2019

В этой статье мы рассмотрим способ решения однородных тригонометрических уравнений.

Однородные тригонометрические уравнения имеют ту же структуру, что и однородные уравнения любого другого вида. Напомню способ решения однородных уравнений второй степени:

Рассмотрим однородные уравнения вида

Отличительные признаки однородных уравнений:

а) все одночлены имеют одинаковую степень,

б) свободный член равен нулю,

в) в уравнении присутствуют степени с двумя различными основаниями.

Однородные уравнения решаются по сходному алгоритму.

Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Если является, то мы выписываем этот корень, чтобы потом про него не забыть, а затем делим на это выражение.

Вообще, первым делом, при решении любого уравнения, в правой части которого стоит ноль, нужно попытаться разложить левую часть уравнения на множители любым доступным способом. А затем каждый множитель приравнять к нулю. В этом случае мы точно не потеряем корни.

Итак, осторожно разделим левую часть уравнения на выражение почленно. Получим:

Сократим числитель и знаменатель второй и третьей дроби:

Введем замену:

Получим квадратное уравнение:

Решим квадратное уравнение, найдем значения , а затем вернемся к исходному неизвестному.

При решении однородных тригонометрических уравнений, нужно помнить несколько важных вещей:

1. Свободный член можно преобразовать к квадрату синуса и косинуса с помощью основного тригонометрического тождества:

2. Синус и косинус двойного аргумента являются одночленами второй степени - синус двойного аргумента легко преобразовать к произведению синуса и косинуса, а косинус двойного аргумента - к квадрату синуса или косинуса:

Рассмотрим несколько примеров решения однородных тригонометрических уравнений.

1 . Решим уравнение:

Это классический пример однородного тригонометрического уравнения первой степени: степень каждого одночлена равна единице, свободный член равен нулю.

Прежде чем делить обе части уравнения на , необходимо проверить, что корни уравнения не являются корнями исходного уравнения. Проверяем: если , то title="sin{x}0">, следовательно их сумма не равна нулю.

Разделим обе части уравнения на .

Получим:

, где

, где

Ответ: , где

2 . Решим уравнение:

Это пример однородного тригонометрического уравнения второй степени. Мы помним, что если мы можем разложить левую часть уравнения на множители, то желательно это сделать. В этом уравнении мы можем вынести за скобки . Сделаем это:

Решение первого уравнения: , где

Второе уравнение - однородное тригонометрическое уравнение первой степени. Чтобы его решить, разделим обе части уравнения на . Получим:

Ответ: , где ,

3 . Решим уравнение:

Чтобы это уравнение "стало" однородным, преобразуем в произведение, и представим число 3 в виде суммы квадратов синуса и косинуса:

Перенесем все слагаемые влево, раскроем скобки и приведем подобные члены. Получим:

Разложим левую часть на множители и приравняем каждый множитель к нулю:

Ответ: , где ,

4 . Решим уравнение:

Мы видим, что можем вынести за скобки . Сделаем это:

Приравняем каждый множитель к нулю:

Решение первого уравнения:

Второе уравнение совокупности представляет собой классическое однородное уравнение второй степени. Корни уравнения не являются корнями исходного уравнения, поэтому разделим обе части уравнения на :

Решение первого уравнения:

Решение второго уравнения.

Учитель: Синицина С.И.

МБОУ СОШ №20 им.Милевского Н.И.

Тема: Однородные тригонометрические уравнения (10 класс)

Цели: Ввести понятие однородных тригонометрических уравнений I и II степени;

Сформулировать и отработать алгоритм решения однородных тригонометрических

уравнений I и II степени;

Закрепить навыки решения всех видов тригонометрических уравнений через

развитие и совершенствование умений применять имеющиеся знания в изменённой

ситуации, через умение делать выводы и обобщение

Воспитание у учащихся аккуратности, культуры поведения.

Тип урока: урок формирования новых знаний.

Оборудование: компьютер, мультимедийный проектор, экран, доска, презентация

Ход урока

I. Организационный момент

Приветствие учащихся, мобилизация внимания.

II. Актуализация опорных знаний (Домашняя работа проверяется консультантами до урока. Учитель подводит итог выполнения домашнего задания.)

Учитель: Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений.

Устная работа

  1. Какое уравнение мы называем тригонометрическим?
  2. Назовите алгоритм решения уравнения cos t = a
  3. Назовите алгоритм решения уравнения sin t = a

III. Мотивация обучения.

Учитель: нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Разгадав кроссворд, ребята прочитают слово “однородные”.

1.Значение переменной, обращающее уравнение вверное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении?(Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций?(Окружность)

6.Какая из тригонометрических функций четная?(Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнения)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение новой темы

Учитель: Тема урока “Однородные тригонометрические уравнения”.

Запишем тему урока в тетрадь. Однородные тригонометрические уравнения бывают первой и второй степени.

Запишем определение однородного уравнения первой степени. Я на примере показываю решение такого вида уравнения, вы составляете алгоритм решения однородного тригонометрического уравнения первой степени.

Уравнение вида а sinx + b cosx = 0 называют однородным тригонометрическим уравнение первой степени.

Рассмотрим решение уравнения, когда коэффициенты а и в отличны от 0.

Пример1: 2sinx - 3cosx = 0

Разделив обе части уравнения почленно на cosx, получим

2sinx/ cosx - 3cosx/ cosx = 0

2 tgx -3 =0, tgx =3/2, x = arctg3/2 + πn, nє Z,

Внимание! Делить на одно и то же выражение можно лишь в том случае, если это выражение нигде не обращается в 0. Анализируем. Если косинус равен 0, то, чтобы всё выражение обратилось в 0, синус должен быть тоже равен 0 (учитываем, что коэффициенты отличны от 0). Но мы знаем, что синус и косинус обращаются в нуль в различных точках. Поэтому такую операцию производить можно при решении этого вида уравнений.

Уравнение вида а sin mx + b cos mx = 0 тоже называют однородным тригонометрическим уравнение первой степени и решают также делением обеих частей уравнения на cos mх.

Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 называют однородным тригонометрическим уравнением второй степени.

Пример 2: sin 2 x – 3 sinx cosx +2 cos 2 x = 0

Коэффициент а отличен от 0 и поэтому как и в предыдущем уравнении соsх 0 и поэтому можно воспользоваться способом деления обеих частей уравнения на соs 2 х.

Получим tg 2 x – 3 tgx +2 = 0

Решаем путем введения новой переменной пусть tgx = а, тогда получаем уравнение

а 2 -3 а +2 = 0 а 1 = 1 а 2 = 2

Возвращаемся к замене

tgx =1, x = ¼π+ πn, nє Z tgx = 2 , x = arctg 2 + πn, nє Z

Ответ: x = ¼π + πn, nє Z, x = arctg 2 + πn, nє Z

Если коэффициент а = 0, то уравнение примет вид –3sinx cosx + 2cos 2 x = 0 решаем способом вынесения общего множителя – cosx за скобки: – cosx (3 sinx – 2cosx) = 0,

cosx = 0 или 3sinx – 2cosx = 0. Второе уравнение является однородным уравнением первой степени.

Если коэффициент с = 0, то уравнение примет вид sin 2 x -3sinx cosx = 0 решаем способом вынесения общего множителя sinx за скобки: sinx (sinx -3 cosx) = 0,

sinx = 0 или sinx -3 cosx = 0. Второе уравнение является однородным уравнением первой степени.

Алгоритм решения однородного тригонометрического уравнения второй степени:

1.Посмотреть, есть ли в уравнении член a sin 2 x.

2.Если член asin 2 x в уравнении содержится (т.е. а 0), то уравнение решается делением

обеих частей уравнения на cos 2 x и последующим введение новой переменной а = tgx

3. Если член asin 2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx.

Однородные уравнения вида a sin 2 mx + b sin mx cos mx + c cos 2 mx = 0 решаются таким же способом

V. Усвоение новых знаний

Являются ли однородными данные уравнения?

  1. sin x = 2 cos x
  2. sin 5x + cos 5x = 0
  3. sin 3x - cos 3x = 2
  4. sin 2 8x – 5 sin8x cos8x +2 cos 2 8x =0

V I. Физкультминутка

V II. Формирование навыков решения однородных тригонометрических уравнений

Открываем задачники стр.47 № 18.10(а), № 18.11 (а,б),18.12(г)

VI II. Самостоятельная работа (учащиеся выбираю дифференцированные задания по двум вариантам)

1 вариант 2 вариант

1) sinx + 2cosx = 0. 1) sinx - 4cosx = 0.

2) sin 2 x + 2sinx cosx -3 cos 2 x = 0 2) sin 2 x – 4 sinx cosx +3 cos 2 x = 0

3) 2sin 2 2x – 5 sin2x cos2x +2 cos 2 2x = 0 3) 3sin 2 3x +10 sin3x cos3x +3 cos 2 3x = 0

Правильные ответы проецируются на доску.

IX. Подведение итогов урока, выставление оценок

С каким видом тригонометрических уравнений мы познакомились на уроке?

Какие уравнения мы называем однородными?

Сформулируйте алгоритмы решения однородных тригонометрических уравнений первой и второй степени.

X. Задание на дом: Cоставить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

У системы (16) первое уравнение - линейное , поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы.

Последняя деталь, как решать задания С1 из ЕГЭ по математике - решение однородных тригонометрических уравнений. Как их решать мы расскажем в этом завершающем уроке.

Что же представляют из себя эти уравнения? Давайте запишем их в общем виде.

$$a\sin x + b\cos x = 0,$$

где `a` и `b` - некоторые константы. Это уравнение называется однородным тригонометрическим уравнением первой степени.

Однородное тригонометрическое уравнение первой степени

Чтобы решить такое уравнение, нужно поделить его на `\cos x`. Тогда оно примет вид

$$\newcommand{\tg}{\mathop{\mathrm{tg}}} a \tg x + b = 0.$$

Ответ такого уравнения легко записывается через арктангенс.

Обратите внимание, что `\cos x ≠0`. Чтобы убедиться в этом, подставим в уравнение вместо косинуса ноль и получим, что синус тоже должен быть равен нулю. Однако одновременно нулю они равны быть не могут, значит, косинус - не ноль.

Некоторые задания реального экзамена этого года сводились к однородному тригонометрическому уравнению. Перейдите по ссылке, чтобы . Мы же возьмем чуть упрощенный вариант задачи.

Первый пример. Решение однородного тригонометрического уравнения первой степени

$$\sin x + \cos x = 0.$$

Разделим на `\cos x`.

$$\tg x + 1 = 0,$$

$$x = -\frac{\pi}{4}+\pi k.$$

Повторюсь, подобное задание было на ЕГЭ:) конечно, нужно еще выполнить отбор корней, но это тоже не должно вызвать особых трудностей.

Давайте теперь перейдем к следующему типу уравнений.

Однородное тригонометрическое уравнение второй степени

В общем виде оно выглядит так:

$$a\sin^2 x + b\sin x \cos x + c\cos^2 x =0,$$

где `a, b, c` - некоторые константы.

Такие уравнения решаются делением на `\cos^2 x` (который вновь не равен нулю). Давайте сразу разберем пример.

Второй пример. Решение однородного тригонометрического уравнения второй степени

$$\sin^2 x - 2\sin x \, \cos x - 3\cos^2 x = 0.$$

Разделим на `\cos^2 x`.

$${\tg}^2 x - 2\tg x -3 =0.$$

Заменим `t = \tg x`.

$$t^2 - 2t -3 = 0,$$

$$t_1 = 3, \ t_2 = -1.$$

Обратная замена

$$\tg x = 3, \text{ или } \tg x = -1,$$

$$x = \arctan{3}+\pi k, \text{ или } x= -\frac{\pi}{4}+ \pi k.$$

Ответ получен.

Третий пример. Решение однородного тригонометрического уравнения второй степени

$$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x = -2.$$

Все бы ничего, но это уравнение не однородное - нам мешает `-2` в правой части. Что делать? Давайте воспользуемся основным тригонометрическим тождеством и распишем с его помощью `-2`.

$$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x = -2(\sin^2 x + \cos^2 x),$$

$$-\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - 3\cos^2 x + 2\sin^2 x + 2\cos^2 x = 0,$$

$$\sin^2 x + \frac{2\sqrt{2}}{3}\sin x \cos x - \cos^2 x = 0.$$

Разделим на `\cos^2 x`.

$${\tg}^2 x + \frac{2\sqrt{2}}{3} \tg x - 1 = 0,$$

Замена `t= \tg x`.

$$t^2 + \frac{2\sqrt{2}}{3} t - 1 = 0,$$

$$t_1 = \frac{\sqrt{3}}{3},\ t_2 = -\sqrt{3}.$$

Выполнив обратную замену, получим:

$$\tg x = \frac{\sqrt{3}}{3} \text{ или } \tg x = -\sqrt{3}.$$

$$x =-\frac{\pi}{3} + \pi k,\ x = \frac{\pi}{6}+ \pi k.$$

Это последний пример в этом уроке.

Как обычно, напомню: тренировка, это наше все. Каким бы гениальным ни был человек, без тренировки навыки не разовьются. На экзамене это черевато волнением, ошибками, потерей времени (продолжите этот список самостоятельно). Обязательно занимайтесь!

Тренировочные задания

Решите уравнения:

  • `10^{\sin x} = 2^{\sin x} \cdot 5^{-\cos x}`. Это задание из реального ЕГЭ 2013. Знание свойств степеней никто не отменял, но если забыли, подсмотреть ;
  • `\sqrt{3} \sin x + \sin^2 \frac{x}{2} = \cos^2 \frac{x}{2}`. Пригодится формула из седьмого урока .
  • `\sqrt{3} \sin 2x + 3 \cos 2x = 0`.

На этом все. И как обычно напоследок: задаем вопросы в комментариях, ставим лайки, смотрим видео, учимся решать ЕГЭ.



Похожие статьи